toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yan, M.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Kinetic modeling of relaxation phenomena after photodetachment in a rf electronegative SiH4 discharge Type A1 Journal article
  Year 2001 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 63 Issue 2Part 2 Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The global relaxation process after pulsed laser induced photodetachment in a rf electronegative SIH4 discharge is studied by a self-consistent kinetic one-dimensional particle-in-cell-Monte Carlo model. Our results reveal a comprehensive physical picture of the relaxation process, including the main plasma variables, after a perturbation up to the full recovery of the steady state. A strong influence of the photodetachment on the discharge is found, which results from an increase of the electron density, leading to a weaker bulk field, and hence to a drop in the high energy tail of the electron energy distribution function (EEDF), a reduction of the reaction rates of electron impact attachment and ionization, and a subsequent decrease of the positive and negative ion densities. All the plasma quantities related to electrons recover synchronously. The recovery time of the ion densities is about 1-2 orders of magnitude longer than that of the electrons due to different recovery mechanisms. The modeled behavior of all the charged particles agrees very well with experimental results from the literature. In addition, our work clarifies some unclear processes assumed in the literature, such as the relaxation of the EEDF, the evolution of the electric field, and the recovery of negative ions.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000167022500057 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.366; 2001 IF: 2.235  
  Call Number UA @ lucian @ c:irua:34148 Serial 1757  
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A. pdf  doi
openurl 
  Title Changing chirality during single-walled carbon nanotube growth : a reactive molecular dynamics/Monte Carlo study Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 43 Pages 17225-17231  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The growth mechanism and chirality formation of a single-walled carbon nanotube (SWNT) on a surface-bound nickel nanocluster are investigated by hybrid reactive molecular dynamics/force-biased Monte Carlo simulations. The validity of the interatomic potential used, the so-called ReaxFF potential, for simulating catalytic SWNT growth is demonstrated. The SWNT growth process was found to be in agreement with previous studies and observed to proceed through a number of distinct steps, viz., the dissolution of carbon in the metallic particle, the surface segregation of carbon with the formation of aggregated carbon clusters on the surface, the formation of graphitic islands that grow into SWNT caps, and finally continued growth of the SWNT. Moreover, it is clearly illustrated in the present study that during the growth process, the carbon network is continuously restructured by a metal-mediated process, thereby healing many topological defects. It is also found that a cap can nucleate and disappear again, which was not observed in previous simulations. Encapsulation of the nanoparticle is observed to be prevented by the carbon network migrating as a whole over the cluster surface. Finally, for the first time, the chirality of the growing SWNT cap is observed to change from (11,0) over (9,3) to (7,7). It is demonstrated that this change in chirality is due to the metal-mediated restructuring process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297380900026 Publication Date 2011-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 116 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:92043 Serial 309  
Permanent link to this record
 

 
Author Bogaerts, A.; Grozeva, M. pdf  doi
openurl 
  Title Effect of helium/argon gas ratio in a He-Ar-Cu+ IR hollow-cathode discharge laser : modeling study and comparison with experiments Type A1 Journal article
  Year 2003 Publication Applied physics B : lasers and optics Abbreviated Journal Appl Phys B-Lasers O  
  Volume 76 Issue 3 Pages 299-306  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The He-Ar-Cu+ IR laser operates in a hollow-cathode discharge, typically in a mixture of helium with a few-% Ar. The population inversion of the Cu+ ion levels, responsible for laser action, is attributed to asymmetric charge transfer between He+ ions and sputtered Cu atoms. The Ar gas is added to promote sputtering of the Cu cathode. In this paper, a hybrid modeling network consisting of several different models for the various plasma species present in a He-Ar-Cu hollow-cathode discharge is applied to investigate the effect of Ar concentration in the gas mixture on the discharge behavior, and to find the optimum He/Ar gas ratio for laser operation. It is found that the densities of electrons, Ar+ ions, Ar-m* metastable atoms, sputtered Cu atoms and Cu+ ions increase upon the addition of more Ar gas, whereas the densities of He+ ions, He-2(+) ions and He-m* metastable atoms drop considerably. The product of the calculated Cu atom and He+ ion densities, which determines the production rate of the upper laser levels, and hence probably also the laser output power, is found to reach a maximum around 1-5% Ar addition. This calculation result is compared to experimental measurements, and reasonable agreement has been reached.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000182758000017 Publication Date 2004-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0946-2171;1432-0649; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.696 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.696; 2003 IF: 2.012  
  Call Number UA @ lucian @ c:irua:104125 Serial 812  
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 25210-25224  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The hydrogenation of carbon dioxide in a dielectric barrier discharge plasma is studied with a one-dimensional fluid model. The spatially averaged densities of the most important end products formed in the CO2/H2 mixture are determined as a function of the initial gas mixing ratio. CO and H2O are found to be present at the highest densities and to a lower content also CH4, C2H6, CH2O, CH3OH, O2, and some other higher hydrocarbons and oxygenates. The main underlying reaction

pathways for the conversion of the inlet gases and the formation of CO, CH4, CH2O, and CH3OH are pointed out for various gas mixing ratios. The CO2 conversion and the production of value added products is found to be quite low, also in comparison to a CO2/CH4 mixture, and this can be explained by the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387737900007 Publication Date 2016-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 16 Open Access  
  Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:140082 c:irua:139167 Serial 4414  
Permanent link to this record
 

 
Author Saraiva, M.; Georgieva, V.; Mahieu, S.; van Aeken, K.; Bogaerts, A.; Depla, D. doi  openurl
  Title Compositional effects on the growth of Mg(M)O films Type A1 Journal article
  Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 3 Pages 034902,1-034902,10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The influence of the composition on the crystallographic properties of deposited Mg(M)O (with M=Al, Cr, Ti, Y, and Zr) films is studied. For a flexible control of the composition, dual reactive magnetron sputtering was used as deposition technique. Two different approaches to predict the composition are discussed. The first is an experimental way based on the simple relationship between the deposition rate and the target-substrate distance. The second is a route using a Monte Carlo based particle trajectory code. Both methods require a minimal experimental input and enable the user to quickly predict the composition of complex thin films. Good control and flexibility allow us to study the compositional effects on the growth of Mg(M)O films. Pure MgO thin films were grown with a (111) preferential out-of-plane orientation. When adding M to MgO, two trends were noticed. The first trend is a change in the MgO lattice parameters compared to pure MgO. The second tendency is a decrease in the crystallinity of the MgO phase. The experimentally determined crystallographic properties are shown to be in correspondence with the predicted properties from molecular dynamics simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000274517300116 Publication Date 2010-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access  
  Notes Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:80346 Serial 447  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W. url  doi
openurl 
  Title Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges Type A1 Journal article
  Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 73 Issue 2 Pages 026405,1-16  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The initial stage of nanoparticle formation and growth in radiofrequency acetylene (C2H2) plasmas is investigated by means of a self-consistent one-dimensional fluid model. A detailed chemical kinetic scheme, containing electron impact, ion-neutral, and neutral-neutral reactions, has been developed in order to predict the underlying dust growth mechanisms and the most important dust precursors. The model considers 41 different species (neutrals, radicals, ions, and electrons) describing hydrocarbons (CnHm) containing up to 12 carbon atoms. Possible routes for particle growth are discussed. Both positive and negative ion reaction pathways are considered, as consecutive anion- and cation-molecule reactions seem to lead to a fast build up of the carbon skeleton.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000235667700086 Publication Date 2006-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 89 Open Access  
  Notes Approved Most recent IF: 2.366; 2006 IF: 2.438  
  Call Number UA @ lucian @ c:irua:56337 Serial 666  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport and accumulation of plasma generated species in aqueous solution Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 10 Pages 6845-6859  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The interaction between cold atmospheric pressure plasma and liquids is receiving increasing attention for various applications. In particular, the use of plasma-treated liquids (PTL) for biomedical applications is of growing importance, in particular for sterilization and cancer treatment. However, insight into the

underlying mechanisms of plasma–liquid interactions is still scarce. Here, we present a 2D fluid dynamics model for the interaction between a plasma jet and liquid water. Our results indicate that the formed reactive species originate from either the gas phase (with further solvation) or are formed at the liquid interface. A clear increase in the aqueous density of H2O2, HNO2/NO2- and NO3-

is observed as a function of time, while the densities of O3, HO2/O2- and ONOOH/ONOO- are found to quickly reach a maximum due to chemical reactions in solution. The trends observed in our model correlate well with experimental observations from the literature.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000429286100009 Publication Date 2018-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 35 Open Access OpenAccess  
  Notes The authors thank Petr Luke`s (Institute of Plasma Physics AS CR, Czech Republic) and Yury Gorbanev (UAntwerp, group PLASMANT) for the fruitful discussions regarding the chemistry in the model and the plasma–liquid interactions. Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:149557 Serial 4908  
Permanent link to this record
 

 
Author Vanraes, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma physics of liquids—A focused review Type A1 Journal article
  Year 2018 Publication Applied physics reviews Abbreviated Journal Appl Phys Rev  
  Volume 5 Issue 3 Pages 031103  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The interaction of plasma with liquids has led to various established industrial implementations as well as promising applications, including high-voltage switching, chemical analysis, nanomaterial synthesis, and plasma medicine. Along with these numerous accomplishments, the physics of plasma in liquid or in contact with a liquid surface has emerged as a bipartite research field, for which we introduce here the term “plasma physics of liquids.” Despite the intensive research

investments during the recent decennia, this field is plagued by some controversies and gaps in knowledge, which might restrict further progress. The main difficulties in understanding revolve around the basic mechanisms of plasma initiation in the liquid phase and the electrical interactions at a plasma-liquid interface, which require an interdisciplinary approach. This review aims to provide the wide applied physics community with a general overview of the field, as well as the opportunities for interdisciplinary research on topics, such as nanobubbles and the floating water bridge, and involving the research domains of amorphous semiconductors, solid state physics, thermodynamics, material science, analytical chemistry, electrochemistry, and molecular dynamics simulations. In addition, we provoke awareness of experts in the field on yet underappreciated question marks. Accordingly, a strategy for future experimental and simulation work is proposed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000446117000003 Publication Date 2018-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.667 Times cited 33 Open Access OpenAccess  
  Notes P. Vanraes acknowledges funding by a University of Antwerp BOF grant. The authors express their gratitude to Professor Dr. Peter Bruggeman (University of Minnesota, USA) for very useful comments on a draft of Sec. III C. P. Vanraes is very grateful to Professor Dr. Lars Pettersson (Stockholm University, Sweden) for the interesting discussions on the microscopic structure of water, to Dr. Xiaolong Deng (National University of Defense Technology, China) for his help with the figures, to Dr. Anton Nikiforov (Ghent University, Belgium) for the help with retrieving the relevant chapter of Ref. 319, and to Dr. Tatiana Nikitenko (Vitebst State Masherov University, Belarus), Katja Nygard (Netherlands), Iryna Kuchakova (Ghent University, Belgium), and Mindaugas Kersys (Lithuania) for their tremendous help with the translation of the corresponding chapter. Approved Most recent IF: 13.667  
  Call Number PLASMANT @ plasmant @c:irua:152823 Serial 5001  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. doi  openurl
  Title Formation of endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes by simulated ion implantation Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 4 Pages 1028-1033  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The interaction of thermal and hyperthermal Ni ions with gas-phase C60 fullerene was investigated at two temperatures with classical molecular dynamics simulations using a recently developed interatomic many-body potential. The interaction between Ni and C60 is characterized in terms of the NiC60 binding sites, complex formation, and the collision and temperature induced deformation of the C60 cage structure. The simulations show how ion implantation theoretically allows the synthesis of both endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000264252900012 Publication Date 2008-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 15 Open Access  
  Notes Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:76434 Serial 1260  
Permanent link to this record
 

 
Author Wende, K.; Williams, P.; Dalluge, J.; Van Gaens, W.; Aboubakr, H.; Bischof, J.; von Woedtke, T.; Goyal, S.M.; Weltmann, K.D.; Bogaerts, A.; Masur, K.; Bruggeman, P.J.; url  doi
openurl 
  Title Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet Type A1 Journal article
  Year 2015 Publication Biointerphases Abbreviated Journal Biointerphases  
  Volume 10 Issue 10 Pages 029518  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argonoxygen and argonair plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argonoxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2 − or ClO−. These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357195600036 Publication Date 2015-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.603 Times cited 137 Open Access  
  Notes Approved Most recent IF: 2.603; 2015 IF: 3.374  
  Call Number c:irua:126774 Serial 1549  
Permanent link to this record
 

 
Author Van der Paal, J.; Hong, S.-H.; Yusupov, M.; Gaur, N.; Oh, J.-S.; Short, R.D.; Szili, E.J.; Bogaerts, A. url  doi
openurl 
  Title How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage : an experimental and computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 35 Pages 19327-19341  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The mechanisms of plasma in medicine are broadly attributed to plasma-derived reactive oxygen and nitrogen species (RONS). In order to exert any intracellular effects, these plasma-derived RONS must first traverse a major barrier in the cell membrane. The cell membrane lipid composition, and thereby the magnitude of this barrier, is highly variable between cells depending on type and state (e.g. it is widely accepted that healthy and cancerous cells have different membrane lipid compositions). In this study, we investigate how plasma-derived RONS interactions with lipid membrane components can potentially be exploited in the future for treatment of diseases. We couple phospholipid vesicle experiments, used as simple cell models, with molecular dynamics (MD) simulations of the lipid membrane to provide new insights into how the interplay between phospholipids and cholesterol may influence the response of healthy and diseased cell membranes to plasma-derived RONS. We focus on the (i) lipid tail saturation degree, (ii) lipid head group type, and (iii) membrane cholesterol fraction. Using encapsulated molecular probes, we study the influence of the above membrane components on the ingress of RONS into the vesicles, and subsequent DNA damage. Our results indicate that all of the above membrane components can enhance or suppress RONS uptake, depending on their relative concentration within the membrane. Further, we show that higher RONS uptake into the vesicles does not always correlate with increased DNA damage, which is attributed to ROS reactivity and lifetime. The MD simulations indicate the multifactorial chemical and physical processes at play, including (i) lipid oxidation, (ii) lipid packing, and (iii) lipid rafts formation. The methods and findings presented here provide a platform of knowledge that could be leveraged in the development of therapies relying on the action of plasma, in which the cell membrane and oxidative stress response in cells is targeted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486175400045 Publication Date 2019-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:162782 Serial 6303  
Permanent link to this record
 

 
Author Kolev, S.; Sun, S.; Trenchev, G.; Wang, W.; Wang, H.; Bogaerts, A. pdf  url
doi  openurl
  Title Quasi-Neutral Modeling of Gliding Arc Plasmas: Quasi-Neutral Modeling of Gliding Arc Plasmas Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600110  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The modelling of a gliding arc discharge (GAD) is studied by means of the quasineutral (QN) plasma modelling approach. The model is first evaluated for reliability and proper description of a gliding arc discharge at atmospheric pressure, by comparing with a more elaborate non-quasineutral (NQN) plasma model in two different geometries – a 2D axisymmetric and a Cartesian geometry. The NQN model is considered as a reference, since it provides a continuous self-consistent plasma description, including the near electrode regions. In general, the results of the QN model agree very well with those obtained from the NQN model. The small differences between both models are attributed to the approximations in the derivation of the QN model. The use of the QN model provides a substantial reduction of the computation time compared to the NQN model, which is crucial for the development of more complex models in three dimensions or with complicated chemistries. The latter is illustrated for (i) a reverse vortex flow(RVF) GAD in argon, and (ii) a GAD in CO2. The RVF discharge is modelled in three dimensions and the effect of the turbulent heat transport on the plasma and gas characteristics is

discussed. The GAD model in CO2 is in a 1D geometry with axial symmetry and provides results for the time evolution of the electron, gas and vibrational temperature of CO2, as well as for the molar fractions of the different species.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403074000011 Publication Date 2016-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access  
  Notes Methusalem financing of the University of Antwerp; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:142982 Serial 4570  
Permanent link to this record
 

 
Author Snoeckx, R.; Van Wesenbeeck, K.; Lenaerts, S.; Cha, M.S.; Bogaerts, A. pdf  url
doi  openurl
  Title Suppressing the formation of NOxand N2O in CO2/N2dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work Type A1 Journal article
  Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal Sustainable Energy Fuels  
  Volume 3 Issue 6 Pages 1388-1395  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) The need for carbon negative technologies led to the development of a wide array of novel CO<sub>2</sub>conversion techniques. Most of them either rely on high temperatures or generate highly reactive O species, which can lead to the undesirable formation of NO<sub>x</sub>and N<sub>2</sub>O when the CO<sub>2</sub>feeds contain N<sub>2</sub>. Here, we show that, for plasma-based CO<sub>2</sub>conversion, adding a hydrogen source, as a chemical oxygen scavenger, can suppress their formation,<italic>in situ</italic>. This allows the use of low-cost N<sub>2</sub>containing (industrial and direct air capture) feeds, rather than expensive purified CO<sub>2</sub>. To demonstrate this, we add CH<sub>4</sub>to a dielectric barrier discharge plasma used for converting impure CO<sub>2</sub>. We find that when adding a stoichiometric amount of CH<sub>4</sub>, 82% less NO<sub>2</sub>and 51% less NO are formed. An even higher reduction (96 and 63%) can be obtained when doubling this amount. However, in that case the excess radicals promote the formation of by-products, such as HCN, NH<sub>3</sub>and CH<sub>3</sub>OH. Thus, we believe that by using an appropriate amount of chemical scavengers, we can use impure CO<sub>2</sub>feeds, which would bring us closer to ‘real world’ conditions and implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469258600021 Publication Date 2019-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0F9618N ; Universiteit Antwerpen; King Abdullah University of Science and Technology, BAS/1/1384-01-01 ;The research reported in this publication was supported by funding from the “Excellence of Science Program” (Fund for Scientic Research Flanders (FWO): grant no. G0F9618N; EOS ID: 30505023). The authors R. S. and M. S. C. acknowledge nancial support from King Abdullah University of Science and Technology (KAUST), under award number BAS/1/1384-01-01. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160268 Serial 5188  
Permanent link to this record
 

 
Author Baguer, N.; Georgieva, V.; Calderin, L.; Todorov, I.T.; van Gils, S.; Bogaerts, A. doi  openurl
  Title Study of the nucleation and growth of TiO2 and ZnO thin films by means of molecular dynamics simulations Type A1 Journal article
  Year 2009 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth  
  Volume 311 Issue 16 Pages 4034-4043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The nucleation and growth of titanium dioxide (TiO2) and zinc oxide (ZnO) thin films on Fe2O3 (hematite), Al2O3 (á-alumina) and SiO2 (á-quartz) are studied by molecular dynamics simulations. The results show the formation of a strong interface region between the substrate and the film in the six systems studied here. A combination of polycrystalline and amorphous phases are observed in the TiO2 films grown on the three substrates. ZnO deposition on the Fe2O3 and Al2O3 crystals yields a monocrystalline film growth. The ZnO film deposited on the SiO2 crystal exhibits less crystallinity. The simulation results are compared with experimental results available in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000269580100012 Publication Date 2009-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 23 Open Access  
  Notes Approved Most recent IF: 1.751; 2009 IF: 1.534  
  Call Number UA @ lucian @ c:irua:77453 Serial 3338  
Permanent link to this record
 

 
Author Elmonov, A.A.; Yusupov, M.S.; Dzhurakhalov, A.A.; Bogaerts, A. openurl 
  Title Sputtering of Si(001) and SiC(001) by grazing ion bombardment Type P1 Proceeding
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 209-213  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The peculiarities of sputtering processes at 0.5-5 keV Ne grazing ion bombardment of Si(001) and SiC(001) surfaces and their possible application for the surface modification have been studied by computer simulation. Sputtering yields in the primary knock-on recoil atoms regime versus the initial energy of incident ions (E(0) = 0.5-5 keV) and angle of incidence (psi = 0-30 degrees) counted from a target surface have been calculated. Comparative studies of layer-by-layer sputtering for Si(001) and SiC(001) surfaces versus the initial energy of incident ions as well as an effective sputtering and sputtering threshold are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue 84 Edition  
  ISSN 978-86-80019-27-7 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95704 Serial 3112  
Permanent link to this record
 

 
Author Duan, J.; Ma, M.; Yusupov, M.; Cordeiro, R.M.; Lu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title The penetration of reactive oxygen and nitrogen species across the stratum corneum Type A1 Journal article
  Year 2020 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The penetration of reactive oxygen and nitrogen species (RONS) across the stratum corneum (SC) is a necessary and crucial process in many skin‐related plasma medical applications. To gain more insights into this penetration behavior, we combined experimental measurements of the permeability of dry and moist SC layers with computer simulations of model lipid membranes. We measured the permeation of relatively stable molecules, which are typically generated by plasma, namely H2O2, NO3−, and NO2−. Furthermore, we calculated the permeation free energy profiles of the major plasma‐generated RONS and their derivatives (i.e., H2O2, OH, HO2, O2, O3, NO, NO2, N2O4, HNO2, HNO3, NO2−, and NO3−) across native and oxidized SC lipid bilayers, to understand the mechanisms of RONS permeation across the SC. Our results indicate that hydrophobic RONS (i.e., NO, NO2, O2, O3, and N2O4) can translocate more easily across the SC lipid bilayer than hydrophilic RONS (i.e., H2O2, OH, HO2, HNO2, and HNO3) and ions (i.e., NO2− and NO3−) that experience much higher permeation barriers. The permeability of RONS through the SC skin lipids is enhanced when the skin is moist and the lipids are oxidized. These findings may help to understand the underlying mechanisms of plasma interaction with a biomaterial and to optimize the environmental parameters in practice in plasma medical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536892900001 Publication Date 2020-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access  
  Notes National Natural Science Foundation of China, 51625701 51977096 ; Fonds Wetenschappelijk Onderzoek, 1200219N ; China Scholarship Council, 201806160128 ; M. Y. acknowledges the Research Foundation Flanders (FWO) for financial support (Grant No. 1200219N). This study was partially supported by the National Natural Science Foundation of China (Grant No: 51625701 and 51977096) and the China Scholarship Council (Grant No: 201806160128). All computational work was performed using the Turing HPC infrastructure at the CalcUA Core Facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 3.5; 2020 IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:169709 Serial 6372  
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A. pdf  doi
openurl 
  Title Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
  Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 12 Pages 5652-5660  
  Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000275855600044 Publication Date 2010-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access  
  Notes ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number UA @ lucian @ c:irua:81391 Serial 402  
Permanent link to this record
 

 
Author Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A. url  doi
openurl 
  Title Reactive sputter deposition of TiNx films, simulated with a particle-in-cell/Monte Carlo collisions model Type A1 Journal article
  Year 2009 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 11 Issue Pages 023039,1-023039,24  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The physical processes in an Ar/N2 magnetron discharge used for the reactive sputter deposition of TiNx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. Cathode currents and voltages were calculated self-consistently and compared with experiments. Also, ion fractions were calculated and validated with mass spectrometric measurements. With this PIC/MCC model, the influence of N2/Ar gas ratio on the particle densities and fluxes was investigated, taking into account the effect of the poisoned state of the target.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000263744100001 Publication Date 2009-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.786; 2009 IF: 3.312  
  Call Number UA @ lucian @ c:irua:73150 Serial 2825  
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A. url  doi
openurl 
  Title Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films Type A1 Journal article
  Year 2009 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 11 Issue Pages 103010-103010,24  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The physical processes in an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. The plasma species taken into account are electrons, Ar+ ions, fast Arf atoms, metastable Arm* atoms, Ti+ ions, Ti atoms, O+ ions, O2+ ions, O− ions and O atoms. This model accounts for plasmatarget interactions, such as secondary electron emission and target sputtering, and the effects of target poisoning. Furthermore, the deposition process is described by an analytical surface model. The influence of the O2/Ar gas ratio on the plasma potential and on the species densities and fluxes is investigated. Among others, it is shown that a higher O2 pressure causes the region of positive plasma potential and the O− density to be more spread, and the latter to decrease. On the other hand, the deposition rates of Ti and O are not much affected by the O2/Ar proportion. Indeed, the predicted stoichiometry of the deposited TiOx film approaches x=2 for nearly all the investigated O2/Ar proportions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000270820900001 Publication Date 2009-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.786; 2009 IF: 3.312  
  Call Number UA @ lucian @ c:irua:78326 Serial 2559  
Permanent link to this record
 

 
Author Vanraes, P.; Parayil Venugopalan, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Multiscale modeling of plasma–surface interaction—General picture and a case study of Si and SiO2etching by fluorocarbon-based plasmas Type A1 Journal Article
  Year 2021 Publication Applied Physics Reviews Abbreviated Journal Appl Phys Rev  
  Volume 8 Issue 4 Pages 041305  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) The physics and chemistry of plasma–surface interaction is a broad domain relevant to various applications and several natural processes, including plasma etching for microelectronics fabrication, plasma deposition, surface functionalization, nanomaterial synthesis, fusion reactors, and some astrophysical and meteorological phenomena. Due to their complex nature, each of these processes is generally investigated in separate subdomains, which are considered to have their own theoretical, modeling, and experimental challenges. In this review, however, we want to emphasize the overarching nature of plasma–surface interaction physics and chemistry, by focusing on the general strategy for its computational simulation. In the first half of the review, we provide a menu card with standard and less standardized computational methods to be used for the multiscale modeling of the underlying processes. In the second half, we illustrate the benefits and potential of the multiscale modeling strategy with a case study of Si and SiO2 etching by fluorocarbon plasmas and identify the gaps in knowledge still present on this intensely investigated plasma–material combination, both on a qualitative and quantitative level. Remarkably, the dominant etching mechanisms remain the least understood. The resulting new insights are of general relevance, for all plasmas and materials, including their various applications. We therefore hope to motivate computational and experimental scientists and engineers to collaborate more intensely on filling the existing gaps in knowledge. In this way, we expect that research will overcome a bottleneck stage in the development and optimization of multiscale models, and thus the fundamental understanding of plasma–surface interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000754799700001 Publication Date 2021-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.667 Times cited Open Access OpenAccess  
  Notes Asml; P. Vanraes acknowledges funding by ASML for the project “Computational simulation of plasma etching of trench structures.” P. Vanraes wishes to thank Violeta Georgieva and Stefan Tinck for the fruitful discussions on the HPEM code, Yu-Ru Zhang for an example of the CCP reactor code, and Karel Venken for his technical help with the server maintenance and use. P. Vanraes and A. Bogaerts want to express their gratitude to Mark J. Kushner (University of Michigan) for the sharing of the HPEM and MCFPM codes and for the interesting exchange of views. S. P. Venugopalan wishes to thank Sander Wuister, Coen Verschuren, Michael Kubis, Mohammad Kamali, Approved Most recent IF: 13.667  
  Call Number PLASMANT @ plasmant @c:irua:183287 Serial 6814  
Permanent link to this record
 

 
Author Zhang, Y.; Wang, H.-yu; Jiang, W.; Bogaerts, A. url  doi
openurl 
  Title Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 17 Issue 17 Pages 083056  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The plasma behavior in a parallel-plate dielectric barrier discharge (DBD) is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model, comparing for the first time an unpacked (empty) DBD with a packed bed DBD, i.e., a DBD filled with dielectric spheres in the gas gap. The calculations are performed in air, at atmospheric pressure. The discharge is powered by a pulse with a voltage amplitude of −20 kV. When comparing the packed and unpacked DBD reactors with the same dielectric barriers, it is clear that the presence of the dielectric packing leads to a transition in discharge behavior from a combination of negative streamers and unlimited surface streamers on the bottom dielectric surface to a combination of predominant positive streamers and limited surface discharges on the dielectric surfaces of the beads and plates. Furthermore, in the packed bed DBD, the electric field is locally enhanced inside the dielectric material, near the contact points between the beads and the plates, and therefore also in the plasma between the packing beads and between a bead and the dielectric wall, leading to values of $4\times {10}  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000360957800003 Publication Date 2015-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.786; 2015 IF: 3.558  
  Call Number c:irua:127650 Serial 3777  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. doi  openurl
  Title Modeling the growth of SWNTs and graphene on the atomic scale Type A1 Journal article
  Year 2012 Publication ECS transactions Abbreviated Journal  
  Volume 45 Issue 4 Pages 73-78  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The possibility of application of nanomaterials is determined by our ability to control the properties of the materials, which are ultimately determined by their structure and hence their growth processes. We employ hybrid molecular dynamics / Monte Carlo (MD/MC) simulations to explore the growth of SWNTs and graphene on nickel as a catalyst, with the specific goal of unraveling the growth mechanisms. While the general observations are in agreement with the literature, we find a number of interesting phenomena to be operative which are crucial for the growth, and which are not accessible by MD simulations alone due to the associated time scale. Specifically, we observe metal mediated healing and restructuring processes to take place, reorganizing the carbon network during the initial nucleation step. In the case of carbon nanotube growth, this leads to the growth of tubes with a determinable chirality. In the case of graphene formation, we find that graphene is only formed at temperatures above 700 K. These results are of importance for understanding the growth mechanisms of these carbon nanomaterials on the fundamental level.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical Society Place of Publication Pennington Editor  
  Language Wos 000316890000008 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1938-6737;1938-5862; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:108535 Serial 2144  
Permanent link to this record
 

 
Author Lindner, H.; Autrique, D.; Pisonero, J.; Günther, D.; Bogaerts, A. doi  openurl
  Title Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry Type A1 Journal article
  Year 2010 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 25 Issue 3 Pages 295-304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The present study analyses a specific laser ablation cell, the High Efficiency Aerosol Dispersion (HEAD) cell (see J. Pisonero et al., J. Anal. At. Spectrom., 2006, 21, 922931), by means of computational fluid dynamics (CFD) simulations. However, this cell consists of different modular parts, therefore, the results are probably of interest for the further development of other ablation cells. In the HEAD cell, the ablation spot is positioned below an orifice in the ceiling of the sample chamber. The particle transport through this orifice has been analysed for a ceiling height of 0.8 mm. The critical velocity for the onset of particle losses was found to be independent on the ejection angle at the crater spot. The deceleration of the particles can be described as the stopping in an effectively steady gas. Particle losses were negligible in this modular part of the cell at the evaluated laser ablation conditions. The transport efficiency through the Venturi chamber was investigated for different sample gas flow rates. In this case, it was found that small particles were predominantly lost at low flow rates, the large particles at higher flow rates. Making use of the simulation results, it was possible to design a modification of the HEAD cell that results in extremely short calculated washout times. The simulations yielded a signal of less than 10 ms, which was produced by more than 99% of the introduced mass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000274961600005 Publication Date 2010-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 16 Open Access  
  Notes Approved Most recent IF: 3.379; 2010 IF: 4.372  
  Call Number UA @ lucian @ c:irua:80871 Serial 2403  
Permanent link to this record
 

 
Author Autrique, D.; Clair, G.; L'Hermite, D.; Alexiades, V.; Bogaerts, A.; Rethfeld, B. pdf  doi
openurl 
  Title The role of mass removal mechanisms in the onset of ns-laser induced plasma formation Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 2 Pages 023301-23310  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The present study focuses on the role of mass removal mechanisms in ns-laser ablation. A copper sample is placed in argon, initially set at standard pressure and temperature. Calculations are performed for a 6 ns laser pulse with a wavelength of 532 nm and laser fluences up to 10 J/cm2. The transient behavior in and above the copper target is described by a hydrodynamic model. Transmission profiles and ablation depths are compared with experimental results and similar trends are found. Our calculations reveal an interesting self-inhibiting mechanism: volumetric mass removal in the supercritical region triggers plasma shielding and therefore stops proceeding. This self-limiting process indicates that volumetric mass removal does not necessarily result in large ablation depths.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000321761600006 Publication Date 2013-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 31 Open Access  
  Notes Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109237 Serial 2915  
Permanent link to this record
 

 
Author Okhrimovskyy, A.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Electron anisotropic scattering in gases: a formula for Monte Carlo simulations Type A1 Journal article
  Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 65 Issue Pages 037402  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The purpose of this Brief Report is to point out the mistake in a formula for anisotropic electron scattering, previously published in Phys. Rev. A 41, 1112 (1990), which is widely used in Monte Carlo models of gas discharges. Anisotropic electron scattering is investigated based on the screened Coulomb potential between electrons and neutral atoms. The approach is also applied for electron scattering by nonpolar neutral molecules. Differential cross sections for electron scattering by Ar, N2, and CH4 are constructed on the basis of momentum and integrated cross sections. The formula derived in this paper is useful for Monte Carlo simulations of gas discharges.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000174549000088 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 57 Open Access  
  Notes Approved Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:40179 Serial 909  
Permanent link to this record
 

 
Author Tennyson, J.; Mohr, S.; Hanicinec, M.; Dzarasova, A.; Smith, C.; Waddington, S.; Liu, B.; Alves, L.L.; Bartschat, K.; Bogaerts, A.; Engelmann, S.U.; Gans, T.; Gibson, A.R.; Hamaguchi, S.; Hamilton, K.R.; Hill, C.; O’Connell, D.; Rauf, S.; van ’t Veer, K.; Zatsarinny, O. url  doi
openurl 
  Title The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 9 Pages 095020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The Quantemol database (QDB) provides cross sections and rates of processes important for plasma models; heavy particle collisions (chemical reactions) and electron collision processes are considered. The current version of QDB has data on 28 917 processes between 2485 distinct species plus data for surface processes. These data are available via a web interface or can be delivered directly to plasma models using an application program interface; data are available in formats suitable for direct input into a variety of popular plasma modeling codes including HPEM, COMSOL, ChemKIN, CFD-ACE+, and VisGlow. QDB provides ready assembled plasma chemistries plus the ability to build bespoke chemistries. The database also provides a Boltzmann solver for electron dynamics and a zero-dimensional model. Thesedevelopments, use cases involving O<sub>2</sub>, Ar/NF<sub>3</sub>, Ar/NF<sub>3</sub>/O<sub>2</sub>, and He/H<sub>2</sub>O/O<sub>2</sub>chemistries, and plans for the future are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000895762200001 Publication Date 2022-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes Engineering and Physical Sciences Research Council, EP/N509577/1 ; Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Science and Technology Facilities Council, ST/K004069/1 ; National Science Foundation, OAC-1834740 ; Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:192845 Serial 7245  
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A. doi  openurl
  Title Molecular dynamics simulations of the sticking and etch behavior of various growth species of (ultra)nanocrystalline diamond films Type A1 Journal article
  Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos  
  Volume 14 Issue 7/8 Pages 213-223  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The reaction behavior of species that may affect the growth of ultrananocrystal line and nanocrystalline diamond ((U)NCD) films is investigated by means of molecular dynamics simulations. Impacts of CHx (x = 0 – 4), C2Hx (x=0-6), C3Hx (x=0-2), C4Hx (x = 0 – 2), H, and H-2 on clean and hydrogenated diamond (100)2 x 1 and (111) 1 x 1 surfaces at two different substrate temperatures are simulated. We find that the different bonding structures of the two surfaces cause different temperature effects on the sticking efficiency. These results predict a temperature-dependent ratio of diamond (100) and (111) growth. Furthermore, predictions of which are the most important hydrocarbon species for (U)NCD growth are made.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000259302700008 Publication Date 2008-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.333 Times cited 25 Open Access  
  Notes Approved Most recent IF: 1.333; 2008 IF: 1.483  
  Call Number UA @ lucian @ c:irua:70001 Serial 2177  
Permanent link to this record
 

 
Author Borovinskaya, O.; Aghaei, M.; Flamigni, L.; Hattendorf, B.; Tanner, M.; Bogaerts, A.; Günther, D. pdf  doi
openurl 
  Title Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis Type A1 Journal article
  Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 29 Issue 2 Pages 262-271  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The reproducible temporal separation of ion signals generated from a single multi-element droplet, observed in previous studies, was investigated in detail in this work using an ICPTOFMS with high temporal resolution. It was shown that the signal peak intensities of individual elements temporally shift relative to each other only for droplets moving through the plasma off-axis. The magnitude of these shifts correlated with the vaporization temperatures of the analytes and depended on the radial position of the droplets as well as on the thermal properties and velocity profiles of the carrier gases of the ICP. The occurrence of the signal shifting was explained by a spatial separation of analytes already present in the vapor phase in the ICP from a yet unvaporized residue of the droplet. This separation is most likely driven by anisotropic diffusion of vaporized analytes towards the plasma axis and a radial velocity gradient. The proposed explanation is supported by modeling of the gas velocities inside the ICP and imaging of the atomic and ionic emissions produced from single droplets, whose patterns were sloping towards the center of the torch. The effects observed in these studies are important not only for the fundamental understanding of analyteplasma interactions but have also a direct impact on the signal intensities and stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000329934000006 Publication Date 2013-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.379; 2014 IF: 3.466  
  Call Number UA @ lucian @ c:irua:112897 Serial 697  
Permanent link to this record
 

 
Author Freund, E.; Spadola, C.; Schmidt, A.; Privat-Maldonado, A.; Bogaerts, A.; von Woedtke, T.; Weltmann, K.-D.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A.; Bekeschus, S. pdf  url
doi  openurl
  Title Risk Evaluation of EMT and Inflammation in Metastatic Pancreatic Cancer Cells Following Plasma Treatment Type A1 Journal article
  Year 2020 Publication Frontiers in physics Abbreviated Journal Front. Phys.  
  Volume 8 Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The requirements for new technologies to serve as anticancer agents go far beyond their toxicity potential. Novel applications also need to be safe on a molecular and patient level. In a broader sense, this also relates to cancer metastasis and inflammation. In a previous study, the toxicity of an atmospheric pressure argon plasma jet in four human pancreatic cancer cell lines was confirmed and plasma treatment did not promote metastasis in vitro and in ovo. Here, these results are extended by additional types of analysis and new models to validate and define on a molecular level the changes related to metastatic processes in pancreatic cancer cells following plasma treatment in vitro and in ovo. In solid tumors that were grown on the chorion-allantois membrane of fertilized chicken eggs (TUM-CAM), plasma treatment induced modest to profound apoptosis in the tissues. This, however, was not associated with a change in the expression levels of adhesion molecules, as shown using immunofluorescence of ultrathin tissue sections. Culturing of the cells detached from these solid tumors for 6d revealed a similar or smaller total growth area and expression of ZEB1, a transcription factor associated with cancer metastasis, in the plasma-treated pancreatic cancer tissues. Analysis of in vitro and in ovo supernatants of 13 different cytokines and chemokines revealed cell line-specific effects of the plasma treatment but a noticeable increase of, e.g., growth-promoting interleukin 10 was not observed. Moreover, markers of epithelial-to-mesenchymal transition (EMT), a metastasis-promoting cellular program, were investigated. Plasma-treated pancreatic cancer cells did not present an EMT-profile. Finally, a realistic 3D tumor spheroid co-culture model with pancreatic stellate cells was employed, and the invasive properties in a gel-like cellular matrix were investigated. Tumor outgrowth and spread was similar or decreased in the plasma conditions. Altogether, these results provide valuable insights into the effect of plasma treatment on metastasis-related properties of cancer cells and did not suggest EMT-promoting effects of this novel cancer therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000581086900001 Publication Date 2020-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access  
  Notes We thankfully acknowledge the technical support by Felix Niessner and Antje Janetzko. We also thank Jonas Van Audenaerde and Evelien Smits for generating the transduced cell lines used in this study. Approved Most recent IF: 3.1; 2020 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:172448 Serial 6425  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title High Coke Resistance of a TiO2Anatase (001) Catalyst Surface during Dry Reforming of Methane Type A1 Journal Article
  Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 17 Pages 9389-9396  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) The resistance of a TiO2 anatase (001) surface to coke formation was studied in the context of dry reforming of methane using density functional theory (DFT) calculations. As carbon atoms act as precursors for coke formation, the resistance to coke formation can be measured by the carbon coverage of the surface. This is related to the stability of different CHx (x = 0−3) species and their rate of hydrogenation and dehydrogenation on the TiO2 surface. Therefore, we studied the reaction mechanisms and their corresponding rates as a function of the temperature for the dehydrogenation of the species on the surface. We found that the stabilities of C and CH are significantly lower than those of CH3 and CH2. The hydrogenation rates of the different species are significantly higher than the dehydrogenation rates in a temperature range of 300−1000 K. Furthermore, we found that dehydrogenation of CH3, CH2, and CH will only occur at appreciable rates starting from 600, 900, and 900 K, respectively. On the basis of these results, it is clear that the anatase (001) surface has a high coke resistance, and it is thus not likely that the surface will become poisoned by coke during dry reforming of methane. As the rate limiting step in dry reforming is the dissociative adsorption of CH4, we studied an alternative approach to thermal catalysis. We found that the temperature threshold for dry reforming is at least 700 K. This threshold temperature may be lowered by the use of plasma-catalysis, where the appreciable rates of adsorption of plasma-generated CHx radicals result in bypassing the rate limiting step of the reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431723700014 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 1 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N ; Onderzoeksfonds, Universiteit Antwerpen, 32249 ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:151529c:irua:152816 Serial 5000  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: