|
Record |
Links |
|
Author |
Slaets, J.; Aghaei, M.; Ceulemans, S.; Van Alphen, S.; Bogaerts, A. |
|
|
Title |
CO2and CH4conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2and O2affect the performance? |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Green Chemistry |
Abbreviated Journal |
Green Chem |
|
|
Volume |
22 |
Issue |
4 |
Pages |
1366-1377 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
In this paper we study dry reforming of methane (DRM) in a gliding arc plasmatron (GAP) in the presence of N<sub>2</sub>and O<sub>2</sub>. N<sub>2</sub>is added to create a stable plasma at equal fractions of CO<sub>2</sub>and CH<sub>4</sub>, and because emissions from industrial plants typically contain N<sub>2</sub>, while O<sub>2</sub>is added to enhance the process. We test different gas mixing ratios to evaluate the conversion and energy cost. We obtain conversions between 31 and 52% for CO<sub>2</sub>and between 55 and 99% for CH<sub>4</sub>, with total energy costs between 3.4 and 5.0 eV per molecule, depending on the gas mixture. This is very competitive when benchmarked with the literature. In addition, we present a chemical kinetics model to obtain deeper insight in the underlying plasma chemistry. This allows determination of the major reaction pathways to convert CO<sub>2</sub>and CH<sub>4</sub>, in the presence of O<sub>2</sub>and N<sub>2</sub>, into CO and H<sub>2</sub>. We show that N<sub>2</sub>assists in the CO<sub>2</sub>conversion, but part of the applied energy is also wasted in N<sub>2</sub>excitation. Adding O<sub>2</sub>enhances the CH<sub>4</sub>conversion, and lowers the energy cost, while the CO<sub>2</sub>conversion remains constant, and only slightly drops at the highest O<sub>2</sub>fractions studied, when CH<sub>4</sub>is fully oxidized into CO<sub>2</sub>. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000518034000032 |
Publication Date |
2020-01-30 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1463-9262 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.8 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
H2020 European Research Council, 810182 ; Fonds Wetenschappelijk Onderzoek, GoF9618n 12M7118N ; We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the FWO postdoctoral fellowship of M. A. (Grant number 12M7118N). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. |
Approved |
Most recent IF: 9.8; 2020 IF: 9.125 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:167136 |
Serial |
6339 |
|
Permanent link to this record |