toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Magnetic properties and critical behavior of magnetically intercalated WSe₂ : a theoretical study Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 2 Pages 025009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transition metal dichalcogenides, intercalated with transition metals, are studied for their potential applications as dilute magnetic semiconductors. We investigate the magnetic properties of WSe2 doped with third-row transition metals (Co, Cr, Fe, Mn, Ti and V). Using density functional theory in combination with Monte Carlo simulations, we obtain an estimate of the Curie or Neel temperature. We find that the magnetic ordering is highly dependent on the dopant type. While Ti and Cr-doped WSe2 have a ferromagnetic ground state, V, Mn, Fe and Co-doped WSe2 are antiferromagnetic in their ground state. For Fe doped WSe2, we find a high Curie-temperature of 327 K. In the case of V-doped WSe2, we find that there are two distinct magnetic phase transitions, originating from a frustrated in-plane antiferromagnetic exchange interaction and a ferromagnetic out-of-plane interaction. We calculate the formation energy and reveal that, in contrast to earlier reports, the formation energy is positive for the intercalated systems studied here. We also show that in the presence of W-vacancies, it becomes favorable for Ti, Fe, and Co to intercalate in WSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000601127600001 Publication Date 2020-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 1 Open Access OpenAccess  
  Notes ; The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This material is based upon work supported by the National Science Foundation under Grant No. 1802166. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This work was supported by IMEC's Industrial Affiliation Program. Peter D Reyntjens acknowledges support by the Eugene McDermott Fellowship program, under Grant Number 201806. ; Approved (up) Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:174951 Serial 6692  
Permanent link to this record
 

 
Author Lavor, I.R.; Cavalcante, L.S.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Probing the structure and composition of van der Waals heterostructures using the nonlocality of Dirac plasmons in the terahertz regime Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 1 Pages 015014  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in graphene are very sensitive to the dielectric properties of the environment. We show that this can be used to probe the structure and composition of van der Waals heterostructures (vdWh) put underneath a single graphene layer. In order to do so, we assess vdWh composed of hexagonal boron nitride and different types of transition metal dichalcogenides (TMDs). By performing realistic simulations that account for the contribution of each layer of the vdWh separately and including the importance of the substrate phonons, we show that one can achieve single-layer resolution by investigating the nonlocal nature of the Dirac plasmon-polaritons. The composition of the vdWh stack can be inferred from the plasmon-phonon coupling once it is composed by more than two TMD layers. Furthermore, we show that the bulk character of TMD stacks for plasmonic screening properties in the terahertz regime is reached only beyond 100 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582820500001 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 4 Open Access OpenAccess  
  Notes ; This work was financially supported by the Brazilian Council for Research (CNPq), Brazilian National Council for the Improvement of Higher Education (CAPES) and by the Research Foundation Flanders (FWO) through a postdoctoral fellowship to B.V.D. ; Approved (up) Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:173507 Serial 6696  
Permanent link to this record
 

 
Author Petrov, M.; Bekaert, J.; Milošević, M.V. pdf  url
doi  openurl
  Title Superconductivity in gallenene Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 3 Pages 035056  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Among the large variety of two-dimensional (2D) materials discovered to date, elemental monolayers that host superconductivity are very rare. Using ab initio calculations we show that recently synthesized gallium monolayers, coined gallenene, are intrinsically superconducting through electron-phonon coupling. We reveal that Ga-100 gallenene, a planar monolayer isostructural with graphene, is the structurally simplest 2D superconductor to date, furthermore hosting topological edge states due to its honeycomb structure. Our anisotropic Eliashberg calculations show distinctly three-gap superconductivity in Ga-100, in contrast to the alternative buckled Ga-010 gallenene which presents a single anisotropic superconducting gap. Strikingly, the critical temperature (T ( c )) of gallenene is in the range of 7-10 K, exceeding the T ( c ) of bulk gallium from which it is exfoliated. Finally we explore chemical functionalization of gallenene with hydrogen, and report induced multigap superconductivity with an enhanced T ( c ) in the resulting gallenane compound.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000667458500001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 8 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:179623 Serial 7025  
Permanent link to this record
 

 
Author Lavor, I.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B. pdf  url
doi  openurl
  Title Tunable coupling of terahertz Dirac plasmons and phonons in transition metal dichalcogenide-based van der Waals heterostructures Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume Issue Pages 015018  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in graphene hybridize with phonons of transition metal dichalcogenides (TMDs) when the materials are combined in so-called van der Waals heterostructures (vdWh), thus forming surface plasmon-phonon polaritons (SPPPs). The extend to which these modes are coupled depends on the TMD composition and structure, but also on the plasmons' properties. By performing realistic simulations that account for the contribution of each layer of the vdWh separately, we calculate how the strength of plasmon-phonon coupling depends on the number and composition of TMD layers, on the graphene Fermi energy and the specific phonon mode. From this, we present a semiclassical theory that is capable of capturing all relevant characteristics of the SPPPs. We find that it is possible to realize both strong and ultra-strong coupling regimes by tuning graphene's Fermi energy and changing TMD layer number.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000722020100001 Publication Date 2021-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.937 Times cited 1 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:183053 Serial 7036  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. pdf  doi
openurl 
  Title Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates Type A1 Journal article
  Year 2014 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 1 Issue 1 Pages 011010  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By using first-principles simulations, we investigate the interaction of a 2D silicon layer with two classes of chalcogenide-layered compounds, namely MoX2 and GaX (X = S, Se, Te). A rather weak (van der Waals) interaction between the silicene layers and the chalcogenide layers is predicted. We found that the buckling of the silicene layer is correlated to the lattice mismatch between the silicene layer and the MoX2 or GaX template. The electronic properties of silicene on these different templates largely depend on the buckling of the silicene layer: highly buckled silicene on MoS2 is predicted to be metallic, while low buckled silicene on GaS and GaSe is predicted to be semi-metallic, with preserved Dirac cones at the K points. These results indicate new routes for artificially engineering silicene nanosheets, providing tailored electronic properties of this 2D layer on non-metallic substrates. These non-metallic templates also open the way to the possible integration of silicene in future nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000353649900011 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 49 Open Access  
  Notes Approved (up) Most recent IF: 6.937; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:126032 Serial 1048  
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. pdf  doi
openurl 
  Title Two-dimensional hexagonal tin : ab initio geometry, stability, electronic structure and functionalization Type A1 Journal article
  Year 2014 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 1 Issue Pages 021004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the structural, mechanical and electronic properties of the two-dimensional (2D) allotrope of tin: tinene/stanene using first-principles calculation within density functional theory, implemented in a set of computer codes. Continuing the trend of the group-IV 2D materials graphene, silicene and germanene; tinene is predicted to have a honeycomb lattice with lattice parameter of a(0) = 4.62 angstrom and a buckling of d(0) = 0.92 angstrom. The electronic dispersion shows a Dirac cone with zero gap at the Fermi energy and a Fermi velocity of v(F) = 0.97 x 10(6) m s(-1); including spin-orbit coupling yields a bandgap of 0.10 eV. The monolayer is thermally stable up to 700 K, as indicated by first-principles molecular dynamics, and has a phonon dispersion without imaginary frequencies. We explore applied electric field and applied strain as functionalization mechanisms. Combining these two mechanisms allows for an induced bandgap up to 0.21 eV, whilst retaining the linear dispersion, albeit with degraded electronic transport parameters.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000353650400004 Publication Date 2014-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 58 Open Access  
  Notes Approved (up) Most recent IF: 6.937; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:134432 Serial 4530  
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Kang, J.; Peeters, F.M.; Senger, R.T. pdf  doi
openurl 
  Title Electronic and magnetic properties of 1T-TiSe2 nanoribbons Type A1 Journal article
  Year 2015 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 2 Issue 2 Pages 044002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of single layer TiSe2, we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair-edged nanoribbons (NRs) of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 NRs have some distinctive properties. The electronic band gap of the NRs decreases exponentially with the width and vanishes for ribbons wider than 20 angstrom. For ultranarrow zigzag-edged NRs we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have non-magnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase NRs of similar crystal structures.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000368936600005 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 20 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus Short Marie Curie Fellowship. HDO, HS and RTS acknowledge the support from TUBITAK through project 114F397. ; Approved (up) Most recent IF: 6.937; 2015 IF: NA  
  Call Number UA @ lucian @ c:irua:131602 Serial 4169  
Permanent link to this record
 

 
Author Agrawal, S.; Weissbrodt, D.G.; Annavajhala, M.; Jensen, M.M.; Arroyo, J.M.C.; Wells, G.; Chandran, K.; Vlaeminck, S.E.; Terada, A.; Smets, B.F.; Lackner, S. pdf  url
doi  openurl
  Title Time to act–assessing variations in qPCR analyses in biological nitrogen removal with examples from partial nitritation/anammox systems Type A1 Journal article
  Year 2021 Publication Water Research Abbreviated Journal Water Res  
  Volume 190 Issue Pages 116604  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Quantitative PCR (qPCR) is broadly used as the gold standard to quantify microbial community fractions in environmental microbiology and biotechnology. Benchmarking efforts to ensure the comparability of qPCR data for environmental bioprocesses are still scarce. Also, for partial nitritation/anammox (PN/A) systems systematic investigations are still missing, rendering meta-analysis of reported trends and generic insights potentially precarious. We report a baseline investigation of the variability of qPCR-based analyses for microbial communities applied to PN/A systems. Round-robin testing was performed for three PN/A biomass samples in six laboratories, using the respective in-house DNA extraction and qPCR protocols. The concentration of extracted DNA was significantly different between labs, ranged between 2.7 and 328 ng mg−1 wet biomass. The variability among the qPCR abundance data of different labs was very high (1−7 log fold) but differed for different target microbial guilds. DNA extraction caused maximum variation (3–7 log fold), followed by the primers (1–3 log fold). These insights will guide environmental scientists and engineers as well as treatment plant operators in the interpretation of qPCR data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632807700001 Publication Date 2020-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.942 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 6.942  
  Call Number UA @ admin @ c:irua:173838 Serial 8672  
Permanent link to this record
 

 
Author Erfurt, D.; Koida, T.; Heinemann, M.D.; Li, C.; Bertram, T.; Nishinaga, J.; Szyszka, B.; Shibata, H.; Klenk, R.; Schlatmann, R. url  doi
openurl 
  Title Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices Type A1 Journal article
  Year 2020 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 206 Issue Pages 110300  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Indium oxide based transparent conductive oxides (TCOs) are promising contact layers in solar cells due to their outstanding electrical and optical properties. However, when applied in Cu(In,Ga)Se-2 or Si-hetero-junction solar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO. We investigated the electrical properties of hydrogen doped and hydrogen-tungsten co-doped indium oxides grown on rough Cu(In,Ga)Se-2 samples as well as on textured and planar glass. At sharp ridges and V-shaped valleys crack-shaped voids form inside the indium oxide films, which limit the effective electron mobility of the In2O3:H and In2O3:H,W thin films. This was found for films deposited by magnetron sputtering and reactive plasma deposition at several deposition parameters, before as well as after annealing and solid phase crystallization. This suggests universal behavior that will have a wide impact on solar cell devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519653800038 Publication Date 2019-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.9 Times cited 5 Open Access OpenAccess  
  Notes ; This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract number 0325762G (TCO4CIGS). The authors thank M. Hartig, K. Mayer-Stillrich, I. Dorbandt, B. Bunn, M. Kirsch for technical support. C. Li is grateful for financial support from Max Planck Society, Germany and technical support from the MPI FKF StEM group members. ; Approved (up) Most recent IF: 6.9; 2020 IF: 4.784  
  Call Number UA @ admin @ c:irua:168668 Serial 6544  
Permanent link to this record
 

 
Author Mao, J.; Milovanović, S.P.; Andelkovic, M.; Lai, X.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Covaci, L.; Peeters, F.M.; Geim, A.K.; Jiang, Y.; Andrei, E.Y. pdf  doi
openurl 
  Title Evidence of flat bands and correlated states in buckled graphene superlattices Type A1 Journal article
  Year 2020 Publication Nature Abbreviated Journal Nature  
  Volume 584 Issue 7820 Pages 215-220  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure(1-5). An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers(6). The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition(7-9), resulting in a periodically modulated pseudo-magnetic field(10-14), which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state(15-17). This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands. Buckled monolayer graphene superlattices are found to provide an alternative to twisted bilayer graphene for the study of flat bands and correlated states in a carbon-based material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000559831500012 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited 109 Open Access Not_Open_Access  
  Notes ; ; Approved (up) Most recent IF: 64.8; 2020 IF: 40.137  
  Call Number UA @ admin @ c:irua:171150 Serial 6513  
Permanent link to this record
 

 
Author Wahab, O.J.; Daviddi, E.; Xin, B.; Sun, P.Z.; Griffin, E.; Colburn, A.W.; Barry, D.; Yagmurcukardes, M.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.; Unwin, P.R. url  doi
openurl 
  Title Proton transport through nanoscale corrugations in two-dimensional crystals Type A1 Journal article
  Year 2023 Publication Nature Abbreviated Journal  
  Volume 620 Issue 7975 Pages 1-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Defect-free graphene is impermeable to all atoms(1-5) and ions(6,7) under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom(2,5). Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium(6,7). By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms(8,9). There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability(10-14) or even on whether it requires defects in graphene's crystal lattice(6,8,15-17). Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials. A study using high-resolution scanning electrochemical cell microscopy attributes proton permeation through defect-free graphene and hexagonal boron nitride to transport across areas of the structure that are under strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001153630400007 Publication Date 2023-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited 17 Open Access  
  Notes Approved (up) Most recent IF: 64.8; 2023 IF: 40.137  
  Call Number UA @ admin @ c:irua:203827 Serial 9078  
Permanent link to this record
 

 
Author Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L.G.; Boehme, S.C.; Aebli, M.; Affolter, J.; Kaul, C.J.; Schrenker, N.J.; Bals, S.; Sahin, Y.; Dirin, D.N.; Cherniukh, I.; Raino, G.; Baumketner, A.; Kovalenko, M.V. url  doi
openurl 
  Title Designer phospholipid capping ligands for soft metal halide nanocrystals Type A1 Journal article
  Year 2024 Publication Nature Abbreviated Journal  
  Volume 626 Issue Pages 542-548  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission. Phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites and lead-free metal halide nanocrystals, which then exhibit enhanced robustness and optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001176 Publication Date 2023-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited Open Access  
  Notes Approved (up) Most recent IF: 64.8; 2024 IF: 40.137  
  Call Number UA @ admin @ c:irua:204796 Serial 9144  
Permanent link to this record
 

 
Author Tong, J.; Fu, Y.; Domaretskiy, D.; Della Pia, F.; Dagar, P.; Powell, L.; Bahamon, D.; Huang, S.; Xin, B.; Costa Filho, R.N.; Vega, L.F.; Grigorieva, I.V.; Peeters, F.M.; Michaelides, A.; Lozada-Hidalgo, M. pdf  url
doi  openurl
  Title Control of proton transport and hydrogenation in double-gated graphene Type A1 Journal Article
  Year 2024 Publication Nature Abbreviated Journal Nature  
  Volume 630 Issue 8017 Pages 619-624  
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;  
  Abstract The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor–insulator transition that has been explored intensively in graphene electronic devices. However, both processes face energy barriersand various strategies have been proposed to accelerate proton transport, for example by introducing vacancies, incorporating catalytic metalsor chemically functionalizing the lattice. But these techniques can compromise other properties, such as ion selectivity or mechanical stability. Here we show that independent control of the electric field,<italic>E</italic>, at around 1 V nm<sup>−1</sup>, and charge-carrier density,<italic>n</italic>, at around 1 × 10<sup>14</sup> cm<sup>−2</sup>, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on–off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of<italic>E</italic>and<italic>n</italic>, which is a new technique for the study of 2D electrode–electrolyte interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001262 Publication Date 2024-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited Open Access  
  Notes This work was supported by UKRI (EP/X017745: M.L.-H; EP/X035891: A.M.), the Directed Research Projects Program of the Research and Innovation Center for Graphene and 2D Materials at Khalifa University (RIC2D-D001: M.L.-H., L.F.V. and D.B.), The Royal Society (URF\R1\201515: M.L.-H.) and the European Research Council (101071937: A.M.). Part of this work was supported by the Flemish Science Foundation (FWO-Vl, G099219N). A.M. acknowledges access to the UK national high-performance computing service (ARCHER2). Approved (up) Most recent IF: 64.8; 2024 IF: 40.137  
  Call Number CMT @ cmt @c:irua:206402 Serial 9247  
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal Article
  Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia  
  Volume 250 Issue Pages 116186  
  Keywords A1 Journal Article; CMT  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001252293900001 Publication Date 2024-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6 Times cited Open Access  
  Notes Research Foundation Flanders; Approved (up) Most recent IF: 6; 2024 IF: 3.747  
  Call Number UA @ lucian @ CMTc:irua:206327 Serial 9116  
Permanent link to this record
 

 
Author Spaeth, P.; Adhikari, S.; Heyvaert, W.; Zhuo, X.; Garcia, I.; Liz-Marzan, L.M.; Bals, S.; Orrit, M.; Albrecht, W. url  doi
openurl 
  Title Photothermal circular dichroism measurements of single chiral gold nanoparticles correlated with electron tomography Type A1 Journal article
  Year 2022 Publication ACS Photonics Abbreviated Journal Acs Photonics  
  Volume 9 Issue 12 Pages 3995-4004  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Chemically synthesized metal nanoparticles with morphological chiral features are known to exhibit strong circular dichroism. However, we still lack understanding of the correlation between morphological and chiroptical features of plasmonic nanoparticles. To shed light on that question, single nanoparticle experiments are required. We performed photothermal circular dichroism measurements of single chiral and achiral gold nanoparticles and correlated the chiroptical response to the 3D morphology of the same nanoparticles retrieved by electron tomography. In contrast to an ensemble measurement, we show that individual particles within the ensemble display a broad distribution of strength and handedness of circular dichroism signals. Whereas obvious structural chiral features, such as helical wrinkles, translate into chiroptical ones, nanoparticles with less obvious chiral morphological features can also display strong circular dichroism signals. Interestingly, we find that even seemingly achiral nanoparticles can display large g-factors. The origin of this circular dichroism signal is discussed in terms of plasmonics and other potentially relevant factors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884432100001 Publication Date 2022-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by The Netherlands Organisation for Scientific Research (NWO) as part of the Open Technology Program (OTP, Project No. 16008) and by a Spinoza prize (M.O.) . W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 Program (Grant No. 797153, SOPMEN) . L.M.L.M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (Grants PID2020-117779RB-I00 and MDM-2017-0720) . We thank Dr. Wolfgang L?fer for providing optical equipment. We also acknowledge the European Soft Matter Infrastructure (EUSMI: E201200468) . Approved (up) Most recent IF: 7  
  Call Number UA @ admin @ c:irua:192098 Serial 7331  
Permanent link to this record
 

 
Author Bjørnåvold, A.; David, M.; Bohan, D.A.; Gibert, C.; Rousselle, J.-M.; Van Passel, S. pdf  doi
openurl 
  Title Why does France not meet its pesticide reduction targets? Farmers' socio-economic trade-offs when adopting agro-ecological practices Type A1 Journal article
  Year 2022 Publication Ecological Economics Abbreviated Journal Ecol Econ  
  Volume 198 Issue Pages 107440-28  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Despite substantial policy efforts made by the French government to reduce dependence on pesticides, farming practices are only changing slowly. This paper analyses the socio-economic trade-offs that 110 farmers are currently facing in the transition to agro-ecological practices. A mixed-method approach – a quantitative discrete choice experiment (DCE) and qualitative interviews – was set up to understand these farmers' motivations and perspectives, and how policy can improve to accompany them on the road to low chemical input farming. Results of the DCE indicate that the majority of the farmers in our sample are keen to change practices but are at a loss as to how this can be done, as a number of preferences for this transition came out as inconclusive. Qualitative interviews with a representative sample of the farmers that took part in the DCE complemented this result by illustrating a deep uncertainty for the future and a disconnect felt between authorities and themselves as a group. We argue that this uncertainty contributed to a lack of clear-cut solutions established through the DCE. The indepth discussions with farmers illustrated the wish for concrete and local policy measures based on farmers' networks and peer support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000802083900003 Publication Date 2022-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009; 1873-6106 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 7  
  Call Number UA @ admin @ c:irua:188764 Serial 7375  
Permanent link to this record
 

 
Author Van Dael, M.; Van Passel, S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J. doi  openurl
  Title A techno-economic evaluation of a biomass energy conversion park Type A1 Journal article
  Year 2013 Publication Applied Energy Abbreviated Journal Appl Energ  
  Volume 104 Issue Pages 611-622  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conversion Park (ECP) is introduced. A biomass ECP can be defined as a synergetic, multi-dimensional biomass conversion site with a highly integrated set of conversion technologies in which a multitude of regionally available biomass (residue) sources are converted into energy and materials. A techno-economic assessment is performed on a case study in the Netherlands to illustrate the concept and to comparatively assess the highly integrated system with two mono-dimensional models. The three evaluated models consist of (1) digestion of the organic fraction of municipal solid waste, (2) co-digestion of manure and co-substrates, and (3) integration. From a socio-economic point of view it can be concluded that it is economically and energetically more interesting to invest in the integrated model than in two separate models. The integration is economically feasible and environmental benefits can be realized. For example, the integrated model allows the implementation of a co-digester. Unmanaged manure would otherwise represent a constant pollution risk. However, from an investor's standpoint one should firstly invest in the municipal solid waste digester since the net present value (NPV) of this mono-dimensional model is higher than that of the multi-dimensional model. A sensitivity analysis is performed to identify the most influencing parameters. Our results are of interest for companies involved in the conversion of biomass. The conclusions are useful for policy makers when deciding on policy instruments concerning manure processing or biogas production. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316152700062 Publication Date 2012-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-2619 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.182 Times cited 45 Open Access  
  Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. Furthermore, the authors gratefully acknowledge the financial support from INTERREG and the province of Limburg (Belgium). Also, we would like to thank all remaining partners of the ECP project (Eloi Schreurs, Dries Maes, Kristian Coppoolse, Han ten Berge, Bert Annevelink, Nathalie Devriendt, Erwin Cornelissen, Hannes Pieper, Pieter Vollaard, Jan Venselaar, and Hessel Abbink Spaink) for their support and contributions. Finally, we would like to express our gratitude towards the organization of the eighth International Conference on Renewable Resources and Biorefineries in Toulouse (France) for giving us the opportunity to present and thereby fine-tune our work. ; Approved (up) Most recent IF: 7.182; 2013 IF: 5.261  
  Call Number UA @ admin @ c:irua:127552 Serial 6145  
Permanent link to this record
 

 
Author Blay, V.; Galian, R.E.; Muresan, L.M.; Pancratov, D.; Pinyou, P.; Zampardi, G. pdf  doi
openurl 
  Title Research frontiers in energy-related materials and applications for 2020-2030 Type A1 Journal article
  Year 2020 Publication Advanced sustainable systems Abbreviated Journal  
  Volume 4 Issue 2 Pages 1900145  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This article delineates the state of the art for several materials used in the harvest, conversion, and storage of energy, and analyzes the challenges to be overcome in the decade ahead for them to reach the market and benefit society. The materials covered have had a special interest in recent years and include perovskites, materials for batteries and supercapacitors, graphene, and materials for hydrogen production and storage. Looking at the common challenges for these different systems, scientists in basic research should carefully consider commercial requirements when designing new materials. These include cost and ease of synthesis, abundance of precursors, recyclability of spent devices, toxicity, and stability. Improvements in these areas deserve more attention, as they can help bridge the gap for these technologies and facilitate the creation of partnerships between academia and industry. These improvements should be pursued in parallel with the design of novel compositions, nanostructures, and devices, which have led most interest during the past decade. Research groups are encouraged to adopt a cross-disciplinary mindset, which may allow more efficient use of existing knowledge and facilitate breakthrough innovation in both basic and applied research of energy-related materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000509006700001 Publication Date 2020-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-7486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.1 Times cited 2 Open Access  
  Notes ; ; Approved (up) Most recent IF: 7.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:166561 Serial 6595  
Permanent link to this record
 

 
Author Andersen, J.A.; Christensen, J.M.; Østberg, M.; Bogaerts, A.; Jensen, A.D. url  doi
openurl 
  Title Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor Type A1 Journal article
  Year 2022 Publication International Journal Of Hydrogen Energy Abbreviated Journal Int J Hydrogen Energ  
  Volume 47 Issue 75 Pages 32081-32091  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic ammonia decomposition as a method for producing hydrogen was studied in a packed-bed dielectric barrier discharge (DBD) reactor at ambient pressure and a fixed plasma power. The influence of packing the plasma zone with various dielectric materials, typically used as catalyst supports, was examined. At conditions (21 W, 75 Nml/min NH3) where an NH3 conversion of 5% was achieved with plasma alone, an improved decomposition was found when introducing dielectric materials with dielectric constants between 4 and 30. Of the tested materials, MgAl2O4 yielded the highest conversion (15.1%). The particle size (0.3-1.4 mm) of the MgAl2O4 packing was found to have a modest influence on the conversion, which dropped from 15.1% to 12.6% with increasing particle size. Impregnation of MgAl2O4 with different metals was found to decrease the NH3 conversion, with the Ni impregnation still showing an improved conversion (7%) compared to plasma-only. The plasma-assisted ammonia decomposition occurs in the gas phase due to micro-discharges, as evident from a linear correlation between the conversion and the frequency of micro-discharges for both plasma alone and with the various solid packing materials. The primary function of the solid is thus to facilitate the gas phase reaction by assisting the creation of micro-discharges. Lastly, insulation of the reactor to raise the temperature to 230 degrees C in the plasma zone was found to have a negative effect on the conversion, as a change from volume discharges to surface discharges occurred. The study shows that NH3 can be decomposed to provide hydrogen by exposure to a non-thermal plasma, but further developments are needed for it to become an energy efficient technology. (C)2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865421200012 Publication Date 2022-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.2 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 7.2  
  Call Number UA @ admin @ c:irua:191512 Serial 7191  
Permanent link to this record
 

 
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S. pdf  url
doi  openurl
  Title The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 1039-1055  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398182800002 Publication Date 2017-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 75 Open Access OpenAccess  
  Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved (up) Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532  
Permanent link to this record
 

 
Author Ramakers, M.; Trenchev, G.; Heijkers, S.; Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 2642-2652  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO2 into chemicals and fuels. Since CO2 is a very stable molecule, a key performance indicator for the research on plasma-based CO2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO2. From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403934400014 Publication Date 2017-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 42 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek, G.0383.16N 11U5316N ; Horizon 2020, 657304 ; Approved (up) Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:144184 Serial 4616  
Permanent link to this record
 

 
Author Cleiren, E.; Heijkers, S.; Ramakers, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 20 Pages 4025-4036  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dry reforming of methane (DRM) in a gliding arc plasmatron is studied for different CH4 fractions in the mixture. The CO2 and CH4 conversions reach their highest values of approximately 18 and 10%, respectively, at 25% CH4 in the gas mixture, corresponding to an overall energy cost of 10 kJ L@1 (or 2.5 eV per molecule) and an energy efficiency of 66%. CO and H2 are the major products, with the formation of smaller fractions of C2Hx (x=2, 4, or 6) compounds and H2O. A chemical kinetics model is used to investigate the underlying chemical processes. The calculated CO2 and CH4 conversion and the energy efficiency are in good agreement with the experimental data. The model calculations reveal that the reaction of CO2 (mainly at vibrationally excited levels) with H radicals is mainly responsible for

the CO2 conversion, especially at higher CH4 fractions in the mixture, which explains why the CO2 conversion increases with increasing CH4 fraction. The main process responsible for CH4 conversion is the reaction with OH radicals. The excellent energy efficiency can be explained by the non-equilibrium character of the plasma, in which the electrons mainly activate the gas molecules, and by the important role of the vibrational kinetics of CO2. The results demonstrate that a gliding arc plasmatron is very promising for DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413565100012 Publication Date 2017-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 23 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Federaal Wetenschapsbeleid; Approved (up) Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @c:irua:146665 Serial 4759  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Van Hal, M.; Bosserez, T.; Rongé, J.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Harvesting hydrogen gas from air pollutants with an un-biased gas phase photo-electrochemical cell Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 7 Pages 1413-1418  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The concept of an all-gas-phase photo-electrochemical cell (PEC) producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen gas, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward photo-electrochemical remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398838600017 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 6 Open Access  
  Notes ; S.W.V. and J.R. acknowledge the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. T.B. and J.A.M. acknowledge the Flemish government for long-term structural funding (Methusalem). Nicolaas Schewyck is greatly thanked for his experimental work during his master thesis. ; Approved (up) Most recent IF: 7.226  
  Call Number UA @ admin @ c:irua:140922 Serial 5955  
Permanent link to this record
 

 
Author Van de Vyver, S.; Geboers, J.; Dusselier, M.; Schepers, H.; Vosch, T.; Zhang, L.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. pdf  doi
openurl 
  Title Selective bifunctional catalytic conversion of cellulose over reshaped ni particles at the tip of carbon nanofibers Type A1 Journal article
  Year 2010 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 3 Issue 6 Pages 698-701  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000279753300011 Publication Date 2010-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631;1864-564X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 136 Open Access  
  Notes Approved (up) Most recent IF: 7.226; 2010 IF: 6.325  
  Call Number UA @ lucian @ c:irua:95657 Serial 2962  
Permanent link to this record
 

 
Author Philippaerts, A.; Goossens, S.; Vermandel, W.; Tromp, M.; Turner, S.; Geboers, J.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. pdf  doi
openurl 
  Title Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acid Type A1 Journal article
  Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 4 Issue 6 Pages 757-767  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for functional food products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H+, Na+, Cs+). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO2 species in Ru/Cs-USY(40).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000292214000009 Publication Date 2011-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 24 Open Access  
  Notes Fwo Approved (up) Most recent IF: 7.226; 2011 IF: 6.827  
  Call Number UA @ lucian @ c:irua:90352 Serial 660  
Permanent link to this record
 

 
Author Schutyser, W.; Van den Bosch, S.; Dijkmans, J.; Turner, S.; Meledina, M.; Van Tendeloo, G.; Debecker, D.P.; Sels, B.F. pdf  doi
openurl 
  Title Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks Type A1 Journal article
  Year 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 8 Issue 8 Pages 1805-1818  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (> 250 degrees C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (approximate to 80%) and tin-containing beta zeolite to form 4-alkyl-e-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000355220300020 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 71 Open Access  
  Notes Fwo Approved (up) Most recent IF: 7.226; 2015 IF: 7.657  
  Call Number c:irua:126406 Serial 2967  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Vinchurkar, S.C.; Claes, R.; Drollmann, A.; Wulfrank, D.; Parizel, P.M.; Germonpré, P.; de Backer, W. pdf  doi
openurl 
  Title Validation of computational fluid dynamics in CT-based airway models with SPECT/CT1 Type A1 Journal article
  Year 2010 Publication Radiology Abbreviated Journal Radiology  
  Volume 257 Issue 3 Pages 854-862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Vision lab; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Purpose: To compare the results obtained by using numerical flow simulations with the results of combined single photon emission computed tomography (SPECT) and computed tomography (CT) and to demonstrate the importance of correct boundary conditions for the numerical methods to account for the large amount of interpatient variability in airway geometry. Materials and Methods: This study was approved by all relevant institutional review boards. All patients gave their signed informed consent. In this study, six patients with mild asthma (three men; three women; overall mean age, 46 years ± 17 [standard deviation]) underwent CT at functional residual capacity and total lung capacity, as well as SPECT/CT. CT data were used for segmentation and computational fluid dynamics (CFD) simulations. A comparison was made between airflow distribution, as derived with (a) SPECT/CT through tracer concentration analysis, (b) CT through lobar expansion measurement, and (c) CFD through flow computer simulation. Also, the heterogeneity of the ventilation was examined. Results: Good agreement was found between SPECT/CT, CT, and CFD in terms of airflow distribution and hot spot detection. The average difference for the internal airflow distribution was less than 3% for CFD and CT versus SPECT/CT. Heterogeneity in ventilation patterns could be detected with SPECT/CT and CFD. Conclusion: This results of this study show that patient-specific computer simulations with appropriate boundary conditions yield information that is similar to that obtained with functional imaging tools, such as SPECT/CT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000284469300031 Publication Date 2010-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8419;1527-1315; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.296 Times cited 100 Open Access  
  Notes ; Supported by Novartis. ; Approved (up) Most recent IF: 7.296; 2010 IF: 6.069  
  Call Number UA @ lucian @ c:irua:85379 Serial 3831  
Permanent link to this record
 

 
Author Bjørnåvold, A.; Lizin, S.; Van Dael, M.; Arnold, F.; Van Passel, S. url  doi
openurl 
  Title Eliciting policymakers’ preferences for technologies to decarbonise transport: A discrete choice experiment Type A1 Journal Article
  Year 2020 Publication Environmental Innovation and Societal Transitions Abbreviated Journal Environmental Innovation and Societal Transitions  
  Volume 35 Issue Pages 21-34  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Socio-technical transitions are often hindered by the resilience of existing infrastructures, as policymakers are reluctant to invest in novel products or services. Using the example of carbon capture and utilisation (CCU) based fuels, we set up a discrete choice experiment to assess whether European policymakers have a tendency to avoid investing in novel, and more disruptive technologies, and rather prefer to invest in technologies that resemble the incumbent. Results indicate that policymakers prefer to allocate funding to dominant technologies. The results also revealed an overall positive perception of CCU technologies among policymakers. As the commercialisation of such products and processes continues, acceptance among this group of stakeholders is key.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540750600002 Publication Date 2020-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-4224 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.2 Times cited Open Access  
  Notes The authors would like to express their thanks to the participants that took part in this study. Financial support from the Flemish University Research Fund (BOF) (for Amalie Bjørnåvold) and the Research Foundation – Flanders (FWO) Postdoctoral Grant 12G5418N (for Sebastien Lizin) is gratefully acknowledged. The authors have no competing interests to declare. Approved (up) Most recent IF: 7.2; 2020 IF: NA  
  Call Number ENM @ enm @c:irua:167254 Serial 6351  
Permanent link to this record
 

 
Author Khalilov, U.; Uljayev, U.; Mehmonov, K.; Nematollahi, P.; Yusupov, M.; Neyts, E.C.; Neyts, E.C. pdf  doi
openurl 
  Title Can endohedral transition metals enhance hydrogen storage in carbon nanotubes? Type A1 Journal article
  Year 2024 Publication International journal of hydrogen energy Abbreviated Journal  
  Volume 55 Issue Pages 640-610  
  Keywords A1 Journal article; Engineering sciences. Technology; Modelling and Simulation in Chemistry (MOSAIC); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The safe and efficient use of hydrogen energy, which is in high demand worldwide today, requires efficient hydrogen storage. Despite significant advances in hydrogen storage using carbon-based nanomaterials, including carbon nanotubes (CNTs), efforts to substantially increase the storage capacity remain less effective. In this work, we demonstrate the effect of endohedral transition metal atoms on the hydrogen storage capacity of CNTs using reactive molecular dynamics simulations. We find that an increase in the volume fraction of endohedral nickel atoms leads to an increase in the concentration of physisorbed hydrogen molecules around single-walled CNTs (SWNTs) by approximately 1.6 times compared to pure SWNTs. The obtained results provide insight into the underlying mechanisms of how endohedral transition metal atoms enhance the hydrogen storage ability of SWNTs under nearly ambient conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142427400001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.2 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 7.2; 2024 IF: 3.582  
  Call Number UA @ admin @ c:irua:202315 Serial 9006  
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Lu, A.; Pourtois, G.; Afanas'ev, V.; Stesmans, A. doi  openurl
  Title Silicene nanoribbons on transition metal dichalcogenide substrates : effects on electronic structure and ballistic transport Type A1 Journal article
  Year 2016 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 9 Issue 9 Pages 3394-3406  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The idea of stacking multiple monolayers of different two-dimensional materials has become a global pursuit. In this work, a silicene armchair nanoribbon of width W and van der Waals-bonded to different transition-metal dichalcogenide (TMD) bilayer substrates MoX2 and WX2, where X = S, Se, Te is considered. The orbital resolved electronic structure and ballistic transport properties of these systems are simulated by employing van der Waals-corrected density functional theory and nonequilibrium Green's functions. We find that the lattice mismatch with the underlying substrate determines the electronic structure, correlated with the silicene buckling distortion and ultimately with the contact resistance of the two-terminal system. The smallest lattice mismatch, obtained with the MoTe2 substrate, results in the silicene ribbon properties coming close to those of a freestanding one. With the TMD bilayer acting as a dielectric layer, the electronic structure is tunable from a direct to an indirect semiconducting layer, and subsequently to a metallic electronic dispersion layer, with a moderate applied perpendicular electric field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386770300018 Publication Date 2016-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited 2 Open Access  
  Notes Approved (up) Most recent IF: 7.354  
  Call Number UA @ lucian @ c:irua:138210 Serial 4469  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: