toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gao, M.; Zhang, Y.; Wang, H.; Guo, B.; Zhang, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges Type A1 Journal article
  Year 2018 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 8 Issue 6 Pages 248  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We investigated the mode transition from volume to surface discharge in a packed bed dielectric barrier discharge reactor by a two-dimensional particle-in-cell/Monte Carlo collision method. The calculations are performed at atmospheric pressure for various driving voltages and for gas mixtures with different N2 and O2 compositions. Our results reveal that both a change of the driving voltage and gas mixture can induce mode transition. Upon increasing voltage, a mode transition from hybrid (volume+surface) discharge to pure surface discharge occurs, because the charged species can escape much more easily to the beads and charge the bead surface due to the strong electric field at high driving voltage. This significant surface charging will further enhance the tangential component of the electric field along the dielectric bead surface, yielding surface ionization waves (SIWs). The SIWs will give rise to a high concentration of reactive species on the surface, and thus possibly enhance the surface activity of the beads, which might be of interest for plasma catalysis. Indeed, electron impact excitation and ionization mainly take place near the bead surface. In addition, the propagation speed of SIWs becomes faster with increasing N2 content in the gas mixture, and slower with increasing O2 content, due to the loss of electrons by attachment to O2

molecules. Indeed, the negative O-2 ion density produced by electron impact attachment is much higher than the electron and positive O+2 ion density. The different ionization rates between N2 and O2 gases will create different amounts of electrons and ions on the dielectric bead surface, which might also have effects in plasma catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436128600027 Publication Date 2018-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 7 Open Access OpenAccess  
  Notes The authors are very grateful to Wei Jiang for the useful discussions on the particle-incell/ Monte-Carlo collision model. Approved Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:152171 Serial 4991  
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A. pdf  doi
openurl 
  Title Formation of single layer graphene on nickel under far-from-equilibrium high flux conditions Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 16 Pages 7250-7255  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We investigate the theoretical possibility of single layer graphene formation on a nickel surface at different substrate temperatures under far-from-equilibrium high precursor flux conditions, employing state-of-the-art hybrid reactive molecular dynamics/uniform acceptance force bias Monte Carlo simulations. It is predicted that under these conditions, the formation of a single layer graphene-like film may proceed through a combined depositionsegregation mechanism on a nickel substrate, rather than by pure surface segregation as is typically observed for metals with high carbon solubility. At 900 K and above, nearly continuous graphene layers are obtained. These simulations suggest that single layer graphene deposition is theoretically possible on Ni under high flux conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000322315600019 Publication Date 2013-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 25 Open Access  
  Notes Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:109249 Serial 1264  
Permanent link to this record
 

 
Author Trenchev, G.; Nikiforov, A.; Wang, W.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Atmospheric pressure glow discharge for CO2 conversion : model-based exploration of the optimum reactor configuration Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 362 Issue 362 Pages 830-841  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We investigate the performance of an atmospheric pressure glow discharge (APGD) reactor for CO2 conversion in three different configurations, through experiments and simulations. The first (basic) configuration utilizes the well-known pin-to-plate design, which offers a limited conversion. The second configuration improves the reactor performance by employing a vortex-flow generator. The third, “confined” configuration is a complete redesign of the reactor, which encloses the discharge in a limited volume, significantly surpassing the conversion rate of the other two designs. The plasma properties are investigated using an advanced plasma model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457863500084 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 4 Open Access Not_Open_Access: Available from 15.10.2019  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157459 Serial 5269  
Permanent link to this record
 

 
Author Biondo, O.; Hughes, A.; van der Steeg, A.; Maerivoet, S.; Loenders, B.; van Rooij, G.; Bogaerts, A. pdf  doi
openurl 
  Title Power concentration determined by thermodynamic properties in complex gas mixtures : the case of plasma-based dry reforming of methane Type A1 Journal article
  Year 2023 Publication Plasma sources science and technology Abbreviated Journal  
  Volume 32 Issue 4 Pages 045001-45020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We investigate discharge contraction in a microwave plasma at sub-atmospheric pressure, operating in CO2 and CO2/CH4 mixtures. The rise of the electron number density with plasma contraction intensifies the gas heating in the core of the plasma. This, in turn, initiates fast core-periphery transport and defines the rate of thermal chemistry over plasma chemistry. In this context, power concentration describes the overall mechanism including plasma contraction and chemical kinetics. In a complex chemistry such as dry reforming of methane, transport of reactive species is essential to define the performance of the reactor and achieve the desired outputs. Thus, we couple experimental observations and thermodynamic calculations for model validation and understanding of reactor performance. Adding CH4 alters the thermodynamic properties of the mixture, especially the reactive component of the heat conductivity. The increase in reactive heat conductivity increases the pressure at which plasma contraction occurs, because higher rates of gas heating are required to reach the same temperature. In addition, we suggest that the predominance of heat conduction over convection is a key condition to observe the effect of heat conductivity on gas temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000963579500001 Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.8; 2023 IF: 3.302  
  Call Number UA @ admin @ c:irua:196044 Serial 8397  
Permanent link to this record
 

 
Author Martens, T.; Mihailova, D.; van Dijk, J.; Bogaerts, A. doi  openurl
  Title Theoretical characterization of an atmospheric pressure glow discharge used for analytical spectrometry Type A1 Journal article
  Year 2009 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 81 Issue 21 Pages 9096-9108  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We have investigated the plasma processes in an atmospheric pressure glow discharge (APGD) in He used for analytical spectrometry by means of fluid and Monte Carlo (MC) simulations. Typical results include the potential and electric field distributions in the plasma, the density profiles of the various plasma species throughout the discharge, the mean electron energy, as well as the rates of the various collision processes in the plasma, and the relative importance of the different production and loss rates for the various species. The similarities and differences with low-pressure glow discharges are discussed. The main differences are a very small cathode dark space region and a large positive column as well as the dominant role of molecular ions. Some characteristic features of the APGD, such as the occurrence of the different spatial zones in the discharge, are illustrated, with links to experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000276191900062 Publication Date 2009-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 15 Open Access  
  Notes Approved Most recent IF: 6.32; 2009 IF: 5.214  
  Call Number UA @ lucian @ c:irua:79554 Serial 3604  
Permanent link to this record
 

 
Author Zheng, J.; Zhang, H.; Lv, J.; Zhang, M.; Wan, J.; Gerrits, N.; Wu, A.; Lan, B.; Wang, W.; Wang, S.; Tu, X.; Bogaerts, A.; Li, X. url  doi
openurl 
  Title Enhanced NH3Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2 Type A1 Journal Article
  Year 2023 Publication JACS Au Abbreviated Journal JACS Au  
  Volume 3 Issue 5 Pages 1328-1336  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (down) We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2−NOx−NH3 pathway. To efficiently reduce NO2− to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h−1 cm−2 at −0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3−1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2− to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000981779300001 Publication Date 2023-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2691-3704 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (51976191, 5227060056, 52276214) and the National Key Technologies R&D Program of China (2018YFE0117300). N.G. was financially supported through an NWO Rubicon Grant (019.202EN.012). X.T. acknowl- edges the support of the Engineering and Physical Sciences Research Council (EP/X002713/1). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:196761 Serial 8792  
Permanent link to this record
 

 
Author Albrechts, M.; Tsonev, I.; Bogaerts, A. pdf  url
doi  openurl
  Title Investigation of O atom kinetics in O2plasma and its afterglow Type A1 Journal Article
  Year 2024 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume 33 Issue 4 Pages 045017  
  Keywords A1 Journal Article; oxygen plasma, pseudo-1D plug-flow kinetic model, O atoms, low-pressure validation, atmospheric pressure microwave torch; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (down) We have developed a comprehensive kinetic model to study the O atom kinetics in an O<sub>2</sub>plasma and its afterglow. By adopting a pseudo-1D plug-flow formalism within the kinetic model, our aim is to assess how far the O atoms travel in the plasma afterglow, evaluating its potential as a source of O atoms for post-plasma gas conversion applications. Since we could not find experimental data for pure O<sub>2</sub>plasma at atmospheric pressure, we first validated our model at low pressure (1–10 Torr) where very good experimental data are available. Good agreement between our model and experiments was achieved for the reduced electric field, gas temperature and the densities of the dominant neutral species, i.e. O<sub>2</sub>(a), O<sub>2</sub>(b) and O. Subsequently, we confirmed that the chemistry set is consistent with thermodynamic equilibrium calculations at atmospheric pressure. Finally, we investigated the O atom densities in the O<sub>2</sub>plasma and its afterglow, for which we considered a microwave O<sub>2</sub>plasma torch, operating at a pressure between 0.1 and 1 atm, for a flow rate of 20 slm and an specific energy input of 1656 kJ mol<sup>−1</sup>. Our results show that for both pressure conditions, a high dissociation degree of ca. 92% is reached within the discharge. However, the O atoms travel much further in the plasma afterglow for<italic>p</italic>= 0.1 atm (9.7 cm) than for<italic>p</italic>= 1 atm (1.4 cm), attributed to the longer lifetime (3.8 ms at 0.1 atm vs 1.8 ms at 1 atm) resulting from slower three-body recombination kinetics, as well as a higher volumetric flow rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001209453500001 Publication Date 2024-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access  
  Notes This research was supported by the Horizon Europe Framework Program ‘Research and Innovation Actions’ (RIA), Project CANMILK (Grant No. 101069491). Approved Most recent IF: 3.8; 2024 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:205920 Serial 9125  
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A. pdf  url
doi  openurl
  Title Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations Type A1 Journal article
  Year 2016 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 88 Issue 88 Pages 8005-8018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization.  
  Address Research Group PLASMANT, Chemistry Department, University of Antwerp , Universiteitsplein 1, 2610 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000381654800020 Publication Date 2016-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 9 Open Access  
  Notes The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO), Grant Number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @ c:irua:135644 Serial 4293  
Permanent link to this record
 

 
Author Kelly, S.; Verheyen, C.; Cowley, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma Type A1 Journal article
  Year 2022 Publication Chem Abbreviated Journal Chem  
  Volume 8 Issue 10 Pages 2797-2816  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We explorethepotentialofmicrowave(MW)-plasma-based in situ

utilizationoftheMartianatmospherewithafocusonthenovelpos-

sibilityoffixingN2 forfertilizerproduction. Conversioninasimulant

plasma (i.e., 96% CO2, 2% N2, and 2% Ar),performedunderen-

ergyconditionssimilartothoseoftheMarsOxygen In Situ Resource

UtilizationExperiment(MOXIE),currentlyonboardNASA’sPerse-

verancerover,demonstratesthatO/O2 formedthroughCO2 dissociation

facilitatesthefixationoftheN2 fractionviaoxidationtoNOx.

PromisingproductionratesforO2, CO,andNOx of 47.0,76.1,and

1.25g/h,respectively,arerecordedwithcorrespondingenergy

costs of0.021,0.013,and0.79kWh/g,respectively.Notably,O2

productionratesare 30 timeshigherthanthosedemonstrated

by MOXIE,whiletheNOx production raterepresentsan 7% fixa-

tionoftheN2 fraction presentintheMartian atmosphere.MW-

plasma-basedconversionthereforeshowsgreatpotentialasan in

situ resourceutilization(ISRU)technologyonMarsinthatitsimulta-

neouslyfixesN2 and producesO2.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000875346600005 Publication Date 2022-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 23.5 Times cited Open Access OpenAccess  
  Notes the Euro- pean Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant no. GoF9618n and EOS no. 30505023). C.V. was supported by a FWO aspirant PhD fellowship (grant no. 1184820N). The calculations were per- formed with the Turing HPC infrastructure at the CalcUA core facility of the Univer- siteit Antwerpen (Uantwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish government (department EWI), and Uantwerpen. Approved Most recent IF: 23.5  
  Call Number PLASMANT @ plasmant @c:irua:192174 Serial 7243  
Permanent link to this record
 

 
Author Kelly, S.; Mercer, E.; Gorbanev, Y.; Fedirchyk, I.; Verheyen, C.; Werner, K.; Pullumbi, P.; Cowley, A.; Bogaerts, A. url  doi
openurl 
  Title Plasma-based conversion of martian atmosphere into life-sustaining chemicals: The benefits of utilizing martian ambient pressure Type A1 Journal Article
  Year 2024 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization  
  Volume 80 Issue Pages 102668  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We explored the potential of plasma-based In-Situ Resource Utilization (ISRU) for Mars through the conversion of Martian atmosphere (~96% CO2, 2% N2, and 2% Ar) into life-sustaining chemicals. As the Martian surface pressure is about 1% of the Earth’s surface pressure, it is an ideal environment for plasma-based gas conversion using microwave reactors. At 1000 W and 10 Ln/min (normal liters per minute), we produced ~76 g/h of O2 and ~3 g/h of NOx using a 2.45 GHz waveguided reactor at 25 mbar, which is ~3.5 times Mars ambient pressure. The energy cost required to produce O2 was ~0.013 kWh/g, which is very promising compared to recently concluded MOXIE experiments on the Mars surface. This marks a crucial step towards realizing the extension of human exploration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001156084300001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.7 Times cited Open Access Not_Open_Access  
  Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp. Approved Most recent IF: 7.7; 2024 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:202389 Serial 8986  
Permanent link to this record
 

 
Author Mehta, P.; Barboun, P.M.; Engelmann, Y.; Go, D.B.; Bogaerts, A.; Schneider, W.F.; Hicks, J.C. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 10 Issue 12 Pages 6726-6734  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We explore the consequences of nonthermal plasma-activation on product yields in catalytic ammonia synthesis, a reaction that is equilibrium-limited at elevated temperatures. We employ a minimal microkinetic model that incorporates the influence of plasma-activation on N2 dissociation rates to predict NH3 yields into and across the equilibrium-limited regime. NH3 yields are predicted to exceed bulk thermodynamic equilibrium limits on materials that are thermal-rate-limited by N2 dissociation. In all cases, yields revert to bulk equilibrium at temperatures at which thermal reaction rates exceed plasma-activated ones. Beyond-equilibrium NH3 yields are observed in a packed bed dielectric barrier discharge reactor and exhibit sensitivity to catalytic material choice in a way consistent with model predictions. The approach and results highlight the opportunity to exploit synergies between nonthermal plasmas and catalysts to affect transformations at conditions inaccessible through thermal routes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543663800015 Publication Date 2020-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access  
  Notes University of Notre Dame; Basic Energy Sciences, DE-SC-0016543 ; Air Force Office of Scientific Research, FA9550-18-1- 0157 ; This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Sustainable Ammonia Synthesis Program, under Award DE-SC-0016543 and by the U.S. Air Force Office of Scientific Research, under Award FA9550-18-1-0157. P.M. acknowledges support through the Eilers Graduate Fellowship for Energy Related Research from the University of Notre Dame. Computational resources were provided by the Notre Dame Center for Research Computing. We thank the Notre Dame Energy Materials Characterization Facility and the Notre Dame Integrated Imaging Facility for the use of the X-ray diffractometer and the transmission electron microscope, respectively. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number PLASMANT @ plasmant @c:irua:170713 Serial 6405  
Permanent link to this record
 

 
Author Van Boxem, W.; Van der Paal, J.; Gorbanev, Y.; Vanuytsel, S.; Smits, E.; Dewilde, S.; Bogaerts, A. url  doi
openurl 
  Title Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 1 Pages 16478  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We evaluate the anti-cancer capacity of plasma-treated PBS (pPBS), by measuring the concentrations of NO2 − and H2O2 in pPBS, treated with a plasma jet, for different values of gas flow rate, gap and plasma treatment time, as well as the effect of pPBS on cancer cell cytotoxicity, for three different glioblastoma cancer cell lines, at exactly the same plasma treatment conditions. Our experiments reveal that pPBS is cytotoxic for all conditions investigated. A small variation in gap between plasma jet and liquid surface (10 mm vs 15 mm) significantly affects the chemical composition of pPBS and its anti-cancer capacity, attributed to the occurrence of discharges onto the liquid. By correlating the effect of gap, gas flow rate and plasma treatment time on the chemical composition and anti-cancer capacity of pPBS, we may conclude that H2O2 is a more important species for the anti-cancer capacity of pPBS than NO2 −. We also used a 0D model, developed for plasma-liquid interactions, to elucidate the most important mechanisms for the generation of H2O2 and NO2 −. Finally, we found that pPBS might be more suitable for practical applications in a clinical setting than (commonly used) plasma-activated media (PAM), because of its higher stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416398100028 Publication Date 2017-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 40 Open Access OpenAccess  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant No. 11U5416N), the Research Council of the University of Antwerp and the European Marie Skłodowska-Curie Individual Fellowship “LTPAM” within Horizon2020 (Grant No. 743151). Finally, we would like to thank P. Attri and A. Privat Maldonado for the valuable discussions. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:147192 Serial 4766  
Permanent link to this record
 

 
Author Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F. url  doi
openurl 
  Title Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
  Year 2022 Publication Catalysis Science & Technology Abbreviated Journal Catal Sci Technol  
  Volume 12 Issue 22 Pages 6676-6686  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865542600001 Publication Date 2022-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5  
  Call Number UA @ admin @ c:irua:191389 Serial 7185  
Permanent link to this record
 

 
Author Michiels, R.; Engelmann, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis for CO2Hydrogenation: Unlocking New Pathways toward CH3OH Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 47 Pages 25859-25872  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract (down) We developed a microkinetic model to reveal the effects of plasma-generated radicals, intermediates, and vibrationally excited species on the catalytic hydrogenation of CO2 to CH3OH on a Cu(111) surface. As a benchmark, we first present the mechanisms of thermal catalytic CH3OH formation. Our model predicts that the reverse water-gas shift reaction followed by CO hydrogenation, together with the formate path, mainly contribute to CH3OH formation in thermal catalysis. Adding plasma-generated radicals and intermediates results in a higher CH3OH turnover frequency (TOF) by six to seven orders of magnitude, showing the potential of plasma-catalytic CO2 hydrogenation into CH3OH, in accordance with the literature. In addition, CO2 vibrational excitation further increases the CH3OH TOF, but the effect is limited due to relatively low vibrational temperatures under typical plasma catalysis conditions. The predicted increase in CH3OH formation by plasma catalysis is mainly attributed to the increased importance of the formate path. In addition, the conversion of plasma-generated CO to HCO* and subsequent HCOO* or H2CO* formation contribute to CH3OH formation. Both pathways bypass the HCOO* formation from CO2, which is the main bottleneck in the process. Hence, our model points toward the important role of CO, but also O, OH, and H radicals, as they influence the reactions that consume CO2 and CO. In addition, our model reveals that the H pressure should not be smaller than ca. half of the O pressure in the plasma as this would cause O* poisoning, which would result in very small product TOFs. Thus, plasma conditions should be targeted with a high CO and H content as this is favorable for CH3OH formation, while the O content should be minimized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595545800023 Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access: Available from 15.07.2021  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1114921N ; H2020 European Research Council, 810182 ; We acknowledge the financial support from the Fund for Scientific Research (FWO-Vlaanderen; grant ID 1114921N) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 − SCOPE ERC Synergy project) as well as from the DOC-PRO3 and the TOPBOF projects of the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:173864 Serial 6443  
Permanent link to this record
 

 
Author Aghaei, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Flowing Atmospheric Pressure Afterglow for Ambient Ionization: Reaction Pathways Revealed by Modeling Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 17 Pages 6620-6628  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We describe the plasma chemistry in a helium flowing atmospheric pressure afterglow (FAPA) used for analytical spectrometry, by means of a quasione-dimensional (1D) plasma chemical kinetics model. We study the effect of typical impurities present in the feed gas, as well as the afterglow in ambient humid air. The model provides the species density profiles in the discharge and afterglow regions and the chemical pathways. We demonstrate that H, N, and O atoms are formed in the discharge region, while the dominant reactive neutral species in the afterglow are O3 and NO. He* and He2* are responsible for Penning ionization of O2, N2, H2O, H2, and N, and especially O and H atoms. Besides, He2+ also contributes to ionization of N2, O2, H2O, and O through charge transfer reactions. From the pool of ions created in the discharge, NO+ and (H2O)3H+ are the dominant ions in the afterglow. Moreover, negatively charged clusters, such as NO3H2O− and NO2H2O−, are formed and their pathway is discussed as well. Our model predictions are in line with earlier observations in the literature about the important reagent ions and provide a comprehensive overview of the underlying pathways. The model explains in detail why helium provides a high analytical sensitivity because of high reagent ion formation by both Penning ionization and charge transfer. Such insights are very valuable for improving the analytical performance of this (and other) ambient desorption/ionization source(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648505900008 Publication Date 2021-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 6713 ; The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO) grant number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the UA. The authors also thank J. T. Shelley for providing experimental data for the gas velocity behind the anode disk and before the mass spectrometer interface, to validate our model. Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @c:irua:178126 Serial 6762  
Permanent link to this record
 

 
Author Zhang, Y.; Jiang, W.; Zhang, Q.Z.; Bogaerts, A. pdf  doi
openurl 
  Title Computational study of plasma sustainability in radio frequency micro-discharges Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 19 Pages 193301-193311  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) We apply an implicit particle-in-cell Monte-Carlo (PIC-MC) method to study a radio-frequency argon microdischarge at steady state in the glow discharge limit, in which the microdischarge is sustained by secondary electron emission from the electrodes. The plasma density, electron energy distribution function (EEDF), and electron temperature are calculated in a wide range of operating conditions, including driving voltage, microdischarge gap, and pressure. Also, the effect of gap size scaling (in the range of 50-1000 μm) on the plasma sustaining voltage and peak electron density at atmospheric pressure is examined, which has not been explored before. In our simulations, three different EEDFs, i.e., a so-called three temperature hybrid mode, a two temperature α mode, and a two temperature γ mode distribution, are identified at different gaps and voltages. The maximum sustaining voltage to avoid a transition from the glow mode to an arc is predicted, as well as the minimum sustaining voltage for a steady glow discharge. Our calculations elucidate that secondary electrons play an essential role in sustaining the discharge, and as a result the relationship between breakdown voltage and gap spacing is far away from the Paschen law at atmospheric pressure.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000336920200010 Publication Date 2014-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:116948 Serial 458  
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A. pdf  url
doi  openurl
  Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 481 Issue Pages 148684  
  Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (down) Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001168999200001 Publication Date 2024-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access  
  Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993  
Permanent link to this record
 

 
Author Biondo, O.; Fromentin, C.; Silva, T.; Guerra, V.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Insights into the limitations to vibrational excitation of CO2: validation of a kinetic model with pulsed glow discharge experiments Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 7 Pages 074003  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Vibrational excitation represents an efficient channel to drive the dissociation of CO<sub>2</sub>in a non-thermal plasma. Its viability is investigated in low-pressure pulsed discharges, with the intention of selectively exciting the asymmetric stretching mode, leading to stepwise excitation up to the dissociation limit of the molecule. Gas heating is crucial for the attainability of this process, since the efficiency of vibration–translation (V–T) relaxation strongly depends on temperature, creating a feedback mechanism that can ultimately thermalize the discharge. Indeed, recent experiments demonstrated that the timeframe of V–T non-equilibrium is limited to a few milliseconds at ca. 6 mbar, and shrinks to the<italic>μ</italic>s-scale at 100 mbar. With the aim of backtracking the origin of gas heating in pure CO<sub>2</sub>plasma, we perform a kinetic study to describe the energy transfers under typical non-thermal plasma conditions. The validation of our kinetic scheme with pulsed glow discharge experiments enables to depict the gas heating dynamics. In particular, we pinpoint the role of vibration–vibration–translation relaxation in redistributing the energy from asymmetric to symmetric levels of CO<sub>2</sub>, and the importance of collisional quenching of CO<sub>2</sub>electronic states in triggering the heating feedback mechanism in the sub-millisecond scale. This latter finding represents a novelty for the modelling of low-pressure pulsed discharges and we suggest that more attention should be paid to it in future studies. Additionally, O atoms convert vibrational energy into heat, speeding up the feedback loop. The efficiency of these heating pathways, even at relatively low gas temperature and pressure, underpins the lifetime of V–T non-equilibrium and suggests a redefinition of the optimal conditions to exploit the ‘ladder-climbing’ mechanism in CO<sub>2</sub>discharges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000839466500001 Publication Date 2022-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes Fundação para a Ciência e a Tecnologia, PLA/0076/2021 ; H2020 Marie Skłodowska-Curie Actions, 813393 ; This research was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). V Guerra and T Silva were partially funded by the Portuguese ‘FCT-Fundação para a Ciência e a Tecnologia’, under Projects UIDB/50010/2020, UIDP/50010/2020, PTDC/FISPLA/1616/2021 and EXPL/FIS-PLA/0076/2021. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:190008 Serial 7106  
Permanent link to this record
 

 
Author Andersen, Ja.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Ammonia decomposition in a dielectric barrier discharge plasma: Insights from experiments and kinetic modeling Type A1 Journal article
  Year 2023 Publication Chemical engineering science Abbreviated Journal  
  Volume 271 Issue Pages 118550  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Utilizing ammonia as a storage medium for hydrogen is currently receiving increased attention. A possible method to retrieve the hydrogen is by plasma-catalytic decomposition. In this work, we combined an experimental study, using a dielectric barrier discharge plasma reactor, with a plasma kinetic model, to get insights into the decomposition mechanism. The experimental results revealed a similar effect on the ammonia conversion when changing the flow rate and power, where increasing the specific energy input (higher power or lower flow rate) gave an increased conversion. A conversion as high as 82 % was achieved at a specific energy input of 18 kJ/Nl. Furthermore, when changing the discharge volume from 31 to 10 cm3, a change in the plasma distribution factor from 0.2 to 0.1 was needed in the model to best describe the conversions of the experiments. This means that a smaller plasma volume caused a higher transfer of energy through micro-discharges (non-uniform plasma), which was found to promote the decomposition of ammonia. These results indicate that it is the collisions between NH3 and the high-energy electrons that initiate the decomposition. Moreover, the rate of ammonia destruction was found by the model to be in the order of 1022 molecules/(cm3 s) during the micro-discharges, which is 5 to 6 orders of magnitude higher than in the afterglows. A considerable re-formation of ammonia was found to take place in the afterglows, limiting the overall conversion. In addition, the model revealed that implementation of packing material in the plasma introduced high concentrations of surface-bound hydrogen atoms, which introduced an additional ammonia re-formation pathway through an Eley-Rideal reaction with gas phase NH2. Furthermore, a more uniform plasma is predicted in the presence of MgAl2O4, which leads to a lower average electron energy during micro-discharges and a lower conversion (37 %) at a comparable residence time for the plasma alone (51 %).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000946293200001 Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the packing material used, the research group PLASMANT (UAntwerpen) for sharing their plasma kinetic model and allowing us to perform the calculations on their clusters, and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 4.7; 2023 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:195204 Serial 7237  
Permanent link to this record
 

 
Author Neyts, E.; Maeyens, A.; Pourtois, G.; Bogaerts, A. doi  openurl
  Title A density-functional theory simulation of the formation of Ni-doped fullerenes by ion implantation Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 3 Pages 1013-1017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Using self-consistent KohnSham density-functional theory molecular dynamics simulations, we demonstrate the theoretical possibility to synthesize NiC60, the incarfullerene Ni@C60 and the heterofullerene C59Ni in an ion implantation setup. The corresponding formation mechanisms of all three complexes are elucidated as a function of the ion implantation energy and impact location, suggesting possible routes for selectively synthesizing these complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000286683500032 Publication Date 2010-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 13 Open Access  
  Notes Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:85139 Serial 639  
Permanent link to this record
 

 
Author Engelmann, Y.; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Thermodynamics at the nanoscale : phase diagrams of nickel-carbon nanoclusters and equilibrium constants for face transitions Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue Pages 11981-11987  
  Keywords A1 Journal article; PLASMANT  
  Abstract (down) Using reactive molecular dynamics simulations, the melting behavior of nickelcarbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickelcarbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000343000800049 Publication Date 2014-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 20 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:119408 Serial 3636  
Permanent link to this record
 

 
Author Engelmann; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 20 Pages 11981-11987  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000343000800049 Publication Date 2014-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 20 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:121106 Serial 3637  
Permanent link to this record
 

 
Author Georgieva, V.; Saraiva, M.; Jehanathan, N.; Lebelev, O.I.; Depla, D.; Bogaerts, A. pdf  doi
openurl 
  Title Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments Type A1 Journal article
  Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 42 Issue 6 Pages 065107,1-065107,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Using a molecular dynamics model the crystallinity of MgxAlyOz thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al2O3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the MgAlO film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline MgAlO films have a MgO structure with Al atoms in between.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000263824200024 Publication Date 2009-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 37 Open Access  
  Notes Iwt Approved Most recent IF: 2.588; 2009 IF: 2.083  
  Call Number UA @ lucian @ c:irua:73246 Serial 3110  
Permanent link to this record
 

 
Author Biswas, A.N.; Winter, L.R.; Loenders, B.; Xie, Z.; Bogaerts, A.; Chen, J.G. pdf  url
doi  openurl
  Title Oxygenate Production from Plasma-Activated Reaction of CO2and Ethane Type A1 Journal article
  Year 2021 Publication Acs Energy Letters Abbreviated Journal Acs Energy Lett  
  Volume Issue Pages 236-241  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Upgrading ethane with CO2 as a soft oxidant represents a desirable means of obtaining oxygenated hydrocarbons. This reaction is not thermodynamically feasible under mild conditions and has not been previously achieved as a one-step process. Nonthermal plasma was implemented as an alternative means of supplying energy to overcome activation barriers, leading to the production of alcohols, aldehydes, and acids as well as C1−C5+ hydrocarbons under ambient pressure, with a maximum total oxygenate selectivity of 12%. A plasma chemical kinetic computational model was developed and found to be in good agreement with the experimental trends. Results from this study illustrate the potential to use plasma for the direct synthesis of value-added alcohols, acids, and aldehydes from ethane and CO2 under mild conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000732435700001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-SC0012704 ; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; National Science Foundation, DGE 16-44869 ; This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Program (grant no. DE-SC0012704). L.R.W. acknowledges the U.S. National Science Foundation Graduate Research Fellowship Program grant number DGE 16-44869. B.L. and A.B. acknowledge support from the FWO-SBO project PLASMA240 Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:184812 Serial 6897  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Xu, B.; Kato, T.; Kaneko, T.; Neyts, E.C. pdf  url
doi  openurl
  Title How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching Type A1 Journal article
  Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 9 Issue 9 Pages 1653-1661  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Unlocking the enormous technological potential of carbon nanotubes strongly depends on our ability to specifically produce metallic or semiconducting tubes. While selective etching of both has already been demonstrated, the underlying reasons, however, remain elusive as yet. We here present computational and experimental evidence on the operative mechanisms at the atomic scale. We demonstrate that during the adsorption of H atoms and their coalescence, the adsorbed ortho hydrogen pairs on single-walled carbon nanotubes induce higher shear stresses than axial stresses, leading to the elongation of HC–CH bonds as a function of their alignment with the tube chirality vector, which we denote as the γ-angle. As a result, the C–C cleavage occurs more rapidly in nanotubes containing ortho H-pairs with a small γ-angle. This phenomenon can explain the selective etching of small-diameter semiconductor nanotubes with a similar curvature. Both theoretical and experimental results strongly indicate the important role of the γ-angle in the selective etching mechanisms of carbon nanotubes, in addition to the nanotube curvature and metallicity effects and lead us to clearly understand the onset of selective synthesis/removal of CNT-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395422800036 Publication Date 2016-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 6 Open Access OpenAccess  
  Notes U. K. gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium (Grant No. 12M1315N). This work was also supported in part by Grant-in- Aid for Young Scientists A (Grant No. 25706028), Grant-in-Aid for Scientific Research on Innovative Areas (Grant No. 26107502) from JSPS KAKENHI. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code and J. Razzokov for his assistance to perform the DFT calculations. Approved Most recent IF: 7.367  
  Call Number PLASMANT @ plasmant @ c:irua:140091 Serial 4417  
Permanent link to this record
 

 
Author Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 2 Pages 024001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424520100001 Publication Date 2018-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 19 Open Access OpenAccess  
  Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813  
Permanent link to this record
 

 
Author Neyts, E.; Shibuta, Y.; Bogaerts, A. doi  openurl
  Title Bond switching regimes in nickel and nickel-carbon nanoclusters Type A1 Journal article
  Year 2010 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 488 Issue 4/6 Pages 202-205  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Understanding the fundamental dynamics in carbon nanotube (CNT) catalysts is of primary importance to understand CNT nucleation. This Letter reports on calculated bond switching (BS) rates in pure and carbon containing nickel nanoclusters. The rates are analyzed in terms of their temperature dependent spatial distribution and the mobility of the cluster atoms. The BS mechanism is found to change from vibrational to diffusional at around 900 K, with a corresponding strong increase in activation energy. Furthermore, the BS activation energy is observed to decrease as the carbon content in the cluster increases, resulting in an effective liquification of the cluster.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000275751900020 Publication Date 2010-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 20 Open Access  
  Notes Approved Most recent IF: 1.815; 2010 IF: 2.282  
  Call Number UA @ lucian @ c:irua:80998 Serial 248  
Permanent link to this record
 

 
Author Attri, P.; Razzokov, J.; Yusupov, M.; Koga, K.; Shiratani, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 148 Issue Pages 657-665  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Understanding the folding and stability of membrane proteins is of great importance in protein science. Recently, osmolytes and ionic liquids (ILs) are increasingly being used as drug delivery systems in the biopharmaceutical industry. However, the stability of membrane proteins in the presence of osmolytes and ILs is not yet fully understood. Besides, the effect of oxidative stress on membrane proteins with osmolytes or ILs has not been investigated. Therefore, we studied the influence of osmolytes and ILs as co-solvents on the stability of a model membrane protein (i.e., Bacteriorhodopsin in purple membrane of Halobacterium salinarum), using UV–Vis spectroscopy and molecular dynamics (MD) simulations. The MD simulations allowed us to determine the flexibility and solvent accessible surface area (SASA) of Bacteriorhodopsin protein in the presence and/or absence of cosolvents, as well as to carry out principal component analysis (PCA) to identify the most important movements in this protein. In addition, by means of UV–Vis spectroscopy we studied the effect of oxidative stress generated by cold atmospheric plasma on the stability of Bacteriorhodopsin in the presence and/or absence of co-solvents. This study is important for a better understanding of the stability of proteins in the presence of oxidative stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000522094600066 Publication Date 2020-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.2 Times cited Open Access  
  Notes Horizon2020, 743546 ; JSPS, 19H05462 16H03895 ; Nagoya University; We gratefully acknowledge the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI 19H05462 and 16H03895, the joint usage/research program of Center for Low-temperature Plasma Science, Nagoya University and also supported by JSPS and RCL under the Japan-Lithuania Research Cooperative Program. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:165585 Serial 5444  
Permanent link to this record
 

 
Author Shirazi, M.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title DFT study of Ni-catalyzed plasma dry reforming of methane Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 205 Issue 205 Pages 605-614  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) tWe investigated the plasma-assisted catalytic reactions for the production of value-added chemicalsfrom Ni-catalyzed plasma dry reforming of methane by means of density functional theory (DFT). Weinspected many activation barriers, from the early stage of adsorption of the major chemical fragmentsderived fromCH4andCO2molecules up to the formation of value-added chemicals at the surface, focusingon the formation of methanol, as well as the hydrogenation of C1and C2hydrocarbon fragments. Theactivation barrier calculations show that the presence of surface-bound H atoms and in some cases alsoremaining chemical fragments at the surface facilitates the formation of products. This implies that thehydrogenation of a chemical fragment on the hydrogenated crystalline surface is energetically favouredcompared to the simple hydrogenation of the chemical fragment at the bare Ni(111) surface. Indeed, thepresence of hydrogen modifies the electronic structure of the surface and the course of the reactions.We therefore conclude that surface-bound H atoms, and to some extent also the remaining chemicalfragments at the crystalline surface, induce the following effects: they facilitate associative desorption ofmethanol and ethane by increasing the rate of H-transfer to the adsorbed fragments while they impedehydrogenation of ethylene to ethane, thus promoting again the desorption of ethylene. Overall, they thusfacilitate the catalytic conversion of the formed fragments from CH4and CO2, into value-added chemicals.Finally, we believe that the retention of methane fragments, especially CH3, in the presence of surface-boundHatoms (as observed here for Ni) can be regarded as an identifier for the proper choice of a catalystfor the production of value-added chemicals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393931000063 Publication Date 2017-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 26 Open Access OpenAccess  
  Notes Financial support from the Reactive Atmospheric Plasmaprocessing –eDucation network (RAPID), through the EU 7thFramework Programme (grant agreement no. 606889) is grate-fully acknowledged. The calculations were performed using theTuring HPC infrastructure at the CalcUA core facility of the Univer-siteit Antwerpen, a division of the Flemish Supercomputer CenterVSC, funded by the Hercules Foundation, the Flemish Approved Most recent IF: 9.446  
  Call Number PLASMANT @ plasmant @ c:irua:139514 Serial 4343  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Van Laer, K.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Can plasma be formed in catalyst pores? A modeling investigation Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 185 Issue 185 Pages 56-67  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) tWe investigate microdischarge formation inside catalyst pores by a two-dimensional fluid model forvarious pore sizes in the m-range and for various applied voltages. Indeed, this is a poorly understoodphenomenon in plasma catalysis. The calculations are performed for a dielectric barrier discharge inhelium, at atmospheric pressure. The electron and ion densities, electron temperature, electric field andpotential, as well as the electron impact ionization and excitation rate and the densities of excited plasmaspecies, are examined for a better understanding of the characteristics of the plasma inside a pore. Theresults indicate that the pore size and the applied voltage are critical parameters for the formation of amicrodischarge inside a pore. At an applied voltage of 20 kV, our calculations reveal that the ionizationmainly takes place inside the pore, and the electron density shows a significant increase near and inthe pore for pore sizes larger than 200m, whereas the effect of the pore on the total ion density isevident even for 10m pores. When the pore size is fixed at 30m, the presence of the pore has nosignificant influence on the plasma properties at an applied voltage of 2 kV. Upon increasing the voltage,the ionization process is enhanced due to the strong electric field and high electron temperature, andthe ion density shows a remarkable increase near and in the pore for voltages above 10 kV. These resultsindicate that the plasma species can be formed inside pores of structured catalysts (in the m range),and they may interact with the catalyst surface, and affect the plasma catalytic process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369452000006 Publication Date 2015-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 75 Open Access  
  Notes This work was supported by the Fund for Scientific ResearchFlanders (FWO) (Grant no. G.0217.14N), the National Natural Sci-ence Foundation of China (Grant no. 11405019), and the ChinaPostdoctoral Science Foundation (Grant no. 2015T80244). Theauthors are very grateful to V. Meynen for the useful discussions oncatalysts. This work was carried out in part using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwer-pen, a division of the Flemish Supercomputer Center VSC, fundedby the Hercules Foundation, the Flemish Government (departmentEWI) and the University of Antwerp. Approved Most recent IF: 9.446  
  Call Number c:irua:129808 Serial 3984  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: