toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Windels, S.; Diefenhardt, T.; Jain, N.; Marquez, C.; Bals, S.; Schlummer, M.; De Vos, D.E. pdf  doi
openurl 
  Title Catalytic upcycling of PVC waste-derived phthalate esters into safe, hydrogenated plasticizers Type A1 Journal article
  Year (down) 2022 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal Green Chem  
  Volume 24 Issue 2 Pages 754-766  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recycling of end-of-life polyvinyl chloride (PVC) calls for solutions to deal with the vast amounts of harmful phthalate plasticizers that have historically been incorporated in PVC. Here, we report on the upcycling of such waste-extracted phthalate esters into analogues of the much safer diisononyl 1,2-cyclohexanedicarboxylate plasticizer (DINCH), via a catalytic one-pot (trans)esterification-hydrogenation process. For most of the virgin phthalates, Ru/Al2O3 is a highly effective hydrogenation catalyst, yielding >99% ring-hydrogenated products under mild reaction conditions (0.1 mol% Ru, 80 degrees C, 50 bar H-2). However, applying this reaction to PVC-extracted phthalates proved problematic, (1) as benzyl phthalates are hydrogenolyzed to benzoic acids that inhibit the Ru-catalyst, and (2) because impurities in the plasticizer extract (PVC, sulfur) further retard the hydrogenation. These complications were solved by coupling the hydrogenation to an in situ (trans)esterification with a higher alcohol, and by pretreating the extract with an activated carbon adsorbent. In this way, a real phthalate extract obtained from post-consumer PVC waste was eventually completely (>99%) hydrogenated to phthalate-free, cycloaliphatic plasticizers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000726865200001 Publication Date 2021-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited 8 Open Access Not_Open_Access  
  Notes This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 821366 (programma acronym: Circular Flooring). D. E. D. V. thanks FWO for project funding (SBO project S001819N Triple Cycle); N. J. and S. B. acknowledge the financial support from FWO and FNRS (EOS 30489208). Finally, the authors also thank S. Smolders for assistance with the TGA-MS experiments and D. Paredaens for his experimental contribution Approved Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:184746 Serial 6958  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: