|
Record |
Links |
|
Author |
Wang, G.; Xie, C.; Wang, H.; Li, Q.; Xia, F.; Zeng, W.; Peng, H.; Van Tendeloo, G.; Tan, G.; Tian, J.; Wu, J. |
|
|
Title |
Mitigated oxygen loss in lithium-rich manganese-based cathode enabled by strong Zr-O affinity |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Advanced functional materials |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2313672 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Oxygen loss is a serious problem of lithium-rich layered oxide (LLO) cathodes, as the high capacity of LLO relies on reversible oxygen redox. Oxygen release can occur at the surface leading to the formation of spinel or rock salt structures. Also, the lattice oxygen will usually become unstable after long cycling, which remains a major roadblock in the application of LLO. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in LLO due to the high affinity between Zr and O. A simple sol-gel method is used to dope Zr4+ into the LLOs to adjust the local electronic structure and inhibit the diffusion of oxygen anions to the surface during cycling. Compared with untreated LLOs, LLO-Zr cathodes exhibit a higher cycling stability, with 94% capacity retention after 100 cycles at 0.4 C, up to 223 mAh g-1 at 1 C, and 88% capacity retention after 300 cycles. Theoretical calculations show that due to the strong Zr-O covalent bonding, the formation energy of oxygen vacancies has effectively increased and the loss of lattice oxygen under high voltage can be suppressed. This study provides a simple method for developing high-capacity and cyclability Li-rich cathode materials for lithium-ion batteries. Oxygen release can occur at the cathode surface leading to the formation of spinel or rock salt structures. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in lithium-rich layered oxides (LLO) due to the high affinity between Zr and O. LLO-Zr exhibit higher cycling stability, with 88% capacity retention after 300 cycles at 1 C. image |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001159843800001 |
Publication Date |
2024-02-10 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1616-301x |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
19 |
Times cited |
|
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 19; 2024 IF: 12.124 |
|
|
Call Number |
UA @ admin @ c:irua:203812 |
Serial |
9161 |
|
Permanent link to this record |