toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Wang, G.; Xie, C.; Wang, H.; Li, Q.; Xia, F.; Zeng, W.; Peng, H.; Van Tendeloo, G.; Tan, G.; Tian, J.; Wu, J. pdf  doi
openurl 
  Title Mitigated oxygen loss in lithium-rich manganese-based cathode enabled by strong Zr-O affinity Type A1 Journal article
  Year (down) 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue Pages 2313672  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxygen loss is a serious problem of lithium-rich layered oxide (LLO) cathodes, as the high capacity of LLO relies on reversible oxygen redox. Oxygen release can occur at the surface leading to the formation of spinel or rock salt structures. Also, the lattice oxygen will usually become unstable after long cycling, which remains a major roadblock in the application of LLO. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in LLO due to the high affinity between Zr and O. A simple sol-gel method is used to dope Zr4+ into the LLOs to adjust the local electronic structure and inhibit the diffusion of oxygen anions to the surface during cycling. Compared with untreated LLOs, LLO-Zr cathodes exhibit a higher cycling stability, with 94% capacity retention after 100 cycles at 0.4 C, up to 223 mAh g-1 at 1 C, and 88% capacity retention after 300 cycles. Theoretical calculations show that due to the strong Zr-O covalent bonding, the formation energy of oxygen vacancies has effectively increased and the loss of lattice oxygen under high voltage can be suppressed. This study provides a simple method for developing high-capacity and cyclability Li-rich cathode materials for lithium-ion batteries. Oxygen release can occur at the cathode surface leading to the formation of spinel or rock salt structures. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in lithium-rich layered oxides (LLO) due to the high affinity between Zr and O. LLO-Zr exhibit higher cycling stability, with 88% capacity retention after 300 cycles at 1 C. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001159843800001 Publication Date 2024-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited Open Access  
  Notes Approved Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:203812 Serial 9161  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: