|
Record |
Links |
|
Author |
Byrnes, I.; Lind, O.C.; Hansen, E.L.; Janssens, K.; Salbu, B. |
|
|
Title |
Characterization of radioactive particles from the Dounreay nuclear reprocessing facility |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Science Of The Total Environment |
Abbreviated Journal |
Sci Total Environ |
|
|
Volume |
727 |
Issue |
|
Pages |
138488-12 |
|
|
Keywords |
A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation) |
|
|
Abstract |
Radioactive particles originating from nuclear fuel reprocessing at the United Kingdom Atomic Energy Authority's Dounreay Facility were inadvertently released to the environment in the late 1950s to 1970s and have subsequently been found on site grounds and local beaches. Previous assessments of risk associated with encountering a particle have been based on conservative assumptions related to particle composition and speciation. To reduce uncertainties associated with environmental impact assessments from Dounreay particles, further characterization is relevant. Results of particles available for this study showed variation between Dounreay Fast Reactor (DFR) and Materials Test Reactor (MTR) particles, reflecting differences in fuel design, release scenarios, and subsequent environmental influence. Analyses of DFR particles showed they are small (100-300 mu m) and contain spatially correlated U and Nb. Molybdenum, part of the DFR fuel, was identified at atomic concentrations below 1%. Based on SR-based micrometer-scale X-ray Absorption Near Edge Structure spectroscopy (mu-XANES), U may be present as U (IV), and, based on a measured Nb/U atom ratio of similar to 2, stoichiometric considerations are commensurable with the presence of UNb2O7. The MTR particles were larger (740-2000 mu m) and contained U and Al inhomogeneously distributed. Neodymium (Nd) was identified in atomic concentrations of around 1-2%, suggesting it was part of the fuel design. The presence of U(IV) in MTR particles, as indicated by mu-XANES analysis, may be related to oxidation of particle surfaces, as could be expected due to corrosion of UAlx fuel particles in air. High U-235/U-238 atom ratios in individual DFR (3.2 +/- 0.8) and MTR (2.6 +/- 0.4) particles reflected the presence of highly enriched uranium. The DFR particles featured lower Cs-137 activity levels (2.00-9.58 kBq/particle) than the MTR (43.2-641 kBq Cs-137/particle) particles. The activities of the dose contributing radionuclides Sr-90/Y-90 were proportional to Cs-137 (Sr-90/Cs-137 activity ratio approximate to 0.8) and particle activities were roughly proportional to the size. Based on direct beta measurements, gamma spectrometry, and the VARSKIN6 model, contact dose rates were calculated to be approximately 74 mGy/h for the highest activity MTR particle, in agreement with previously published estimates. (C) 2020 The Authors. Published by Elsevier B.V. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000537414400014 |
Publication Date |
2020-04-07 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0048-9697 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.8 |
Times cited |
1 |
Open Access |
|
|
|
Notes |
; This study has been funded by the Research Council of Norway through its Centre of Excellence (CoE) funding scheme (Project No. 223268/F50). The authors are grateful to the Scottish Environmental Protection Agency for providing the samples examined in this study and Deutsches Elektronen-Synchrotron (DESY) for granting beamtime at HASYLAB BL. The authors would like to thank Prof. D.H. Oughton for fruitful discussions on dosimetry, Dr. K. Proost for assistance with micro-XANES measurements, Dr. T. Gavfert for assistance with calibration of the Canberra SPAB15 instrument, and Dr. E. Reinoso-Maset for support on the Bruker M4 Tornado mu-XRF. The authors also thank Karl Andreas Jensen for guidance and support on ICP-MS. Finally, the authors express gratitude to Dr. D. Hamby and the RAMP organization for providing access to the VARSKIN6 code. ; |
Approved |
Most recent IF: 9.8; 2020 IF: 4.9 |
|
|
Call Number |
UA @ admin @ c:irua:170154 |
Serial |
6467 |
|
Permanent link to this record |