|   | 
Details
   web
Records
Author Mazhar, R.; Azadi, H.; Van Passel, S.; Varnik, R.; Pietrzykowski, M.; Skominas, R.; Wei, Z.; Xuehao, B.
Title Does contract length matter? The impact of various contract-farming regimes on land-improvement investment and the efficiency of contract farmers in Pakistan Type A1 Journal article
Year 2023 Publication Agriculture (Basel) Abbreviated Journal
Volume 13 Issue 9 Pages 1651-16
Keywords A1 Journal article; Engineering Management (ENM)
Abstract Land-tenure security is integral to local communities' socioeconomic development. It has been a center of debate in academia and for legislators and advocates to implement reforms to enhance efficient and sustainable development in land management. Yet, knowledge gaps remain in how various contract-farming regimes contribute to land-improvement investment and technical efficiency. This study used a data set of 650 farm households collected through a two-stage stratified sampling to investigate the influence of three contract-farming regimes: long-term, medium-term, and short-term contracts, on the land-improvement investment, productivity, and technical efficiency of contract farmers in Punjab, Pakistan. The study used multivariate probit and ordinary least square regression models to examine the posit relationships. The findings highlight that farmers with long-term land contracts have higher per hectare yield, income and profit than those with medium-term and short-term contracts. The results confirm that farmers with medium- and long-term contracts tend to invest more in land-improvement measures, i.e., organic and green manure. Further, the study findings demonstrate that long-term land tenures are more effective when farmers make decisions regarding the on-farm infrastructure, like tube-well installation, tractor ownership, and holding farm logistics. Last, the study results confirm that long-term contracts are more robust regarding technical efficiency. Moreover, the findings support the Marshallian inefficiency hypothesis and extend the literature on contract farming, land-improvement investment, and land use policy, and offer coherent policy actions for stakeholders to improve farmers' productivity, technical efficiency, and income.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071045300001 Publication Date 2023-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2077-0472 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ admin @ c:irua:200373 Serial 9201
Permanent link to this record
 

 
Author Smets, B.; Boschker, H.T.S.; Wetherington, M.T.; Lelong, G.; Hidalgo-Martinez, S.; Polerecky, L.; Nuyts, G.; De Wael, K.; Meysman, F.J.R.
Title Multi-wavelength Raman microscopy of nickel-based electron transport in cable bacteria Type A1 Journal article
Year 2024 Publication Frontiers in microbiology Abbreviated Journal
Volume 15 Issue Pages 1208033-16
Keywords A1 Journal article
Abstract Cable bacteria embed a network of conductive protein fibers in their cell envelope that efficiently guides electron transport over distances spanning up to several centimeters. This form of long-distance electron transport is unique in biology and is mediated by a metalloprotein with a sulfur-coordinated nickel (Ni) cofactor. However, the molecular structure of this cofactor remains presently unknown. Here, we applied multi-wavelength Raman microscopy to identify cell compounds linked to the unique cable bacterium physiology, combined with stable isotope labeling, and orientation-dependent and ultralow-frequency Raman microscopy to gain insight into the structure and organization of this novel Ni-cofactor. Raman spectra of native cable bacterium filaments reveal vibrational modes originating from cytochromes, polyphosphate granules, proteins, as well as the Ni-cofactor. After selective extraction of the conductive fiber network from the cell envelope, the Raman spectrum becomes simpler, and primarily retains vibrational modes associated with the Ni-cofactor. These Ni-cofactor modes exhibit intense Raman scattering as well as a strong orientation-dependent response. The signal intensity is particularly elevated when the polarization of incident laser light is parallel to the direction of the conductive fibers. This orientation dependence allows to selectively identify the modes that are associated with the Ni-cofactor. We identified 13 such modes, some of which display strong Raman signals across the entire range of applied wavelengths (405–1,064 nm). Assignment of vibrational modes, supported by stable isotope labeling, suggest that the structure of the Ni-cofactor shares a resemblance with that of nickel bis(1,2-dithiolene) complexes. Overall, our results indicate that cable bacteria have evolved a unique cofactor structure that does not resemble any of the known Ni-cofactors in biology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001189511900001 Publication Date 2024-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-302x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ admin @ c:irua:205115 Serial 9214
Permanent link to this record
 

 
Author Okamura, I.; Van Passel, S.; Fabri, C.; Senda, T.
Title A Ricardian analysis of climate change impacts on Japan's agriculture : accounting for solar radiation Type A1 Journal article
Year 2023 Publication Climate change economics Abbreviated Journal
Volume 14 Issue 4 Pages 2350022-2350025
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract This study evaluates the effects of climate change on the net revenue of farmers in Japan. We adopted the Ricardian model, which implicitly accounts for farmers’ full adaptation. The main findings of this study are as follows. First, the Ricardian regression shows that changes in temperature significantly impact farmers’ net revenue. In contrast, changes in precipitation have limited effects on farmers’ net revenue. The results of future predictions showed that the effects of climate change are positive across the country, with varying degrees between north and south. These results are more optimistic than those in the existing literature, which frequently reveal negative climate change impacts in southern Japan. However, it should be noted that this model assumes full adaptation and does not consider the transition costs of farmers, and understanding the actual adaptive measures is an important remaining issue.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001075308800001 Publication Date 2023-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2010-0086 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ admin @ c:irua:199659 Serial 9223
Permanent link to this record
 

 
Author Kummamuru, N.B.; Ciocarlan, R.-G.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Verbruggen, S.W.; Cool, P.; Perreault, P.
Title Surface modification of mesostructured cellular foam to enhance hydrogen storage in binary THF/H₂ clathrate hydrate Type A1 Journal article
Year 2024 Publication Sustainable energy & fuels Abbreviated Journal
Volume Issue Pages 1-15
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract This study introduces solid-state tuning of a mesostructured cellular foam (MCF) to enhance hydrogen (H-2) storage in clathrate hydrates. Grafting of promoter-like molecules (e.g., tetrahydrofuran) at the internal surface of the MCF resulted in a substantial improvement in the kinetics of formation of binary H-2-THF clathrate hydrate. Identification of the confined hydrate as sII clathrate hydrate and enclathration of H-2 in its small cages was performed using XRD and high-pressure H-1 NMR spectroscopy respectively. Experimental findings show that modified MCF materials exhibit a similar to 1.3 times higher H-2 storage capacity as compared to non-modified MCF under the same conditions (7 MPa, 265 K, 100% pore volume saturation with a 5.56 mol% THF solution). The enhancement in H-2 storage is attributed to the hydrophobicity originating from grafting organic molecules onto pristine MCF, thereby influencing water interactions and fostering an environment conducive to H-2 enclathration. Gas uptake curves indicate an optimal tuning point for higher H-2 storage, favoring a lower density of carbon per nm(2). Furthermore, a direct correlation emerges between higher driving forces and increased H-2 storage capacity, culminating at 0.52 wt% (46.77 mmoles of H-2 per mole of H2O and 39.78% water-to-hydrate conversions) at 262 K for the modified MCF material with fewer carbons per nm(2). Notably, the substantial H-2 storage capacity achieved without energy-intensive processes underscores solid-state tuning's potential for H-2 storage in the synthesized hydrates. This study evaluated two distinct kinetic models to describe hydrate growth in MCF. The multistage kinetic model showed better predictive capabilities for experimental data and maintained a low average absolute deviation. This research provides valuable insights into augmenting H-2 storage capabilities and holds promising implications for future advancements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001208396000001 Publication Date 2024-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ admin @ c:irua:205764 Serial 9232
Permanent link to this record
 

 
Author Vanden Abeele, M.M.P.; Vandebosch, H.; Koster, E.H.W.; De Leyn, T.; Van Gaeveren, K.; de Segovia Vicente, D.; Van Bruyssel, S.; van Timmeren, T.; De Marez, L.; Poels, K.; DeSmet, A.; De Wever, B.; Verbruggen, M.; Baillien, E.
Title Why, how, when, and for whom does digital disconnection work? A process-based framework of digital disconnection Type A1 Journal article
Year 2024 Publication Communication theory Abbreviated Journal
Volume 34 Issue 1 Pages 3-17
Keywords A1 Journal article; Mass communications; Media, ICT and interpersonal relations in Organisations and Society (MIOS)
Abstract Digital disconnection has emerged as a concept describing the actions people take to limit their digital connectivity to enhance their well-being. To date, evidence on its effectiveness is mixed, leading to calls for greater consideration of why, how, when, and for whom digital disconnection works. This article responds to these calls, presenting a framework that differentiates four key harms that contribute to experiences of digital ill-being (time displacement, interference, role blurring, and exposure effects). Using these four harms as a starting point, the framework explains: (1) why people are motivated to digitally disconnect; (2) how specific disconnection strategies (i.e., placing limits on time, access, channels, and contents, interactions and features) may help them; and for whom (3) and under which conditions (when) these strategies can be effective.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001154547700001 Publication Date 2024-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-3293; 1468-2885 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ admin @ c:irua:203874 Serial 9245
Permanent link to this record
 

 
Author Srivastava, A.; Van Passel, S.; Kessels, R.; Valkering, P.; Laes, E.
Title Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs Type A1 Journal Article
Year 2020 Publication Energy Policy Abbreviated Journal Energ Policy
Volume 137 Issue Pages 111183
Keywords A1 Journal Article; Engineering Management (ENM) ;
Abstract Winter peaks in Belgian electricity demand are significantly higher than the summer peaks, creating a greater potential for imbalances between demand and supply. This potential is exacerbated because of the risk of outages in its ageing nuclear power plants, which are being phased out in the medium term. This paper conducts a choice experiment to investigate the acceptability of a load control-based demand response program in the winter months. It surveys 186 respondents on their willingness to accept limits on the use of home appliances in return for a compensation. Results indicate that respondents are most affected by the days of the week that their appliance usage would be curtailed, and by the compensation they would receive. The willingness to enroll in a program increases with age, environmental consciousness, home ownership, and lower privacy concerns. The analysis predicts that 95% of the sample surveyed could enroll in a daily load control program for a compen- sation of €41 per household per year. Thus while an initial rollout among older and more pro-environment homeowners could be successful, a wider implementation would require an explanation of its environmental and financial benefits to the population, and a greater consideration of their data privacy concerns.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000515439900040 Publication Date 2019-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4215 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9 Times cited Open Access
Notes The authors gratefully acknowledge the guidance offered by the Flemish Electricity Regulatory Agency (VREG), the Flemish Department for Environment, Nature, and Energy (LNE), and Guido Pepermans in designing the experiment. We are also grateful for the translations provided by Loic De Weerdt, and the support extended by Macarena MacLean Larrain in pre-testing the experiment. Finally, Roselinde Kes- sels thanks the Flemish Research Foundation (FWO) for her postdoctoral fellowship and the JMP Division of SAS Institute for further financial support. Approved (down) Most recent IF: 9; 2020 IF: 4.14
Call Number ENM @ enm @c:irua:167253 Serial 6348
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; De Paepe, J.; Vanoppen, M.; Alonso-Fariñas, B.; Coessens, W.; Alloul, A.; Christiaens, M.E.R.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E.
Title A five-stage treatment train for water recovery from urine and shower water for long-term human Space missions Type A1 Journal article
Year 2020 Publication Desalination Abbreviated Journal Desalination
Volume 495 Issue Pages 114634
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Long-term human Space missions will rely on regenerative life support as resupply of water, oxygen and food comes with constraints. The International Space Station (ISS) relies on an evaporation/condensation system to recover 74–85% of the water in urine, yet suffers from repetitive scaling and biofouling while employing hazardous chemicals. In this study, an alternative non-sanitary five-stage treatment train for one “astronaut” was integrated through a sophisticated monitoring and control system. This so-called Water Treatment Unit Breadboard (WTUB) successfully treated urine (1.2-L-d−1) with crystallisation, COD-removal, ammonification, nitrification and electrodialysis, before it was mixed with shower water (3.4-L-d−1). Subsequently, ceramic nanofiltration and single-pass flat-sheet RO were used. A four-months proof-of-concept period yielded: (i) chemical water quality meeting the hygienic standards of the European Space Agency, (ii) a 87-±-5% permeate recovery with an estimated theoretical primary energy requirement of 0.2-kWhp-L−1, (iii) reduced scaling potential without anti-scalant addition and (iv) and a significant biological reduction in biofouling potential resulted in stable but biofouling-limited RO permeability of 0.5 L-m−2-h−1-bar−1. Estimated mass breakeven dates and a comparison with the ISS Water Recovery System for a hypothetical Mars transit mission show that WTUB is a promising biological membrane-based alternative to heat-based systems for manned Space missions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000582172900007 Publication Date 2020-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-9164 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.9 Times cited Open Access
Notes Approved (down) Most recent IF: 9.9; 2020 IF: 5.527
Call Number UA @ admin @ c:irua:171514 Serial 6523
Permanent link to this record
 

 
Author Fang, W.; Wang, X.; Li, S.; Hao, Y.; Yang, Y.; Zhao, W.; Liu, R.; Li, D.; Li, C.; Gao, X.; Wang, L.; Guo, H.; Yi, Y.
Title Plasma-catalytic one-step steam reforming of CH₄ to CH₃OH and H₂ promoted by oligomerized [Cu-O-Cu] species on zeolites Type A1 Journal article
Year 2024 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal
Volume 26 Issue 9 Pages 5150-5154
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Oligomerized [Cu-O-Cu] species are reported to be efficient in promoting plasma catalytic one-step steam reforming of methane to methanol and hydrogen, achieving 6.8% CH4 conversion and 73.1% CH3OH selectivity without CO2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001195192800001 Publication Date 2024-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.8 Times cited Open Access
Notes Approved (down) Most recent IF: 9.8; 2024 IF: 9.125
Call Number UA @ admin @ c:irua:205514 Serial 9165
Permanent link to this record
 

 
Author Van Tendeloo, M.; Baptista, M.C.; Van Winckel, T.; Vlaeminck, S.E.
Title Recurrent multi-stressor floc treatments with sulphide and free ammonia enabled mainstream partial nitritation/anammox Type A1 Journal article
Year 2024 Publication The science of the total environment Abbreviated Journal
Volume 912 Issue Pages 169449-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Selective suppression of nitrite-oxidising bacteria (NOB) over aerobic and anoxic ammonium-oxidising bacteria (AerAOB and AnAOB) remains a major challenge for mainstream partial nitritation/anammox implementation, a resource-efficient nitrogen removal pathway. A unique multi-stressor floc treatment was therefore designed and validated for the first time under lab-scale conditions while staying true to full-scale design principles. Two hybrid (suspended + biofilm growth) reactors were operated continuously at 20.2 ± 0.6 °C. Recurrent multi-stressor floc treatments were applied, consisting of a sulphide-spiked deoxygenated starvation followed by a free ammonia shock. A good microbial activity balance with high AnAOB (71 ± 21 mg N L−1 d−1) and low NOB (4 ± 17 % of AerAOB) activity was achieved by combining multiple operational strategies: recurrent multi-stressor floc treatments, hybrid sludge (flocs & biofilm), short floc age control, intermittent aeration, and residual ammonium control. The multi-stressor treatment was shown to be the most important control tool and should be continuously applied to maintain this balance. Excessive NOB growth on the biofilm was avoided despite only treating the flocs to safeguard the AnAOB activity on the biofilm. Additionally, no signs of NOB adaptation were observed over 142 days. Elevated effluent ammonium concentrations (25 ± 6 mg N L−1) limited the TN removal efficiency to 39 ± 9 %, complicating a future full-scale implementation. Operating at higher sludge concentrations or reducing the volumetric loading rate could overcome this issue. The obtained results ease the implementation of mainstream PN/A by providing and additional control tool to steer the microbial activity with the multi-stressor treatment, thus advancing the concept of energy neutrality in sewage treatment plants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record
Impact Factor 9.8 Times cited Open Access Not_Open_Access
Notes Approved (down) Most recent IF: 9.8; 2024 IF: 4.9
Call Number UA @ admin @ c:irua:202286 Serial 9083
Permanent link to this record
 

 
Author Reynaert, S.; D’Hose, T.; de Boeck, H.J.; Laorden, D.; Dult, L.; Verbruggen, E.; Nijs, I.
Title Can permanent grassland soils with elevated organic carbon buffer negative effects of more persistent precipitation regimes on forage grass performance? Type A1 Journal article
Year 2024 Publication The science of the total environment Abbreviated Journal
Volume 918 Issue Pages 170623-15
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Agricultural practices enhancing soil organic carbon (SOC) show potential to buffer negative effects of climate change on forage grass performance. We tested this by subjecting five forage grass varieties differing in fodder quality and drought/flooding resistance to increased persistence in summer precipitation regimes (PR) across sandy and sandy-loam soils from either permanent (high SOC) or temporary grasslands (low SOC) in adjacent parcels. Over the course of two consecutive summers, monoculture mesocosms were subjected to rainy/dry weather alternation either every 3 days or every 30 days, whilst keeping total precipitation equal. Increased PR persistence induced species-specific drought damage and productivity declines. Soils from permanent grasslands with elevated SOC buffered plant quality, but buffering effects of SOC on drought damage, nutrient availability and yield differed between texture classes. In the more persistent PR, Festuca arundinacea FERMINA was the most productive species but had the lowest quality under both ample water supply and mild soil drought, whilst under the most intense soil droughts, Festulolium FESTILO maintained the highest yields. The hybrid Lolium × boucheanum kunth MELCOMBI had intermediate productivity and both Lolium perenne varieties showed the lowest yields under soil drought, but the highest forage quality (especially the tetraploid variety MELFORCE). Performance varied with plant maturity stage and across seasons/years and was driven by altered water and nutrient availability and related nitrogen nutrition among species during drought and upon rewetting. Moreover, whilst permanent grassland soils showed the most consistent positive effects on plant performance, their available water capacity also declined under increased PR persistence. We conclude that permanent grassland soils with historically elevated SOC likely buffer negative effects of increasing summer weather persistence on forage grass performance, but may also be more sensitive to degradation under climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001183615800001 Publication Date 2024-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.8 Times cited Open Access
Notes Approved (down) Most recent IF: 9.8; 2024 IF: 4.9
Call Number UA @ admin @ c:irua:204498 Serial 9191
Permanent link to this record
 

 
Author Biondo, O.; van Deursen, C.F.A.M.; Hughes, A.; van de Steeg, A.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.; Bogaerts, A.
Title Avoiding solid carbon deposition in plasma-based dry reforming of methane Type A1 Journal Article
Year 2023 Publication Green Chemistry Abbreviated Journal Green Chem.
Volume 25 Issue 24 Pages 10485-10497
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Solid carbon deposition is a persistent challenge in dry reforming of methane (DRM), affecting both classical and plasma-based processes. In this work, we use a microwave plasma in reverse vortex flow configuration to overcome this issue in CO<sub>2</sub>/CH<sub>4</sub>plasmas. Indeed, this configuration efficiently mitigates carbon deposition, enabling operation even with pure CH<sub>4</sub>feed gas, in contrast to other configurations. At the same time, high reactor performance is achieved, with CO<sub>2</sub>and CH<sub>4</sub>conversions reaching 33% and 44% respectively, at an energy cost of 14 kJ L<sup>−1</sup>for a CO<sub>2</sub> : CH<sub>4</sub>ratio of 1 : 1. Laser scattering and optical emission imaging demonstrate that the shorter residence time in reverse vortex flow lowers the gas temperature in the discharge, facilitating a shift from full to partial CH<sub>4</sub>pyrolysis. This underscores the pivotal role of flow configuration in directing process selectivity, a crucial factor in complex chemistries like CO<sub>2</sub>/CH<sub>4</sub>mixtures and very important for industrial applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001110100100001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.8 Times cited Open Access
Notes Universiteit Antwerpen; Nederlandse Organisatie voor Wetenschappelijk Onderzoek; HORIZON EUROPE Marie Sklodowska-Curie Actions, 813393 ; Approved (down) Most recent IF: 9.8; 2023 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:202138 Serial 8978
Permanent link to this record
 

 
Author Muys, M.; González Cámara, S.J.; Derese, S.; Spiller, M.; Verliefde, A.; Vlaeminck, S.E.
Title Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein Type A1 Journal article
Year 2023 Publication The science of the total environment Abbreviated Journal
Volume 866 Issue Pages 161172-161179
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non‑sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000922040000001 Publication Date 2022-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 9.8; 2023 IF: 4.9
Call Number UA @ admin @ c:irua:192943 Serial 7297
Permanent link to this record
 

 
Author Koch, K.; Wuyts, K.; Denys, S.; Samson, R.
Title The influence of plant species, leaf morphology, height and season on PM capture efficiency in living wall systems Type A1 Journal article
Year 2023 Publication The science of the total environment Abbreviated Journal
Volume 905 Issue Pages 167808-167811
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Green infrastructure (GI) is already known to be a suitable way to enhance air quality in urban environments. Living wall systems (LWS) can be implemented in locations where other forms of GI, such as trees or hedges, are not suitable. However, much debate remains about the variables that influence their particulate matter (PM) accumulation efficiency. This study attempts to clarify which plant species are relatively the most efficient in capturing PM and which traits are decisive when it comes to the implementation of a LWS. We investigated 11 plant species commonly used on living walls, located close to train tracks and roads. PM accumulation on leaves was quantified by magnetic analysis (Saturation Isothermal Remanent Magnetization (SIRM)). Several leaf morphological variables that could potentially influence PM capture were assessed, as well as the Wall Leaf Area Index. A wide range in SIRM values (2.74–417 μA) was found between all species. Differences in SIRM could be attributed to one of the morphological parameters, namely SLA (specific leaf area). This suggest that by just assessing SLA, one can estimate the PM capture efficiency of a plant species, which is extremely interesting for urban greeners. Regarding temporal variation, some species accumulated PM over the growing season, while others actually decreased in PM levels. This decrease can be attributed to rapid leaf expansion and variations in meteorology. Correct assessment of leaf age is important here; we suggest individual labeling of leaves for further studies. Highest SIRM values were found close to ground level. This suggests that, when traffic is the main pollution source, it is most effective when LWS are applied at ground level. We conclude that LWS can act as local sinks for PM, provided that species are selected correctly and systems are applied according to the state of the art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record
Impact Factor 9.8 Times cited Open Access
Notes Approved (down) Most recent IF: 9.8; 2023 IF: 4.9
Call Number UA @ admin @ c:irua:201033 Serial 9049
Permanent link to this record
 

 
Author Li, L.; Lin, Q.; Nijs, I.; De Boeck, H.; Beemster, G.T.S.; Asard, H.; Verbruggen, E.
Title More persistent weather causes a pronounced soil microbial legacy but does not impact subsequent plant communities Type A1 Journal article
Year 2023 Publication The science of the total environment Abbreviated Journal
Volume 903 Issue Pages 166570-166578
Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract A soil history of exposure to extreme weather may impact future plant growth and microbial community assembly. Currently, little is known about whether and how previous precipitation regime (PR)-induced changes in soil microbial communities influence plant and soil microbial community responses to a subsequent PR. We exposed grassland mesocosms to either an ambient PR (1 day wet-dry alternation) or a persistent PR (30 days consecutive wet-dry alternation) for one year. This conditioned soil was then inoculated as a 10 % fraction into 90 % sterilized “native” soil, after which new plant communities were established and subjected to either the ambient or persistent PR for 60 days. We assessed whether past persistent weather-induced changes in soil microbial community composition affect soil microbial and plant community responses to subsequent weather persistence. The historical regimes caused enduring effects on fungal communities and only temporary effects on bacterial communities, but did not trigger soil microbial legacy effects on plant productivity when exposed to either current PR. This study provides experimental evidence for soil legacy of climate persistence on grassland ecosystems in response to subsequent climate persistence, helping to understand and predict the influences of future climate change on soil biota.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001116596100001 Publication Date 2023-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access
Notes Approved (down) Most recent IF: 9.8; 2023 IF: 4.9
Call Number UA @ admin @ c:irua:200463 Serial 9213
Permanent link to this record
 

 
Author Slaets, J.; Aghaei, M.; Ceulemans, S.; Van Alphen, S.; Bogaerts, A.
Title CO2and CH4conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2and O2affect the performance? Type A1 Journal article
Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 22 Issue 4 Pages 1366-1377
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper we study dry reforming of methane (DRM) in a gliding arc plasmatron (GAP) in the presence of N<sub>2</sub>and O<sub>2</sub>. N<sub>2</sub>is added to create a stable plasma at equal fractions of CO<sub>2</sub>and CH<sub>4</sub>, and because emissions from industrial plants typically contain N<sub>2</sub>, while O<sub>2</sub>is added to enhance the process. We test different gas mixing ratios to evaluate the conversion and energy cost. We obtain conversions between 31 and 52% for CO<sub>2</sub>and between 55 and 99% for CH<sub>4</sub>, with total energy costs between 3.4 and 5.0 eV per molecule, depending on the gas mixture. This is very competitive when benchmarked with the literature. In addition, we present a chemical kinetics model to obtain deeper insight in the underlying plasma chemistry. This allows determination of the major reaction pathways to convert CO<sub>2</sub>and CH<sub>4</sub>, in the presence of O<sub>2</sub>and N<sub>2</sub>, into CO and H<sub>2</sub>. We show that N<sub>2</sub>assists in the CO<sub>2</sub>conversion, but part of the applied energy is also wasted in N<sub>2</sub>excitation. Adding O<sub>2</sub>enhances the CH<sub>4</sub>conversion, and lowers the energy cost, while the CO<sub>2</sub>conversion remains constant, and only slightly drops at the highest O<sub>2</sub>fractions studied, when CH<sub>4</sub>is fully oxidized into CO<sub>2</sub>.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518034000032 Publication Date 2020-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes H2020 European Research Council, 810182 ; Fonds Wetenschappelijk Onderzoek, GoF9618n 12M7118N ; We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the FWO postdoctoral fellowship of M. A. (Grant number 12M7118N). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved (down) Most recent IF: 9.8; 2020 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:167136 Serial 6339
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L.
Title Plasma-driven catalysis: green ammonia synthesis with intermittent electricity Type A1 Journal article
Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 22 Issue 19 Pages 6258-6287
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract Ammonia is one of the most produced chemicals, mainly synthesized from fossil fuels for fertilizer applications. Furthermore, ammonia may be one of the energy carriers of the future, when it is produced from renewable electricity. This has spurred research on alternative technologies for green ammonia production. Research on plasma-driven ammonia synthesis has recently gained traction in academic literature. In the current review, we summarize the literature on plasma-driven ammonia synthesis. We distinguish between mechanisms for ammonia synthesis in the presence of a plasma, with and without a catalyst, for different plasma conditions. Strategies for catalyst design are discussed, as well as the current understanding regarding the potential plasma-catalyst synergies as function of the plasma conditions and their implications on energy efficiency. Finally, we discuss the limitations in currently reported models and experiments, as an outlook for research opportunities for further unravelling the complexities of plasma-catalytic ammonia synthesis, in order to bridge the gap between the currently reported models and experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000575015700002 Publication Date 2020-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited 4 Open Access
Notes ; ; Approved (down) Most recent IF: 9.8; 2020 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:172671 Serial 6430
Permanent link to this record
 

 
Author Byrnes, I.; Lind, O.C.; Hansen, E.L.; Janssens, K.; Salbu, B.
Title Characterization of radioactive particles from the Dounreay nuclear reprocessing facility Type A1 Journal article
Year 2020 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ
Volume 727 Issue Pages 138488-12
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Radioactive particles originating from nuclear fuel reprocessing at the United Kingdom Atomic Energy Authority's Dounreay Facility were inadvertently released to the environment in the late 1950s to 1970s and have subsequently been found on site grounds and local beaches. Previous assessments of risk associated with encountering a particle have been based on conservative assumptions related to particle composition and speciation. To reduce uncertainties associated with environmental impact assessments from Dounreay particles, further characterization is relevant. Results of particles available for this study showed variation between Dounreay Fast Reactor (DFR) and Materials Test Reactor (MTR) particles, reflecting differences in fuel design, release scenarios, and subsequent environmental influence. Analyses of DFR particles showed they are small (100-300 mu m) and contain spatially correlated U and Nb. Molybdenum, part of the DFR fuel, was identified at atomic concentrations below 1%. Based on SR-based micrometer-scale X-ray Absorption Near Edge Structure spectroscopy (mu-XANES), U may be present as U (IV), and, based on a measured Nb/U atom ratio of similar to 2, stoichiometric considerations are commensurable with the presence of UNb2O7. The MTR particles were larger (740-2000 mu m) and contained U and Al inhomogeneously distributed. Neodymium (Nd) was identified in atomic concentrations of around 1-2%, suggesting it was part of the fuel design. The presence of U(IV) in MTR particles, as indicated by mu-XANES analysis, may be related to oxidation of particle surfaces, as could be expected due to corrosion of UAlx fuel particles in air. High U-235/U-238 atom ratios in individual DFR (3.2 +/- 0.8) and MTR (2.6 +/- 0.4) particles reflected the presence of highly enriched uranium. The DFR particles featured lower Cs-137 activity levels (2.00-9.58 kBq/particle) than the MTR (43.2-641 kBq Cs-137/particle) particles. The activities of the dose contributing radionuclides Sr-90/Y-90 were proportional to Cs-137 (Sr-90/Cs-137 activity ratio approximate to 0.8) and particle activities were roughly proportional to the size. Based on direct beta measurements, gamma spectrometry, and the VARSKIN6 model, contact dose rates were calculated to be approximately 74 mGy/h for the highest activity MTR particle, in agreement with previously published estimates. (C) 2020 The Authors. Published by Elsevier B.V.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537414400014 Publication Date 2020-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited 1 Open Access
Notes ; This study has been funded by the Research Council of Norway through its Centre of Excellence (CoE) funding scheme (Project No. 223268/F50). The authors are grateful to the Scottish Environmental Protection Agency for providing the samples examined in this study and Deutsches Elektronen-Synchrotron (DESY) for granting beamtime at HASYLAB BL. The authors would like to thank Prof. D.H. Oughton for fruitful discussions on dosimetry, Dr. K. Proost for assistance with micro-XANES measurements, Dr. T. Gavfert for assistance with calibration of the Canberra SPAB15 instrument, and Dr. E. Reinoso-Maset for support on the Bruker M4 Tornado mu-XRF. The authors also thank Karl Andreas Jensen for guidance and support on ICP-MS. Finally, the authors express gratitude to Dr. D. Hamby and the RAMP organization for providing access to the VARSKIN6 code. ; Approved (down) Most recent IF: 9.8; 2020 IF: 4.9
Call Number UA @ admin @ c:irua:170154 Serial 6467
Permanent link to this record
 

 
Author Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A.
Title Sustainable NOxproduction from air in pulsed plasma: elucidating the chemistry behind the low energy consumption Type A1 Journal article
Year 2022 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 24 Issue 2 Pages 916-929
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract N-Based fertilisers are paramount to support our still-growing world population. Current industrial N<sub>2</sub>fixation is heavily fossil fuel-dependent, therefore, a lot of work is put into the development of fossil-free pathways. Plasma technology offers a fossil-free and flexible method for N<sub>2</sub>fixation that is compatible with renewable energy sources. We present here a pulsed plasma jet for direct NO<sub><italic>x</italic></sub>production from air. The pulsed power allows for a record-low energy consumption (EC) of 0.42 MJ (mol N)<sup>−1</sup>. This is the lowest reported EC in plasma-based N<sub>2</sub>fixation at atmospheric pressure thus far. We compare our experimental data with plasma chemistry modelling, and obtain very good agreement. Hence, we can use our model to explain the underlying mechanisms responsible for this low EC. The pulsed power and the corresponding pulsed gas temperature are the reason for the very low EC: they provide a strong vibrational–translational non-equilibrium and promote the non-thermal Zeldovich mechanism. This insight is important for the development of the next generation of plasma sources for energy-efficient NO<sub><italic>x</italic></sub>production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000739578400001 Publication Date 2021-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access Not_Open_Access
Notes H2020 European Research Council, grant agreement no. 810182 – SCOPE ERC Synergy project ; Herculesstichting; Fonds Wetenschappelijk Onderzoek, EOS ID 30505023 FWO grant ID GoF9618n ; Universiteit Antwerpen; This research was supported by the Excellence of Science FWO-FNRS project (NITROPLASM, FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI) and the UAntwerpen. We thank E. H. Choi and coworkers from the Plasma Bioscience Research Center (Korea) for providing the Soft Jet plasma source, as well as K. van’t Veer and C. Verheyen for the fruitful discussion on the electron loss fraction calculations. The graphical abstract was designed using resources from Flaticon.com. Approved (down) Most recent IF: 9.8
Call Number PLASMANT @ plasmant @c:irua:185450 Serial 6906
Permanent link to this record
 

 
Author Windels, S.; Diefenhardt, T.; Jain, N.; Marquez, C.; Bals, S.; Schlummer, M.; De Vos, D.E.
Title Catalytic upcycling of PVC waste-derived phthalate esters into safe, hydrogenated plasticizers Type A1 Journal article
Year 2022 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal Green Chem
Volume 24 Issue 2 Pages 754-766
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recycling of end-of-life polyvinyl chloride (PVC) calls for solutions to deal with the vast amounts of harmful phthalate plasticizers that have historically been incorporated in PVC. Here, we report on the upcycling of such waste-extracted phthalate esters into analogues of the much safer diisononyl 1,2-cyclohexanedicarboxylate plasticizer (DINCH), via a catalytic one-pot (trans)esterification-hydrogenation process. For most of the virgin phthalates, Ru/Al2O3 is a highly effective hydrogenation catalyst, yielding >99% ring-hydrogenated products under mild reaction conditions (0.1 mol% Ru, 80 degrees C, 50 bar H-2). However, applying this reaction to PVC-extracted phthalates proved problematic, (1) as benzyl phthalates are hydrogenolyzed to benzoic acids that inhibit the Ru-catalyst, and (2) because impurities in the plasticizer extract (PVC, sulfur) further retard the hydrogenation. These complications were solved by coupling the hydrogenation to an in situ (trans)esterification with a higher alcohol, and by pretreating the extract with an activated carbon adsorbent. In this way, a real phthalate extract obtained from post-consumer PVC waste was eventually completely (>99%) hydrogenated to phthalate-free, cycloaliphatic plasticizers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000726865200001 Publication Date 2021-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited 8 Open Access Not_Open_Access
Notes This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 821366 (programma acronym: Circular Flooring). D. E. D. V. thanks FWO for project funding (SBO project S001819N Triple Cycle); N. J. and S. B. acknowledge the financial support from FWO and FNRS (EOS 30489208). Finally, the authors also thank S. Smolders for assistance with the TGA-MS experiments and D. Paredaens for his experimental contribution Approved (down) Most recent IF: 9.8
Call Number UA @ admin @ c:irua:184746 Serial 6958
Permanent link to this record
 

 
Author Xie, Y.; Spiller, M.; Vlaeminck, S.E.
Title A bioreactor and nutrient balancing approach for the conversion of solid organic fertilizers to liquid nitrate-rich fertilizers : mineralization and nitrification performance complemented with economic aspects Type A1 Journal article
Year 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 806 Issue Pages 150415
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Due to the high water- and nutrient-use efficiency, hydroponic cultivation is increasingly vital in progressing to environment-friendly food production. To further alleviate the environmental impacts of synthetic fertilizer production, the use of recovered nutrients should be encouraged in horticulture and agriculture at large. Solid organic fertilizers can largely contribute to this, yet their physical and chemical nature impedes application in hydroponics. This study proposes a bioreactor for mineralization and nitrification followed by a supplementation step for limiting macronutrients to produce nitrate-based solutions from solid fertilizers, here based on a novel microbial fertilizer. Batch tests showed that aerobic conversions at 35 °C could realize a nitrate (NO₃−-N) production efficiency above 90% and a maximum rate of 59 mg N L−1 d−1. In the subsequent bioreactor test, nitrate production efficiencies were lower (44–51%), yet rates were higher (175–212 mg N L−1 d−1). Calcium and magnesium hydroxide were compared to control the bioreactor pH at 6.0 ± 0.2, while also providing macronutrients for plant production. A mass balance estimation to mimic the Hoagland nutrient solution showed that 92.7% of the NO₃−-N in the Ca(OH)₂ scenario could be organically sourced, while this was only 37.4% in the Mg(OH)₂ scenario. Besides, carbon dioxide (CO₂) generated in the bioreactor can be used for greenhouse carbon fertilization to save operational expenditure (OPEX). An estimation of the total OPEX showed that the production of a nutrient solution from solid organic fertilizers can be cost competitive compared to using commercially available liquid inorganic fertilizer solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000707640400021 Publication Date 2021-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 9.8
Call Number UA @ admin @ c:irua:181787 Serial 7132
Permanent link to this record
 

 
Author Pattyn, C.; Maira, N.; Buddhadasa, M.; Vervloessem, E.; Iseni, S.; Roy, N.C.; Remy, A.; Delplancke, M.-P.; De Geyter, N.; Reniers, F.
Title Disproportionation of nitrogen induced by DC plasma-driven electrolysis in a nitrogen atmosphere Type A1 Journal article
Year 2022 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 24 Issue 18 Pages 7100-7112
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nitrogen disproportionation i.e. its simultaneous conversion to compounds of higher (NOx) and lower (NH3) oxidation states in a N-2 DC plasma-driven electrolysis process with a plasma cathode is investigated. This type of plasma-liquid interaction exhibits a growing interest for many applications, in particular nitrogen fixation where it represents a green alternative to the Haber-Bosch process. Optical emission spectroscopy, FTIR and electrochemical sensing systems are used to characterize the gas phase physico-chemistry while the liquid phase is analyzed via ionic chromatography and colorimetric assays. Experiments suggest that lowering the discharge current enhances nitrogen reduction and facilitates the transfer of nitrogen compounds to the liquid phase. Large amounts of water vapor appear to impact the gas discharge physico-chemistry and to favor the vibrational excitation of N-2, a key parameter for an energy-efficient nitrogen fixation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000847733600001 Publication Date 2022-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 9.8
Call Number UA @ admin @ c:irua:190655 Serial 7145
Permanent link to this record
 

 
Author Peng, L.; Lou, W.; Xu, Y.; Yu, S.; Liang, C.; Alloul, A.; Song, K.; Vlaeminck, S.E.
Title Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10 Type A1 Journal article
Year 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 822 Issue Pages 153489
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non‑sulfur bacteria (PNSB) possess significant potential for bioresource recovery from wastewater. Effective operational tools are needed to boost productivity and direct the PNSB biomass towards abundant value-added substances (e.g., protein and co-enzyme Q10, CoQ10). This study aimed to investigate the impact of light, oxygen and volatile fatty acids (VFAs) on PNSB growth (i.e., Rhodobacter sphaeroides) and productivity of protein and CoQ10. Overall, the biomass yields and specific growth rates of PNSB were in the ranges of 0.57–1.08 g biomass g−1 CODremoved and 0.48–0.71 d−1, respectively. VFAs did not influence the biomass yield, yet acetate and VFA mixtures enhanced the specific growth rate with a factor of 1.2–1.5 compared to propionate and butyrate. The most PNSB biomass (1.08 g biomass g−1 CODremoved and 0.71 d−1) and the highest biomass quality (protein content of 609 mg g−1 dry cell weight (DCW) and CoQ10 content of 13.21 mg g−1 DCW) were obtained in the presence of VFA mixtures under natural light and microaerobic (low light alternated with darkness; dissolved oxygen (DO) between 0.5 and 1 mg L−1) conditions (vs. light anaerobic and dark aerobic cultivations). Further investigation on VFAs dynamics revealed that acetate was most rapidly consumed by PNSB in the individual VFA feeding (specific uptake rate of 0.76 g COD g−1 DCW d−1), while acetate as a co-substrate in the mixed VFAs feeding might accelerate the consumption of propionate and butyrate through providing additional cell metabolism precursor. Enzymes activities of succinate dehydrogenase and fructose-1,6-bisphosphatase as well as the concentration of photo pigments confirmed that light, oxygen and VFAs regulated the key enzymes in the energy metabolism and biomass synthesis to boost PNSB growth. These results provide a promising prospect for utilization of fermented waste stream for the harvest of PNSB biomass, protein and CoQ10.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000766801800010 Publication Date 2022-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 9.8
Call Number UA @ admin @ c:irua:185706 Serial 7202
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Xie, Y.; Timmer, M.J.; Peng, L.; Vlaeminck, S.E.
Title Storage without nitrite or nitrate enables the long-term preservation of full-scale partial nitritation/anammox sludge Type A1 Journal article
Year 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 806 Issue 3 Pages 151330
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Bioaugmentation with summer harvested sludge during winter could compensate for bacterial activity loss but requires that sludge activity can be restored after storage. This study assesses the effect of temperature and redox adjustment during the storage over 180 days of partial nitritation/anammox (PN/A) granular resp. floccular sludge from potato processing resp. sludge reject water treatment. Anoxic storage conditions (in the presence of nitrite or nitrate and the absence of oxygen) resulted in a loss of 80-100% of the anammox bacteria (AnAOB) activity capacity at 20 degrees C and 4 degrees C, while anaerobic conditions (without oxygen, nitrite, and nitrate) lost only 45-63%. Storage at 20 degrees C was more cost-effective compared to 4 degrees C, and this was confirmed in the sludge reactivation experiment (20 CC). Furthermore, AnAOB activity correlated negatively with the electrical conductivity level (R-2 > 0.85, p < 0.05), so strong salinity increases should be avoided. No significant differences were found in the activity capacity of aerobic ammonia-oxidizing bacteria (AerAOB) under different storage conditions (p > 0.1). The relative abundance of dominant AnAOB (Candidatus Brocadia) and AerAOB genera (Nitrosomonas) remained constant in both sludges. In conclusion, preserving PN/A biomass without cooling and nitrite or nitrate addition proved to be a cost-effective strategy. (C) 2021 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000740216300013 Publication Date 2021-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 9.8
Call Number UA @ admin @ c:irua:185447 Serial 7213
Permanent link to this record
 

 
Author Li, L.; Nijs, I.; De Boeck, H.; Vinduskova, O.; Reynaert, S.; Donnelly, C.; Zi, L.; Verbruggen, E.
Title Longer dry and wet spells alter the stochasticity of microbial community assembly in grassland soils Type A1 Journal article
Year 2023 Publication Soil biology and biochemistry Abbreviated Journal
Volume 178 Issue Pages 108969-9
Keywords A1 Journal article; ADReM Data Lab (ADReM); Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Climate change is increasing the duration of alternating wet and dry spells. These fluctuations affect soil water availability and other soil properties which are crucial drivers of soil microbial communities. While soil microbial communities have a moderate capacity to recover once a drought ceases, the expected alternation of strongly opposing regimes can challenge their capacity to adapt. Here, we set up experimental grassland mesocosms where precipitation frequency was adjusted along a gradient while holding total precipitation constant. The gradient varied the duration of wet and dry spells from 1 to 60 days during a total of 120 days, where we hy-pothesized that especially intermediate durations would increase the importance of stochastic community as-sembly due to frequent alternation of opposing environmental regimes. We examined bacterial and fungal community composition, diversity, co-occurrence patterns and assembly mechanisms across these different precipitation treatments. Our results show that 1) intermediate regimes of wet and dry spells increased the stochasticity of microbial community assembly whereas microbial communities at low and high regimes were subjected to more deterministic assembly, and 2) more persistent precipitation regimes (>6 days duration) reduced the fungal diversity and network connectivity but had little effect on bacterial communities. Collec-tively, these findings indicate that longer alternating wet and dry events lead to a less predictable and connected soil microbial community. This study provides new insight into the likely mechanisms through which precipi-tation persistence alters soil microbial communities and their predictability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000930582500001 Publication Date 2023-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-0717 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.7 Times cited Open Access
Notes Approved (down) Most recent IF: 9.7; 2023 IF: 4.857
Call Number UA @ admin @ c:irua:195257 Serial 9211
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Claeys, P.
Title Nanodiamonds do not provide unique evidence for a Younger Dryas impact Type A1 Journal article
Year 2011 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa
Volume 108 Issue 1 Pages 40-44
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Microstructural, δ13C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000285915000012 Publication Date 2010-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424;1091-6490; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 32 Open Access
Notes Approved (down) Most recent IF: 9.661; 2011 IF: 9.681
Call Number UA @ lucian @ c:irua:88733 Serial 2254
Permanent link to this record
 

 
Author Wang, Y.-L.; Glatz, A.; Kimmel, G.J.; Aranson, I.S.; Thoutam, L.R.; Xiao, Z.-L.; Berdiyorov, G.R.; Peeters, F.M.; Crabtree, G.W.; Kwok, W.-K.
Title Parallel magnetic field suppresses dissipation in superconducting nanostrips Type A1 Journal article
Year 2017 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 114 Issue 48 Pages E10274-E10280
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the \u0022holy grail\u0022 of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.'));
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000416891600007 Publication Date 2017-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 18 Open Access
Notes ; This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation was supported by the Scientific Discovery through Advanced Computing program funded by US DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. L.R.T. and Z.-L.X. acknowledge support through National Science Foundation Grant DMR-1407175. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. ; Approved (down) Most recent IF: 9.661
Call Number UA @ lucian @ c:irua:147697 Serial 4889
Permanent link to this record
 

 
Author Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M.
Title Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality Type A1 Journal article
Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa
Volume 115 Issue 115 Pages 3225-3230
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Amyloid fibrils, which are closely associated with various neurodegenerative

diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no

apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson’s disease,

wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428382400032 Publication Date 2018-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 187 Open Access OpenAccess
Notes We thank Prof. Dr. J.-P. Timmermans and the Antwerp Centre of Advanced Microscopy for providing access to the Tecnai G2 Spirit BioTWIN TEM. We also thank the Basque Biobank (Basque Foundation for Health Innovation and Research, BIOEF) for providing us with Parkinson’s disease-affected brain samples. J.K. acknowledges financial support from the European Commission under Marie Sklodowska-Curie Program H2020- MSCA-IF-2015708321. S.B. and A.L.C. acknowledge European Research Council Grants 335078 COLOURATOM and 648071 ProNANO. S.B. and L.M.L.-M. acknowledge funding from European Commission Grant EUSMI 731019. A.L.C., J.C., and L.M.L.-M. acknowledge funding from Spanish Ministry of Economy and Competitiveness (MINECO) Grants MAT2013-46101- R, AGL2015-65046-C2-1-R, and BIO2016-77367-C2-1-R. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:restricted); saraecas; ECASSara; Approved (down) Most recent IF: 9.661
Call Number EMAT @ emat @c:irua:150355UA @ admin @ c:irua:150355 Serial 4918
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G.
Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 115 Issue 38 Pages 9515-9520
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447224900057 Publication Date 2018-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 50 Open Access OpenAccess
Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved (down) Most recent IF: 9.661
Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059
Permanent link to this record
 

 
Author Van den Hoek, J.; Daems, N.; Arnouts, S.; Hoekx, S.; Bals, S.; Breugelmans, T.
Title Improving stability of CO₂ electroreduction by incorporating Ag NPs in N-doped ordered mesoporous carbon structures Type A1 Journal article
Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal
Volume 16 Issue 6 Pages 6931-6947
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The electroreduction of carbon dioxide (eCO2RR) to CO using Ag nanoparticles as an electrocatalyst is promising as an industrial carbon capture and utilization (CCU) technique to mitigate CO2 emissions. Nevertheless, the long-term stability of these Ag nanoparticles has been insufficient despite initial high Faradaic efficiencies and/or partial current densities. To improve the stability, we evaluated an up-scalable and easily tunable synthesis route to deposit low-weight percentages of Ag nanoparticles (NPs) on and into the framework of a nitrogen-doped ordered mesoporous carbon (NOMC) structure. By exploiting this so-called nanoparticle confinement strategy, the nanoparticle mobility under operation is strongly reduced. As a result, particle detachment and agglomeration, two of the most pronounced electrocatalytic degradation mechanisms, are (partially) blocked and catalyst durability is improved. Several synthesis parameters, such as the anchoring agent, the weight percentage of Ag NPs, and the type of carbonaceous support material, were modified in a controlled manner to evaluate their respective impact on the overall electrochemical performance, with a strong emphasis on operational stability. The resulting powders were evaluated through electrochemical and physicochemical characterization methods, including X-ray diffraction (XRD), N2-physisorption, Inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (SEM-EDS), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-EDS, electron tomography, and X-ray photoelectron spectroscopy (XPS). The optimized Ag/soft-NOMC catalysts showed both a promising selectivity (∼80%) and stability compared with commercial Ag NPs while decreasing the loading of the transition metal by more than 50%. The stability of both the 5 and 10 wt % Ag/soft-NOMC catalysts showed considerable improvements by anchoring the Ag NPs on and into a NOMC framework, resulting in a 267% improvement in CO selectivity after 72 h (despite initial losses) compared to commercial Ag NPs. These results demonstrate the promising strategy of anchoring Ag NPs to improve the CO selectivity during prolonged experiments due to the reduced mobility of the Ag NPs and thus enhanced stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001158812100001 Publication Date 2023-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.5 Times cited Open Access Not_Open_Access: Available from 21.06.2024
Notes Approved (down) Most recent IF: 9.5; 2024 IF: 7.504
Call Number UA @ admin @ c:irua:202309 Serial 9045
Permanent link to this record
 

 
Author Guerrero, R.M.; Lemir, I.D.; Carrasco, S.; Fernández-Ruiz, C.; Kavak, S.; Pizarro, P.; Serrano, D.P.; Bals, S.; Horcajada, P.; Pérez, Y.
Title Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH2Catalysts for Selective Olefin Hydrogenation under Ambient Conditions Type A1 Journal Article
Year 2024 Publication ACS Applied Materials & Interfaces Abbreviated Journal ACS Appl. Mater. Interfaces
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal–organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m–3·day–1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m–3·day–1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links
Impact Factor 9.5 Times cited Open Access
Notes The authors gratefully acknowledge financial support from “Comunidad de Madrid” and European Regional Development Fund-FEDER through the project HUB MADRID+CIRCULAR; the State Research Agency (MCIN/AEI /10.13039/501100011033) through the grant with reference number CEX2019-000931-M received in the 2019 call for “Severo Ochoa Centres of Excellence” and “María de Maeztu Units of Excellence” of the State Programme for Knowledge Generation and Scientific and Technological Strengthening of the R&D&I System; and MICIU through the project “NAPOLION” (PID2022-139956OB-I00). S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181124N). Approved (down) Most recent IF: 9.5; 2024 IF: 7.504
Call Number EMAT @ emat @ Serial 9126
Permanent link to this record