toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Samaeeaghmiyoni, V.; Idrissi, H.; Groten, J.; Schwaiger, R.; Schryvers, D. pdf  url
doi  openurl
  Title Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach Type A1 Journal article
  Year 2017 Publication Micron Abbreviated Journal Micron  
  Volume 94 Issue 94 Pages 66-73  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393247300008 Publication Date 2016-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 11 Open Access OpenAccess  
  Notes This research has been performed with the financial support of the Belgian Science Policy (Belspo) under the framework of the interuniversity attraction poles program, IAP7/21. Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaeeaghmiyoni also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 1.98  
  Call Number EMAT @ emat @ c:irua:139515 Serial 4341  
Permanent link to this record
 

 
Author Zhang, Z.; Ma, L.N.; Liao, X.Z.; van Landuyt, J. doi  openurl
  Title A transmission electron-microscopy study of crystalline surface domains on al-co decagonal quasi-crystals and the \tau2-Al13CO4 approximant Type A1 Journal article
  Year 1994 Publication Philosophical magazine letters Abbreviated Journal Phil Mag Lett  
  Volume 70 Issue 5 Pages 303-310  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Twin-domains of a b.c.c. crystalline phase with a = 0.29 nm have been found in a surface layer on surfaces of Al-Co decagonal quasicrystals and the coexisting tau(2)-Al13Co4 crystalline approximant. These surface layer domains are introduced during the preparation of electron microscopy thin films by ion milling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1994PQ20900008 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0839;1362-3036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.087 Times cited 4 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:99816 Serial 3715  
Permanent link to this record
 

 
Author Zhang, H.; Jin, Q.; Hu, T.; Liu, X.; Zhang, Z.; Hu, C.; Zhou, Y.; Han, Y.; Wang, X. url  doi
openurl 
  Title Electron-irradiation-facilitated production of chemically homogenized nanotwins in nanolaminated carbides Type A1 Journal article
  Year 2023 Publication Journal of Advanced Ceramics Abbreviated Journal  
  Volume 12 Issue 6 Pages 1288-1297  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Twin boundaries have been exploited to stabilize ultrafine grains and improve mechanical properties of nanomaterials. The production of the twin boundaries and nanotwins is however prohibitively challenging in carbide ceramics. Using a scanning transmission electron microscope as a unique platform for atomic-scale structure engineering, we demonstrate that twin platelets could be produced in carbides by engineering antisite defects. The antisite defects at metal sites in various layered ternary carbides are collectively and controllably generated, and the metal elements are homogenized by electron irradiation, which transforms a twin-like lamellae into nanotwin platelets. Accompanying chemical homogenization, alpha-Ti3AlC2 transforms to unconventional beta-Ti3AlC2. The chemical homogeneity and the width of the twin platelets can be tuned by dose and energy of bombarding electrons. Chemically homogenized nanotwins can boost hardness by similar to 45%. Our results provide a new way to produce ultrathin (< 5 nm) nanotwin platelets in scientifically and technologically important carbide materials and showcase feasibility of defect engineering by an angstrom-sized electron probe.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001004930200012 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2226-4108; 2227-8508 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 16.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 16.9; 2023 IF: 1.198  
  Call Number UA @ admin @ c:irua:197470 Serial 8860  
Permanent link to this record
 

 
Author Schalm, O.; Janssens, K.; Caen, J. pdf  doi
openurl 
  Title Characterization of the main causes of deterioration of grisaille paint layers in 19th C. stained-glass windows by J.-B. Capronnier Type A1 Journal article
  Year 2003 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 58 Issue 4 Pages 589-607  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Twenty-seven glass fragments containing dark coloured grisaille paint layers of different qualities were collected from ten windows of the cathedral St. Michael & St. Gudule in Brussels (Belgium). The windows were made by J.-B. Capronnier (18141891) and cover the period between 1843 and 1878. The samples were cross-sectioned and examined in an electron microscope. Grisaille paint layers are not homogeneous and therefore, it is not meaningful to characterize them in terms of their average composition. Instead, parameters such as granularity, the number of residual gas bubbles per running millimetre of paint, the type of pigments, and the thickness of the paint layer were used to characterize them. The microscopic morphology allows a classification of the grisaille paint layers in four groups, every group associated with a quality level. Moreover, the main causes of the accelerated degradation of some of these paint layers could be explained. The classification made it possible to distinguish two periods in the work of Capronnier: (1) the early period (18431848) is characterized by the presence of either single granular paint layers or of double-layered systems consisting of a granular paint layer on top of a well-melted paint layer. The granular grisaille paint layers tend to pulverize; (2) the later period (18481878) is characterized by the presence of only well-vitrified paint layers. No sign of deterioration was found on the well-vitrified paint layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000182744200002 Publication Date 2003-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited Open Access  
  Notes Approved Most recent IF: 3.241; 2003 IF: 2.361  
  Call Number UA @ admin @ c:irua:41208 Serial 5505  
Permanent link to this record
 

 
Author Agrawal, S.; Seuntjens, D.; De Cocker, P.; Lackner, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights Type A1 Journal article
  Year 2018 Publication Current opinion in biotechnology Abbreviated Journal  
  Volume 50 Issue Pages 214-221  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Twenty years ago, mainstream partial nitritation/anammox (PN/A) was conceptually proposed as pivotal for a more sustainable treatment of municipal wastewater. Its economic potential spurred research, yet practice awaits a comprehensive recipe for microbial resource management. Implementing mainstream PN/A requires transferable and operable ways to steer microbial competition as to meet discharge requirements on a year-round basis at satisfactory conversion rates. In essence, the competition for nitrogen, organic carbon and oxygen is grouped into ON/OFF (suppression/promotion) and IN/OUT (wash-out/retention and seeding) strategies, selecting for desirable conversions and microbes. Some insights need mechanistic understanding, while empirical observations suffice elsewhere. The provided methodological R&D framework integrates insights in engineering, microbiome and modeling. Such synergism should catalyze the implementation of energy-positive sewage treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430903400028 Publication Date 2018-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0958-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149977 Serial 8616  
Permanent link to this record
 

 
Author Shirazi, M.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title DFT study of Ni-catalyzed plasma dry reforming of methane Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 205 Issue 205 Pages 605-614  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) tWe investigated the plasma-assisted catalytic reactions for the production of value-added chemicalsfrom Ni-catalyzed plasma dry reforming of methane by means of density functional theory (DFT). Weinspected many activation barriers, from the early stage of adsorption of the major chemical fragmentsderived fromCH4andCO2molecules up to the formation of value-added chemicals at the surface, focusingon the formation of methanol, as well as the hydrogenation of C1and C2hydrocarbon fragments. Theactivation barrier calculations show that the presence of surface-bound H atoms and in some cases alsoremaining chemical fragments at the surface facilitates the formation of products. This implies that thehydrogenation of a chemical fragment on the hydrogenated crystalline surface is energetically favouredcompared to the simple hydrogenation of the chemical fragment at the bare Ni(111) surface. Indeed, thepresence of hydrogen modifies the electronic structure of the surface and the course of the reactions.We therefore conclude that surface-bound H atoms, and to some extent also the remaining chemicalfragments at the crystalline surface, induce the following effects: they facilitate associative desorption ofmethanol and ethane by increasing the rate of H-transfer to the adsorbed fragments while they impedehydrogenation of ethylene to ethane, thus promoting again the desorption of ethylene. Overall, they thusfacilitate the catalytic conversion of the formed fragments from CH4and CO2, into value-added chemicals.Finally, we believe that the retention of methane fragments, especially CH3, in the presence of surface-boundHatoms (as observed here for Ni) can be regarded as an identifier for the proper choice of a catalystfor the production of value-added chemicals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393931000063 Publication Date 2017-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 26 Open Access OpenAccess  
  Notes Financial support from the Reactive Atmospheric Plasmaprocessing –eDucation network (RAPID), through the EU 7thFramework Programme (grant agreement no. 606889) is grate-fully acknowledged. The calculations were performed using theTuring HPC infrastructure at the CalcUA core facility of the Univer-siteit Antwerpen, a division of the Flemish Supercomputer CenterVSC, funded by the Hercules Foundation, the Flemish Approved Most recent IF: 9.446  
  Call Number PLASMANT @ plasmant @ c:irua:139514 Serial 4343  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Van Laer, K.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Can plasma be formed in catalyst pores? A modeling investigation Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 185 Issue 185 Pages 56-67  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) tWe investigate microdischarge formation inside catalyst pores by a two-dimensional fluid model forvarious pore sizes in the m-range and for various applied voltages. Indeed, this is a poorly understoodphenomenon in plasma catalysis. The calculations are performed for a dielectric barrier discharge inhelium, at atmospheric pressure. The electron and ion densities, electron temperature, electric field andpotential, as well as the electron impact ionization and excitation rate and the densities of excited plasmaspecies, are examined for a better understanding of the characteristics of the plasma inside a pore. Theresults indicate that the pore size and the applied voltage are critical parameters for the formation of amicrodischarge inside a pore. At an applied voltage of 20 kV, our calculations reveal that the ionizationmainly takes place inside the pore, and the electron density shows a significant increase near and inthe pore for pore sizes larger than 200m, whereas the effect of the pore on the total ion density isevident even for 10m pores. When the pore size is fixed at 30m, the presence of the pore has nosignificant influence on the plasma properties at an applied voltage of 2 kV. Upon increasing the voltage,the ionization process is enhanced due to the strong electric field and high electron temperature, andthe ion density shows a remarkable increase near and in the pore for voltages above 10 kV. These resultsindicate that the plasma species can be formed inside pores of structured catalysts (in the m range),and they may interact with the catalyst surface, and affect the plasma catalytic process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369452000006 Publication Date 2015-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 75 Open Access  
  Notes This work was supported by the Fund for Scientific ResearchFlanders (FWO) (Grant no. G.0217.14N), the National Natural Sci-ence Foundation of China (Grant no. 11405019), and the ChinaPostdoctoral Science Foundation (Grant no. 2015T80244). Theauthors are very grateful to V. Meynen for the useful discussions oncatalysts. This work was carried out in part using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwer-pen, a division of the Flemish Supercomputer Center VSC, fundedby the Hercules Foundation, the Flemish Government (departmentEWI) and the University of Antwerp. Approved Most recent IF: 9.446  
  Call Number c:irua:129808 Serial 3984  
Permanent link to this record
 

 
Author Krstajic, P.; Peeters, F.M. url  doi
openurl 
  Title Spin-dependent tunneling in diluted magnetic semiconductor trilayer structures Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 12 Pages 125350-125356  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Tunneling of holes through a trilayer structure made of two diluted magnetic semiconductors, (Ga,Mn)As, separated by a thin layer of nonmagnetic AlAs is investigated. The problem is treated within the 6x6 Luttinger-Kohn model for valence bands with the split-off band included. The influence of the spin-orbit coupling is pronounced as the spin-splitting Delta(ex) is comparable with the split-off Delta(SO) splitting. It is assumed that direct tunneling is the dominant mechanism due to the high quality of the tunnel junctions. Our theoretical results predict the correct order of magnitude for the tunneling magnetoresistance ratio, but various other effects, such as scattering on impurities and defects, should be included in order to realize a quantitative agreement with experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000232229400116 Publication Date 2005-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:104068 Serial 3086  
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Luisier, M.; Pourtois, G. url  doi
openurl 
  Title Impact of layer alignment on the behavior of MoS2-ZrS2 tunnel field-effect transistors : an ab initio study Type A1 Journal article
  Year 2017 Publication Physical review applied Abbreviated Journal Phys Rev Appl  
  Volume 8 Issue 3 Pages 034017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Tunnel field-effect transistors based on van der Waals heterostructures are emerging device concepts for low-power applications, auguring sub-60 mV/dec subthreshold swing values. In these devices, the channel is built from a stack of several different two-dimensional materials whose nature allows tailoring the band alignments and enables a good electrostatic control of the device. In this work, we propose a theoretical study of the variability of the performances of a MoS2-ZrS2 tunnel field-effect transistor induced by fluctuations of the relative position or the orientation of the layers. Our results indicate that although a steep subthreshold slope (20 mV/dec) is achievable, fluctuations in the relative orientation of the ZrS2 layer with respect to the MoS2 one lead to a significant variability in the tunneling current by about one decade. This arises from changes in the orbital overlap between the layers and from the modulation of the transport direction.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication College Park, Md Editor  
  Language Wos 000411460400001 Publication Date 2017-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.808 Times cited 6 Open Access OpenAccess  
  Notes Approved Most recent IF: 4.808  
  Call Number UA @ lucian @ c:irua:146741 Serial 4785  
Permanent link to this record
 

 
Author Verhulst, A.; Sorée, B.; Leonelli, D.; Vandenberghe, W.G.; Groeseneken, G. doi  openurl
  Title Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor Type A1 Journal article
  Year 2010 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 2 Pages 024518,1-024518,8  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract (down) Tunnel field-effect transistors (TFETs) are potential successors of metal-oxide-semiconductor FETs because scaling the supply voltage below 1 V is possible due to the absence of a subthreshold-swing limit of 60 mV/decade. The modeling of the TFET performance, however, is still preliminary. We have developed models allowing a direct comparison between the single-gate, double-gate, and gate-all-around configuration at high drain voltage, when the drain-voltage dependence is negligible, and we provide improved insight in the TFET physics. The dependence of the tunnel current on device parameters is analyzed, in particular, the scaling with gate-dielectric thickness, channel thickness, and dielectric constants of gate dielectric and channel material. We show that scaling the gate-dielectric thickness improves the TFET performance more than scaling the channel thickness and that improvements are often overestimated. There is qualitative agreement between our model and our experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000274180600122 Publication Date 2010-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 150 Open Access  
  Notes Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:89507 Serial 2146  
Permanent link to this record
 

 
Author Li, Y.J.; Wang, J.J.; Ye, J.C.; Ke, X.X.; Gou, G.Y.; Wei, Y.; Xue, F.; Wang, J.; Wang, C.S.; Peng, R.C.; Deng, X.L.; Yang, Y.; Ren, X.B.; Chen, L.Q.; Nan, C.W.; Zhang, J.X.; pdf  doi
openurl 
  Title Mechanical switching of nanoscale multiferroic phase boundaries Type A1 Journal article
  Year 2015 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 25 Issue 25 Pages 3405-3413  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Tuning the lattice degree of freedom in nanoscale functional crystals is critical to exploit the emerging functionalities such as piezoelectricity, shape-memory effect, or piezomagnetism, which are attributed to the intrinsic lattice-polar or lattice-spin coupling. Here it is reported that a mechanical probe can be a dynamic tool to switch the ferroic orders at the nanoscale multiferroic phase boundaries in BiFeO3 with a phase mixture, where the material can be reversibly transformed between the soft tetragonal-like and the hard rhombohedral-like structures. The microscopic origin of the nonvolatile mechanical switching of the multiferroic phase boundaries, coupled with a reversible 180 degrees rotation of the in-plane ferroelectric polarization, is the nanoscale pressure-induced elastic deformation and reconstruction of the spontaneous strain gradient across the multiferroic phase boundaries. The reversible control of the room-temperature multiple ferroic orders using a pure mechanical stimulus may bring us a new pathway to achieve the potential energy conversion and sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000355992600017 Publication Date 2015-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 23 Open Access  
  Notes Approved Most recent IF: 12.124; 2015 IF: 11.805  
  Call Number c:irua:126430 Serial 1976  
Permanent link to this record
 

 
Author Zhang, R.; Wu, Z.; Li, X.J.; Li, L.L.; Chen, Q.; Li, Y.-M.; Peeters, F.M. pdf  doi
openurl 
  Title Fano resonances in bilayer phosphorene nanoring Type A1 Journal article
  Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 29 Issue 21 Pages 215202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000428920200001 Publication Date 2018-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 4 Open Access  
  Notes ; This work was supported by Grant No. 2017YFA0303400 from the National Key R&D Program of China, the Flemish Science Foundation, the grants No. 2016YFE0110000, No. 2015CB921503, and No. 2016YFA0202300 from the MOST of China, the NSFC (Grants Nos. 11504366, 11434010, 61674145 and 61774168) and CAS (Grants No. QYZDJ-SSW-SYS001). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:150713UA @ admin @ c:irua:150713 Serial 4968  
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bengtson, C.; Razzokov, J.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume 11 Issue 12 Pages 1920  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract (down) Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507382100097 Publication Date 2019-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Figure 4 was created using resources from the ‘Mind the Graph’ platform, free trial version. Spheroid image obtained in collaboration with Sander Bekeschus (INP Greifswald, Germany); organoid image kindly provided by Christophe Deben (Center for Oncological Research, University of Antwerp, Belgium). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:164892 Serial 5437  
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Platonov, V.B.; Chizhov, A.S.; Batuk, M.; Hadermann, J.; Khmelevsky, N.O.; Gaskov, A.M. pdf  url
doi  openurl
  Title Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers Type A1 Journal article
  Year 2020 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 307 Issue Pages 127624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508110400059 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access Not_Open_Access  
  Notes This work was supported by RFBR grants No. 18-03-00091 and No. 18-03-00580. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:166449 Serial 6343  
Permanent link to this record
 

 
Author Vanrenterghem, B.; Geboes, B.; Bals, S.; Ustarroz, J.; Hubin, A.; Breugelmans, T. pdf  url
doi  openurl
  Title Influence of the support material and the resulting particle distribution on the deposition of Ag nanoparticles for the electrocatalytic activity of benzyl bromide reduction Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 181 Issue 181 Pages 542-549  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (down) tSilver nanoparticles (NPs) were deposited on nickel, titanium and gold substrates using a potentiostaticdouble-pulse method. The influence of the support material on both the morphology and the electro-catalytic activity of Ag NPs for the reduction reaction of benzyl bromide was investigated and comparedwith previous research regarding silver NPs on glassy carbon. Scanning electron microscopy (SEM) dataindicated that spherical monodispersed NPs were obtained on Ni, Au and GC substrate with an averageparticle size of respectively 216 nm, 413 nm and 116 nm. On a Ti substrate dendritic NPs were obtainedwith a larger average particle density of 480 nm. The influence of the support material on the electrocat-alytic activity was tested by means of cyclic voltammetry (CV) for the reduction reaction of benzylbromide(1 mM) in acetonitrile + 0.1 M tetrabutylammonium perchlorate (Bu4NClO4). When the nucleation poten-tial (En) was applied at high cathodic overpotential, a positive shift of the reduction potential was obtained.The nucleation (tn) and growth time (tg) mostly had an influence on the current density whereas longerdeposition times lead to larger current densities. For these three parameters an optimum was present.The best electrocatalytic activity was obtained with Ag NPs deposited on Ni were a shift of the reduc-tion peak potential of 145 mV for the reaction of benzyl bromide was measured in comparance to bulksilver. The deposition on Au substrate yielded a positive shift of 114 mV. There was no indication of analtered reaction mechanism as the reaction was characterized as diffusion controlled and the transfercoefficients were in accordance with bulk silver. There was a beneficial catalitic activity measured due tothe interplay between support and NPs. This resulted in a shift of the reduction peak potential of 34 mV(Ag NPs on Au) and 65 mV (Ag NPs on Ni) compared to Ag NPs on a GC substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000364256000052 Publication Date 2015-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 16 Open Access OpenAccess  
  Notes The Quanta 250 FEG microscope of the Electron Microscopy forMaterial Science group at the University of Antwerp was fundedby the Hercules foundation of the Flemish Government. Sara Balsacknowledges financial support from European Research Council(ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446  
  Call Number c:irua:128345 Serial 4064  
Permanent link to this record
 

 
Author Ramirez-Rojas, I. openurl 
  Title Underground connections : the interplay between tropical rainforest trees and soil microbial communities Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages 205 p.  
  Keywords Doctoral thesis; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract (down) Tropical rainforests host an exceptional biodiversity and play a fundamental role in the regulation of global climatic cycles. Soil fungi and bacteria are key players in the transformation and processing of nutrients in terrestrial ecosystems while having an essential role as tree mutualists or antagonists. Still, there are gaps in our understanding of the main variables driving soil microbes on these forests and it is unclear how future climate change scenarios may impact soil microbes and further affect the ecosystem. In this thesis, we first explored the drivers of the microbial community composition in two pristine forests in French Guiana by using amplicon DNA sequencing. The neighboring tree species were found to be a crucial factor influencing the fungal and bacterial community composition at our sites regardless of the season. Additionally, within the environmental factors explored, soil moisture, phosphorus (P) and nitrogen (N) availability were consistently the main soil properties controlling the composition of soil microbial communities. Secondly, as increased nutrient deposition due to anthropogenic activities are expected to affect tropical forests ecosystems N and P availability, a factorial N and P nutrient addition experiment in the same sites was used to assess the effects of changes in the soil nutrient stoichiometry on the soil microbial communities. These results showed that after 3 years of nutrient additions, the bacterial and fungal community composition was affected by both the N and P additions. Besides, the fungal community composition had a stronger response to the nutrient addition, especially when P was added. Moreover, when the nutrient addition effect was assessed in bacteria and fungi with different life strategies, we found different nutrient optima between them. Furthermore, to study the effect of the connection to an existing mycorrhizal mycelium on tree seedlings, I established a mycelium exclusion experiment. Interestingly, we could not detect an effect of the mycorrhizal mycelium exclusion on the seedling N uptake, performance, or fungal community composition in roots after one year. All together this work provides a deeper understanding of the factors influencing the soil microbial communities on these lowland tropical forests, demonstrating that the tree community composition exerts a higher influence on the soil microbial community composition than previously expected. Moreover, our results show that the fungal and bacterial community composition and its relationship with trees in the vicinity is highly dependent on the ecosystem nutrient availability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:204907 Serial 9237  
Permanent link to this record
 

 
Author Bai, J.; Wang, J.T.-W.; Rubio, N.; Protti, A.; Heidari, H.; Elgogary, R.; Southern, P.; Al-Jamal, W.' T.; Sosabowski, J.; Shah, A.M.; Bals, S.; Pankhurst, Q.A.; Al-Jamal, K.T. pdf  url
doi  openurl
  Title Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid TumoursIn Vivo Type A1 Journal article
  Year 2016 Publication Theranostics Abbreviated Journal Theranostics  
  Volume 6 Issue 6 Pages 342-356  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Triple-modal imaging magnetic nanocapsules, encapsulating hydrophobic superparamagnetic iron oxide nanoparticles, are formulated and used to magnetically target solid tumours after intravenous administration in tumour-bearing mice. The engineered magnetic polymeric nanocapsules m-NCs are ~200 nm in size with negative Zeta potential and shown to be spherical in shape. The loading efficiency of superparamagnetic iron oxide nanoparticles in the m-NC was ~100%. Up to ~3- and ~2.2-fold increase in tumour uptake at 1 and 24 h was achieved, when a static magnetic field was applied to the tumour for 1 hour. m-NCs, with multiple imaging probes (e.g. indocyanine green, superparamagnetic iron oxide nanoparticles and indium-111), were capable of triple-modal imaging (fluorescence/magnetic resonance/nuclear imaging) in vivo. Using triple-modal imaging is to overcome the intrinsic limitations of single modality imaging and provides complementary information on the spatial distribution of the nanocarrier within the tumour. The significant findings of this study could open up new research perspectives in using novel magnetically-responsive nanomaterials in magnetic-drug targeting combined with multi-modal imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377797200005 Publication Date 2015-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1838-7640 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.712 Times cited 54 Open Access OpenAccess  
  Notes The authors would like to thank Prof Robert Hider (King's College London) for useful discussion on the chemical functionalization of the polymers, Mr William Luckhurst (King's College London) on the technical help of AFM measurements and Mr Andrew Cakebread (King's College London) on his technical help of ICP-MS measurements. J.B. acknowledges funding from King's-China Scholarship Council (CSC). J.W. and N.R. acknowledge funding from Biotechnology and Biological Sciences Research Council (BB/J008656/1) and Associated International Cancer Research (12-1054). K.T.AJ. acknowledges funding from EU FP7-ITN Marie-Curie Network programme RADDEL (290023). S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 8.712  
  Call Number c:irua:130058 Serial 3995  
Permanent link to this record
 

 
Author Chaves, A.; Mayers, M.Z.; Peeters, F.M.; Reichman, D.R. url  doi
openurl 
  Title Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 115314  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct quasiparticle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high binding energies and an elongated electron-hole structure with a preference for alignment along the armchair direction, where the effective masses are lower. We find that biexciton binding energies are also notably large, especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer transition metal dichalcogenides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372715700001 Publication Date 2016-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes ; This work has been financially supported by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs, the FWO-CNPq bilateral program between Brazil and Flanders, and the Lemann Foundation. M.Z.M. is supported by a fellowship from the National Science Foundation, under Grant No. DGE-11-44155. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133191 Serial 4262  
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Peeters, F.M.; Dubonos, G.; Oboznov, V.; Grigorieva, I.V. doi  openurl
  Title Vortex configurations in mesoscopic superconducting triangles: finite-size and shape effects Type A1 Journal article
  Year 2008 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 83 Issue 1 Pages 17008,1-17008,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Triangular-shaped mesoscopic superconductors are consistent with the symmetry of the Abrikosov vortex lattice resulting in a high stability of vortex patterns for commensurate vorticities. However, for non-commensurate vorticities, vortex configurations in triangles are not compatible with the sample shape. Here we present the first direct observation of vortex configurations in ìm-sized niobium triangles using the Bitter decoration technique, and we analyze the vortex states in triangles by analytically solving the London equations and performing molecular-dynamics simulations. We found that filling rules with increasing vorticity can be formulated for triangles in a similar way as for mesoscopic disks where vortices form shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000259020300030 Publication Date 2008-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 29 Open Access  
  Notes Approved Most recent IF: 1.957; 2008 IF: 2.203  
  Call Number UA @ lucian @ c:irua:76488 Serial 3863  
Permanent link to this record
 

 
Author Verbueken, A.H.; van de Vijver, F.L.; Visser, W.J.; Van Grieken, R.E.; de Broe, M.E. doi  openurl
  Title Laser microprobe mass analysis (LAMMA) to verify the aluminon staining of bone Type A1 Journal article
  Year 1986 Publication Stain technology Abbreviated Journal  
  Volume 61 Issue 5 Pages 287-295  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract (down) Triammonium aurin tricarboxylate (aluminon) has been used to localize aluminum in 2 μm sections of undecalcified, methyl methacrylate embedded bone obtained from patients with terminal chronic renal failure. Aluminum appeared in four cases as bright red lines at the mineralized-bone boundary. In two cases, however, purplish lines were found and one patient showed red as well as purplish lines. Laser microprobe mass analysis (LAMMA) identified aluminum at the location of the red lines and both aluminum and iron at the purplish lines. Furthermore, both iron and aluminum were found in histiocytic bone marrow cells, which showed brownish aluminon staining. It appears that when aluminum and iron occur together, aluminon staining may yield aberrant results. This study shows that LAMMA can be used for the identification of elements sought by histochemical methods and thus permits the evaluation of their staining effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2007-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-9153 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116764 Serial 8159  
Permanent link to this record
 

 
Author Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Pümpel, T.; Shaw, A.; Chandran, K.; Murthy, S.; De Clippeleir, H. pdf  url
doi  openurl
  Title Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 143 Issue Pages 270-281  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Treatment of sewage sludge with a thermal hydrolysis process (THP) followed by anaerobic digestion (AD) enables to boost biogas production and minimize residual sludge volumes. However, the reject water can cause inhibition to aerobic and anoxic ammonium-oxidizing bacteria (AerAOB & AnAOB), the two key microbial groups involved in the deammonification process. Firstly, a detailed investigation elucidated the impact of different organic fractions present in THP-AD return liquor on AerAOB and AnAOB activity. For AnAOB, soluble compounds linked to THP conditions and AD performance caused the main inhibition. Direct inhibition by dissolved organics was also observed for AerAOB, but could be overcome by treating the filtrate with extended aerobic or anaerobic incubation or with activated carbon. AerAOB additionally suffered from particulate and colloidal organics limiting the diffusion of substrates. This was resolved by improving the dewatering process through an optimized flocculant polymer dose and/or addition of coagulant polymer to better capture the large colloidal fraction, especially in case of unstable AD performance. Secondly, a new inhibition model for AerAOB included diffusion-limiting compounds based on the porter-equation, and achieved the best fit with the experimental data, highlighting that AerAOB were highly sensitive to large colloids. Overall, this paper for the first time provides separate identification of organic fractions within THP-AD filtrate causing differential types of inhibition. Moreover, it highlights the combined effect of the performance of THP, AD and dewatering on the downstream autotrophic nitrogen removal kinetics. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443664000027 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152911 Serial 8623  
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Magnetic electron focusing and tuning of the electron current with a pn-junction Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 4 Pages 043719-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Transverse magnetic focusing properties of graphene using a ballistic four terminal structure are investigated. The electric response is obtained using the semiclassical billiard model. The transmission exhibits pronounced peaks as a consequence of skipping orbits at the edge of the structure. When we add a pn-junction between the two probes, snake states along the pn-interface appear. Injected electrons are guided by the pn-interface to one of the leads depending on the value of the applied magnetic field. Oscillations in the resistance are found depending on the amount of particles that end up in each lead.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331210800066 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 21 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115801 Serial 1866  
Permanent link to this record
 

 
Author Vasilopoulos, P.; Wang, X.F.; Peeters, F.M.; Chowdhury, S.; Long, A.R.; Davies, J.H. pdf  doi
openurl 
  Title Magneto resistance oscillations in a modulated 2DEG periodic in the ratio h/e to flux per unit cell Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 15th International Conference on Electronic Properties of, Two-Dimensional Systems (EP2DS-15), JUL 14-18, 2003, Nara, JAPAN Abbreviated Journal Physica E  
  Volume 22 Issue 1-3 Pages 389-393  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) Transport properties of the 2DEG are studied in the presence of a normal magnetic field B and of a weak, two-dimensional periodic potential modulation. A tight-binding treatment has shown that each Landau level splits into several subbands with exponentially small gaps between them. Assuming the latter are closed due to disorder gives analytical wave functions and simplifies the evaluation of the magnetoresistance tensor p(muv) The relative phase of the oscillations in p(xx) and p(yy) depends on the modulation strengths and periods. For short periods less than or equal to 100 nm, in addition to the Weiss oscillations, the collisional contribution to the conductivity and the corresponding resistivity contribution show prominent peaks when one flux quantum h/e passes through an integral number of unit cells in good agreement with experiments. For periods 300-400 nm long used in early experiments, these peaks occur at fields 10-25 times smaller than those of the Weiss oscillations and are not resolved. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000221140800094 Publication Date 2004-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.221 Times cited Open Access  
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898  
  Call Number UA @ lucian @ c:irua:104107 Serial 1911  
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M. doi  openurl
  Title Influence of spin-orbit interaction on the magnetotransport of a periodically modulated two-dimensional electron gas Type A1 Journal article
  Year 2004 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 16th International Conference on High Magnetic Fields in Semiconductor, Physics, AUG 02-06, 2004, Florida State Univ, NHMFL, Tallahassee, FL Abbreviated Journal Int J Mod Phys B  
  Volume 18 Issue 27-29 Pages 3653-3656  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Transport properties of a two-dimensional electron gas (2DEG) are studied in the presence of a normal magnetic field B, of a weak one-dimensional (1D) periodic potential modulation V(x) = V(0)cos(Kx), and of the Rashba spin-orbit interaction (SOI) of strength a. For V(x) = 0 the SOI mixes the up and down spin states of neighboring Landau levels into two, unequally spaced energy branches. For V(x) not equal 0 these levels broaden into bands and their bandwidths oscillate with B. The n-th level bandwidth of each series vanishes at different values of B. Relative to the ID-modulated 2DEG without SOI and one flat-band condition, there are two flat-band conditions that depend on a and the transport coefficients can change considerably. For weak a the Weiss oscillations show beating patterns while for strong a the Shubnikov-de Haas ones axe split in two.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Singapore Editor  
  Language Wos 000227140200040 Publication Date 2005-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.736 Times cited Open Access  
  Notes Approved Most recent IF: 0.736; 2004 IF: 0.361  
  Call Number UA @ lucian @ c:irua:103199 Serial 1633  
Permanent link to this record
 

 
Author Elmurodov, A.K.; Peeters, F.M.; Vodolazov, D.Y.; Michotte, S.; Adam, S.; de Menten de Horne, F.; Piraux, L.; Lucot, D.; Mailly, D. url  doi
openurl 
  Title Phase-slip phenomena in NbN superconducting nanowires with leads Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 21 Pages 214519,1-214519,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Transport properties of a superconducting NbN nanowire are studied experimentally and theoretically. Different attached leads (superconducting contacts) allowed us to measure current-voltage (I-V) characteristics of different segments of the wire independently. The experimental results show that with increasing the length of the segment the number of jumps in the I-V curve increases indicating an increasing number of phase-slip phenomena. The system shows a clear hysteresis in the direction of the current sweep, the size of which depends on the length of the superconducting segment. The interpretation of the experimental results is supported by theoretical simulations that are based on the time-dependent Ginzburg-Landau theory, the heat equation has been included in the Ginzbur-Landau theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262244400100 Publication Date 2009-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76004 Serial 2589  
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Peeters, F.M. url  doi
openurl 
  Title Stability of spintronic devices based on quantum ring networks Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 12 Pages 125324,1-125324,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Transport properties in mesoscopic networks are investigated, where the strength of the (Rashba-type) spin-orbit coupling is tuned with external gate voltages. We analyze in detail to what extent the ideal behavior and functionality of some promising network-based devices are modified by random (spin-dependent) scattering events and by thermal fluctuations. It is found that although the functionality of these devices is obviously based on the quantum coherence of the transmitted electrons, there is a certain stability: moderate level of errors can be tolerated. For mesoscopic networks made of typical semiconductor materials, we found that when the energy distribution of the input carriers is narrow enough, the devices can operate close to their ideal limits even at relatively high temperature. As an example, we present results for two different networks: one that realizes a Stern-Gerlach device and another that simulates a spin quantum walker. Finally we propose a simple network that can act as a narrow band energy filter even in the presence of random scatterers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383300091 Publication Date 2009-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79230 Serial 3131  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Tailoring weak and metallic phases in a strong topological insulator by strain and disorder : conductance fluctuations signatures Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 4 Pages 045129-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Transport measurements are readily used to probe different phases in disordered topological insulators (TIs), where determining topological invariants explicitly is challenging. On that note, universal conductance fluctuations (UCF) theory asserts the conductance G for an ensemble has a Gaussian distribution, and that standard deviation 8G depends solely on the symmetries and dimensions of the system. Using a real-space tight -binding Hamiltonian on a system with Anderson disorder, we explore conductance fluctuations in a thin Bi2Se3 film and demonstrate the agreement of their behavior with UCF hypotheses. We further show that magnetic field applied out-of-plane breaks the time -reversal symmetry and transforms the system's Wigner-Dyson class from root symplectic to unitary, increasing 8G by 2. Finally, we reveal that while Bi2Se3 is a strong TI, weak TI and metallic phases can be stabilized in presence of strain and disorder, and detected by monitoring the conductance fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001173938400008 Publication Date 2024-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:204765 Serial 9177  
Permanent link to this record
 

 
Author Peeters, H.; Keulemans, M.; Nuyts, G.; Vanmeert, F.; Li, C.; Minjauw, M.; Detavernier, C.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. url  doi
openurl 
  Title Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings Type A1 Journal article
  Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 267 Issue 267 Pages 118654  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Transparent photocatalytic TiO2 thin films hold great potential in the development of self-cleaning glass sur-

faces, but suffer from a poor visible light response that hinders the application under actual sunlight. To alleviate this problem, the photocatalytic film can be modified with plasmonic nanoparticles that interact very effectively with visible light. Since the plasmonic effect is strongly concentrated in the near surroundings of the nano- particle surface, an approach is presented to embed the plasmonic nanostructures in the TiO2 matrix itself, rather than deposit them loosely on the surface. This way the interaction interface is maximised and the plasmonic effect can be fully exploited. In this study, pre-fabricated gold nanoparticles are made compatible with the organic medium of a TiO2 sol-gel coating suspension, resulting in a one-pot coating suspension. After spin coating, homogeneous, smooth, highly transparent and photoactive gold-embedded anatase thin films are ob- tained.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518865300002 Publication Date 2020-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.1 Times cited 57 Open Access OpenAccess  
  Notes H.P. is grateful to the Research Foundation Flanders (FWO) for an aspirant PhD scholarship. Approved Most recent IF: 22.1; 2020 IF: 9.446  
  Call Number EMAT @ emat @c:irua:165616 Serial 5446  
Permanent link to this record
 

 
Author Rocha Segundo, I.; Landi Jr., S.; Margaritis, A.; Pipintakos, G.; Freitas, E.; Vuye, C.; Blom, J.; Tytgat, T.; Denys, S.; Carneiro, J. url  doi
openurl 
  Title Physicochemical and rheological properties of a transparent asphalt binder modified with nano-TiO₂ Type A1 Journal article
  Year 2020 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 10 Issue 11 Pages 2152  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract (down) Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2 and compares it to the transparent base binder and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity, and exhibited values between the conventional binder and PMB with respect to rutting resistance, penetration, and softening point. They showed similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2 seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with respect to permanent deformation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000593731700001 Publication Date 2020-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access  
  Notes Approved Most recent IF: 5.3; 2020 IF: 3.553  
  Call Number UA @ admin @ c:irua:172621 Serial 6580  
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Schryvers, D. pdf  doi
openurl 
  Title Microstructure changes during non-conventional heat treatment of thin NiTi wires by pulsed electric current studied by transmission electron microscopy Type A1 Journal article
  Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 58 Issue 13 Pages 4503-4515  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Transmission electron microscopy, electrical resistivity measurements and mechanical testing were employed to investigate the evolution of microstructure and functional superelastic properties of 0.1 mm diameter as-drawn NiTi wires subjected to a non-conventional heat treatment by controlled electric pulse currents. This method enables a better control of the recovery and recrystallization processes taking place during the heat treatment and accordingly a better control on the final microstructure. Using a stepwise approach of millisecond pulse annealing, it is shown how the microstructure evolves from a severely deformed state with no functional properties to an optimal nanograined microstructure (2050 nm) that is partially recovered through polygonization and partially recrystallized and that has the best functional properties. Such a microstructure is highly resistant against dislocation slip upon cycling, while microstructures annealed for longer times and showing mostly recrystallized grains were prone to dislocation slip, particularly as the grain size exceeds 200 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000279787100020 Publication Date 2010-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 110 Open Access  
  Notes Multimat; FWO IAA Approved Most recent IF: 5.301; 2010 IF: 3.791  
  Call Number UA @ lucian @ c:irua:83279 Serial 2062  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: