|   | 
Details
   web
Records
Author Yampolskii, S.V.; Baelus, B.J.; Peeters, F.M.; Kolá·ek, J.
Title Vortex charge in mesoscopic superconductors Type A1 Journal article
Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 64 Issue Pages 144511
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000171530000084 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2001 IF: NA
Call Number UA @ lucian @ c:irua:37282 Serial 3861
Permanent link to this record
 

 
Author Misko, V.R.; Fomin, V.M.; Devreese, J.T.; Moshchalkov, V.V.
Title Vortex states in a mescopic superconducting triangle Type A1 Journal article
Year 2002 Publication Physica C-Superconductivity And Its Applications Abbreviated Journal Physica C
Volume 369 Issue Pages 361-365
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000174200000066 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 14 Open Access
Notes Approved Most recent IF: 1.404; 2002 IF: 0.912
Call Number UA @ lucian @ c:irua:40883 Serial 3885
Permanent link to this record
 

 
Author Hilber, W.; Helm, M.; Peeters, F.M.; Alavi, K.; Pathak, R.N.
Title Impurity band and magnetic-field-induced metal-insulator transition in a doped GaAs/AlxGa1-xAs superlattice Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 53 Issue 11 Pages 6919-6922
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) A combination of infrared spectroscopy and magnetotransport is used to investigate the impurity band and the magnetic-field-induced metal-insulator transition in n-type GaAs/AlxGa1-xAs superlattices. The dropping of the Fermi level from the conduction band into the impurity band upon increasing magnetic field is observed in a sample doped to n=4n(c), where n(c) is the critical density according to the Mott criterion. The metal-insulator transition takes place while the Fermi level is in the impurity band, with no qualitative change from the metallic to the insulating side. Due to the anisotropy of the superlattice band structure, the metal-insulator transition is shifted to higher magnetic field, when the magnetic field is tilted away from the growth axis towards the layer planes.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996UC74000018 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 14 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:99676 Serial 1571
Permanent link to this record
 

 
Author Kirsanova, M.A.; Mori, T.; Maruyama, S.; Matveeva; Batuk, D.; Abakumov, A.M.; Gerasimenko, A.V.; Olenev, A.V.; Grin, Y.; Shevelkov, A.V.
Title Synthesis, structure, and transport properties of type-I derived clathrate Ge46-xPxSe8-y (x=15.4(1); y=0-2.65) with diverse host-guest bonding Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 2 Pages 577-588
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) A first clathrate compound with selenium guest atoms, [Ge46-xPx]Se8-y square(y) (x = 15.4(1); y = 0-2.65; square denotes a vacancy), was synthesized as a single-phase and structurally characterized. It crystallizes in the space group Fm (3) over bar with the unit cell parameter a varying from 20.310(2) to 20.406(2) angstrom and corresponding to a 2 x 2 x 2 supercell of a usual clathrate-I structure. The superstructure is formed due to the symmetrical arrangement of the three-bonded framework atoms appearing as a result of the framework transformation of the parent clathrate-I structure. Selenium guest atoms occupy two types of polyhedral cages inside the positively charged framework; all selenium atoms in the larger cages form a single covalent bond with the framework atoms, relating the title compounds to a scanty family of semiclathrates. According to the measurements of electrical resistivity and Seebeck coefficient, [Ge46-xPx]Se8-y square(y) is an n-type semiconductor with E-g = 0.41 eV for x = 15.4(1) and y = 0; it demonstrates the maximal thermoelectric power factor of 2.3 x 10(-5) W K-2 m(-1) at 660 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000314007500010 Publication Date 2012-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 14 Open Access
Notes Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:107689 Serial 3463
Permanent link to this record
 

 
Author Saniz, R.; Norman, M.R.; Freeman, A.J.
Title Orbital mixing and nesting in the bilayer manganites La2-2xSr1+2xMn2O7 Type A1 Journal article
Year 2008 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 101 Issue 23 Pages 236402-236404
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) A first principles study of La(2-2x)Sr(1+2x)Mn(2)O(7) compounds for doping levels 0.3 <= x <= 0.5 shows that the low energy electronic structure of the majority spin carriers is determined by strong momentum-dependent interactions between the Mn e(g) d(x)(2)-y(2) and d(3z)(2)-r(2) orbitals, which, in addition to an x-dependent Jahn-Teller distortion, differ in the ferromagnetic and antiferromagnetic phases. The Fermi surface exhibits nesting behavior that is reflected by peaks in the static susceptibility, whose positions as a function of momentum have a nontrivial dependence on x.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000261431200045 Publication Date 2008-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 14 Open Access
Notes Approved Most recent IF: 8.462; 2008 IF: 7.180
Call Number UA @ lucian @ c:irua:102602 Serial 2498
Permanent link to this record
 

 
Author Benito Llorens, J.; Embon, L.; Correa, A.; Gonzalez, J.D.; Herrera, E.; Guillamon, I.; Luccas, R.F.; Azpeitia, J.; Mompean, F.J.; Garcia-Hernandez, M.; Munuera, C.; Aragon Sanchez, J.; Fasano, Y.; Milošević, M.V.; Suderow, H.; Anahory, Y.
Title Observation of a gel of quantum vortices in a superconductor at very low magnetic fields Type A1 Journal article
Year 2020 Publication Physical review research Abbreviated Journal
Volume 2 Issue 1 Pages 013329
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system. Quantized vortices in type-II superconductors mostly form spatially homogeneous ordered or amorphous solids. Here we present high-resolution imaging of the vortex lattice displaying dense vortex clusters separated by sparse or entirely vortex-free regions in beta-Bi2Pd superconductor. We find that the intervortex distance diverges upon decreasing the magnetic field and that vortex lattice images follow a multifractal behavior. These properties, characteristic of gels, establish the presence of a novel vortex distribution, distinctly different from the well-studied disordered and glassy phases observed in high-temperature and conventional superconductors. The observed behavior is caused by a scaffold of one-dimensional structural defects with enhanced stress close to the defects. The vortex gel might often occur in type-II superconductors at low magnetic fields. Such vortex distributions should allow to considerably simplify control over vortex positions and manipulation of quantum vortex states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000602698100008 Publication Date 2020-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 14 Open Access
Notes ; We acknowledge support, discussions and critical reading of the manuscript from Eli Zeldov, who also devised and setup the SOT system. We also acknowledge critical reading and suggestions of Vladimir Kogan and Alexander Buzdin. Work performed in Spain was supported by the MINECO (FIS2017-84330-R, MAT2017-87134-C2-2-R, RYC-2014-16626 and RYC-2014-15093) and by the Region of Madrid through programs NANOFRONTMAG-CM (S2013/MIT-2850) and MAD2D-CM (S2013/ MIT-3007). The SEGAINVEX at UAM is also acknowledged as well as PEOPLE, Graphene Flagship, NMP programs of EU (Grant Agreements FP7-PEOPLE-2013-CIG 618321, 604391 and AMPHIBIAN H2020-NMBP-03-2016 NMP3-SL 2012-310516). Work in Israel was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802952). Y.F. acknowledges the support of grant PICT 2017-2182 from the ANPCyT. R.F.L. acknowledges the support of grant PICT 2017-2898 from the ANPCyT. E.H. acknowledges support of Departamento Administrativo de Ciencia, Tecnologia e Innovacion, COLCIENCIAS (Colombia) Programa de estancias Postdoctorales convocatoria 784-2017 and the Cluster de investigacin en ciencias y tecnologas convergentes de la Universidad Central (Colombia). I.G. was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 679080). M.V.M. acknowledges support from Research FoundationFlanders (FWO). The international collaboration on this work was fostered by the EU-COST Action CA16218 Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies (NANOCOHYBRI). J.D.G. and M.V.M. gratefully acknowledge support from the Research Fund (FONCIENCIAS) of Universidad del Magdalena. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:175138 Serial 6694
Permanent link to this record
 

 
Author Hunter, E.C.; Battle, P.D.; Sena, R.P.; Hadermann, J.
Title Ferrimagnetism as a consequence of cation ordering in the perovskite LaSr2Cr2SbO9 Type A1 Journal article
Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 248 Issue Pages 96-103
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) A polycrystalline sample of LaSr2Cr2SbO9 has been synthesised using a standard ceramic method and characterized by x-ray and neutron diffraction, magnetometry and electron microscopy. The perovskite-related compound crystallises in the triclinic space group I1 with unit cell parameters of a=5.5344(6) angstrom, b=5.5562(5) angstrom, c=7.8292(7) angstrom, a=89.986(12)degrees, beta=90.350(5)degrees and gamma=89.926(9)degrees at room temperature. The two crystallographically-distinct, six-coordinate cation sites are occupied by Cr3+ and Sb5+ in ratios of 0.868(2):0.132(2) and 0.462(2):0.538(2). Ac and de magnetometry revealed that LaSr2Cr2SbO9 is ferrimagnetic below 150 K with a magnetisation of similar to 1.25 mu(B) per formula unit in 50 kOe at 5 K. Neutron diffraction showed that the cations on the two sites order in a G-type arrangement with a mean Cr3+ moment of 2.17(1) mu(B) at 5 K, consistent with a magnetisation of 1.32 mu(B) per formula unit.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000396386300012 Publication Date 2017-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 14 Open Access Not_Open_Access
Notes ; Experiments at the ISIS Pulsed Neutron and Muon Source were supported by the STFC. We are grateful to I. da Silva for the assistance provided at ISIS and to the EPSRC for financial support under Grant EP/M018954/1. We also thank Diamond Light Source Ltd (EE13284) for the award of beamtime. ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:142413 Serial 4657
Permanent link to this record
 

 
Author Gorbanev, Y.; Vervloessem, E.; Nikiforov, A.; Bogaerts, A.
Title Nitrogen fixation with water vapor by nonequilibrium plasma : toward sustainable ammonia production Type A1 Journal article
Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 8 Issue 7 Pages 2996-3004
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Ammonia is a crucial nutrient used for plant growth and as a building block in the pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing nonfossil-based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as a H source for nitrogen fixation into NH3 by nonequilibrium plasma. The highest selectivity toward NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor contents. We also studied the role of H2O vapor and of the plasma-exposed liquid H2O in nitrogen fixation by using isotopically labeled water to distinguish between these two sources of H2O. We show that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. The studied catalyst- and H2-free method offers excellent selectivity toward NH3 (up to 96%), with energy consumption (ca. 95–118 MJ/mol) in the range of many plasma-catalytic H2-utilizing processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000516665500045 Publication Date 2020-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited 14 Open Access
Notes ; This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the Catalisti Moonshot project P2C, and the Methusalem project of the University of Antwerp. ; Approved Most recent IF: 8.4; 2020 IF: 5.951
Call Number UA @ admin @ c:irua:167134 Serial 6568
Permanent link to this record
 

 
Author Amiri-Aref, M.; Raoof, J.B.; Kiekens, F.; De Wael, K.
Title Mixed hemi/ad-micelles coated magnetic nanoparticles for the entrapment of hemoglobin at the surface of a screen-printed carbon electrode and its direct electrochemistry and electrocatalysis Type A1 Journal article
Year 2015 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron
Volume 74 Issue Pages 518-525
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) An efficient procedure for the physical entrapment of proteins within a biocompatible matrix and their immobilization on electrode surfaces is of utmost importance in the fabrication of biosensors. In this work, the magnetic entrapment of hemoglobin (Hb) at the surface of a screen-printed carbon electrode (SPCE), through mixed hemi/ad-micelles (MHAM) array of positively charged surfactant supported iron oxide magnetic nanoparticles (Mag-NPs), is reported. The Hb/MHAM@Mag-NPs biocomposite is captured at SPCE by a super magnet (Hb/MHAM@Mag-NPs/SPCE). To gain insight in the configuration of the mixed hemi/ad-micelles of CTAB at Mag-NPs, zeta-potential measurements were performed. The entrapment of Hb at MHAM@Mag-NPs was confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR). Direct electron transfer of the Hb intercalated into the composite film showed a pair of well-defined quasi-reversible redox peak at formal potential of −0.255 V vs. Ag/AgCl corresponding to heme Fe(III)/Fe(II) redox couple. It shows that the MHAM@Mag-NPs composite could increase the adsorption ability for Hb, thus provides a facile direct electron transfer between the Hb and the substrate. The proposed biosensor showed excellent electrocatalytic activity to the H2O2 reduction in the wide concentration range from 5.0 to 300.0 µM obtained by amperometric measurement. The MichaelisMenten constant (Km) value of Hb at the modified electrode is 55.4 µM, showing its high affinity. Magnetic entrapment offers a promising design for fast, convenient and effective immobilization of protein within a few minutes for determination of the target molecule in low sample volume at disposable cost-effective SPCE.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000360772800071 Publication Date 2015-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.78 Times cited 14 Open Access
Notes ; We are thankful for the BOF financial support from the University of Antwerp and Hercules financial support (SEM). ; Approved Most recent IF: 7.78; 2015 IF: 6.409
Call Number UA @ admin @ c:irua:126535 Serial 5731
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP Type A1 Journal article
Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 28 Issue 9 Pages 1485-1492
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) An inductively coupled plasma, connected to a sampling cone of a mass spectrometer, is computationally investigated. The effects of the sampler orifice diameter (ranging from 1 to 2 mm) and distance of the sampler cone from the load coil (ranging from 7 to 17 mm) are studied. An increase in sampler orifice diameter leads to a higher central plasma temperature at the place of the sampler, as well as more efficient gas transfer through the sampler, by reducing the interaction of the plasma gas with the sampling cone. However, the flow velocity at the sampler position is found to be independent of the sampler orifice diameter. Moreover, by changing the sampler orifice diameter, we can control whether only the central gas or also the auxiliary gas can exit through the sampler. Finally, with the increasing distance of the sampler from the load coil, the plasma temperature at the place of the sampler decreases slightly, which might also have consequences for the ion generation and transport through the sampling cone.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000322922300016 Publication Date 2013-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 14 Open Access
Notes Approved Most recent IF: 3.379; 2013 IF: 3.396
Call Number UA @ lucian @ c:irua:109204 Serial 848
Permanent link to this record
 

 
Author Sahin, H.; Torun, E.; Bacaksiz, C.; Horzum, S.; Kang, J.; Senger, R.T.; Peeters, F.M.
Title Computing optical properties of ultra-thin crystals Type A1 Journal article
Year 2016 Publication Wiley Interdisciplinary Reviews: Computational Molecular Science Abbreviated Journal Wires Comput Mol Sci
Volume 6 Issue 6 Pages 351-368
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) An overview is given of recent advances in experimental and theoretical understanding of optical properties of ultra-thin crystal structures (graphene, phosphorene, silicene, MoS2 , MoSe2, WS2, WSe2, h-AlN, h-BN, fluorographene, and graphane). Ultra-thin crystals are atomically thick-layered crystals that have unique properties which differ from their 3D counterpart. Because of the difficulties in the synthesis of few-atom-thick crystal structures, which are thought to be the main building blocks of future nanotechnology, reliable theoretical predictions of their electronic, vibrational, and optical properties are of great importance. Recent studies revealed the reliable predictive power of existing theoretical approaches based on density functional theory. (C) 2016 John Wiley & Sons, Ltd WIREs Comput Mol Sci 2016, 6:351-368. doi: 10.1002/wcms.1252 For further resources related to this article, please visit the .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379267300002 Publication Date 2016-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1759-0876 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 14.016 Times cited 14 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. J.K. is supported by a FWO Pegasus short Marie Curie Fellowship. ; Approved Most recent IF: 14.016
Call Number UA @ lucian @ c:irua:134649 Serial 4155
Permanent link to this record
 

 
Author Duarte, M.; Daems, N.; Hereijgers, J.; Arenas Esteban, D.; Bals, S.; Breugelmans, T.
Title Enhanced CO2 electroreduction with metal-nitrogen-doped carbons in a continuous flow reactor Type A1 Journal article
Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 50 Issue Pages 101583-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract (up) As part of a mitigation and adaptation approach to increasing carbon dioxide atmospheric concentrations, we report superior performance of various metal-nitrogen-doped carbon catalysts, synthesized using an easily up-scalable method, for the electrochemical reduction to carbon monoxide and/or formate at industrially relevant current densities up to 200 mAcm−2. Altering the embedded transition metal (i.e. Sn, Co, Fe, Mn and Ni) allowed to tune the selectivity towards the desired product. Mn-N-C and Fe-N-C performance was compromised by its high CO* binding energy, while Co-N-C catalyzed preferentially the HER. Ni-N-C and Sn-N-C revealed to be promising electrocatalysts, the latter being evaluated for the first time in a flow reactor. A productivity of 589 L CO m-2 h-1 at -1.39 VRHE with Ni-N-C and 751 g HCOO- m-2 h-1 at -1.47 VRHE with Sn-N-C was achieved with no signs of degradation detected after 24 h of operation at industrially relevant current densities (100 mAcm−2). Stable operation at 200 mAcm−2 led to turnover frequencies for the production of carbon products of up to 5176 h-1. These enhanced productivities, in combination with high stability, constitute an essential step towards the scalability and ultimately towards the economical valorization of CO2 electrolyzers using metal-containing nitrogen-doped catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000670316000002 Publication Date 2021-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited 14 Open Access OpenAccess
Notes The authors acknowledge sponsoring from the Research Foundation – Flanders (FWO) in the frame of a post-doctoral grant (12Y3919N – ND). This project was co-funded by the Interreg 2 Seas-Program 2014-2020, co-financed by the European Fund for Regional Development in the frame of subsidiary contract nr. 2S03-019. This work was further performed in the framework of the Catalisti MOT project D2M (“Dioxide to Monoxide (D2M): Innovative catalysis for CO2 to CO conversion”). We thank Lien Pacquets for analyzing the samples with SEM-EDX, Saskia Defoss´e for helping with the N2 physisorption measurements and Kitty Baert (VUB) for analyzing the samples with XPS and Raman. Approved Most recent IF: 4.292
Call Number UA @ admin @ c:irua:178151 Serial 6779
Permanent link to this record
 

 
Author Baskurt, M.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Stable single-layers of calcium halides (CaX₂, X = F, Cl, Br, I) Type A1 Journal article
Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 152 Issue 16 Pages 164116-164118
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) By means of density functional theory based first-principles calculations, the structural, vibrational, and electronic properties of 1H- and 1T-phases of single-layer CaX2 (X = F, Cl, Br, or I) structures are investigated. Our results reveal that both the 1H- and 1T-phases are dynamically stable in terms of their phonon band dispersions with the latter being the energetically favorable phase for all single-layers. In both phases of single-layer CaX2 structures, significant phonon softening occurs as the atomic radius increases. In addition, each structural phase exhibits distinctive Raman active modes that enable one to characterize either the phase or the structure via Raman spectroscopy. The electronic band dispersions of single-layer CaX2 structures reveal that all structures are indirect bandgap insulators with a decrease in bandgaps from fluorite to iodide crystals. Furthermore, the calculated linear elastic constants, in-plane stiffness, and Poisson ratio indicate the ultra-soft nature of CaX2 single-layers, which is quite important for their nanoelastic applications. Overall, our study reveals that with their dynamically stable 1T- and 1H-phases, single-layers of CaX2 crystals can be alternative ultra-thin insulators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000531819100001 Publication Date 2020-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.4 Times cited 14 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the TUBITAK under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 4.4; 2020 IF: 2.965
Call Number UA @ admin @ c:irua:169543 Serial 6615
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Mogulkoc, Y.; Akgenc, B.; Mogulkoc, A.; Peeters, F.M.
Title Prediction of monoclinic single-layer Janus Ga₂ Te X (X = S and Se) : strong in-plane anisotropy Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 104 Issue 4 Pages 045425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) By using density functional theory (DFT) based first-principles calculations, electronic, vibrational, piezo-electric, and optical properties of monoclinic Janus single-layer Ga2TeX (X = S or Se) are investigated. The dynamical, mechanical, and thermal stability of the proposed Janus single layers are verified by means of phonon bands, stiffness tensor, and quantum molecular dynamics simulations. The calculated vibrational spectrum reveals the either pure or coupled optical phonon branches arising from Ga-Te and Ga-X atoms. In addition to the in-plane anisotropy, single-layer Janus Ga2TeX exhibits additional out-of-plane asymmetry, which leads to important consequences for its electronic and optical properties. Electronic band dispersions indicate the direct band-gap semiconducting nature of the constructed Janus structures with energy band gaps falling into visible spectrum. Moreover, while orientation-dependent linear-elastic properties of Janus single layers indicate their strong anisotropy, the calculated in-plane stiffness values reveal the ultrasoft nature of the structures. In addition, predicted piezoelectric coefficients show that while there is a strong in-plane anisotropy between piezoelectric constants along armchair (AC) and zigzag (ZZ) directions, there exists a tiny polarization along the out-of-plane direction as a result of the formation of Janus structure. The optical response to electromagnetic radiation has been also analyzed through density functional theory by considering the independent-particle approximation. Finally, the optical spectra of Janus Ga2TeX structures is investigated and it showed a shift from the ultraviolet region to the visible region. The fact that the spectrum is between these regions will allow it to be used in solar energy and many nanoelectronics applications. The predicted monoclinic single-layer Janus Ga2TeX are relevant for promising applications in optoelectronics, optical dichroism, and anisotropic nanoelasticity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000678811100007 Publication Date 2021-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:180404 Serial 7013
Permanent link to this record
 

 
Author Shariat, M.; Shokri, B.; Neyts, E.C.
Title On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition Type A1 Journal article
Year 2013 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 590 Issue Pages 131-135
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Despite significant progress in single walled carbon nanotube (SWCNT) production by plasma enhanced chemical vapor deposition (PECVD), the growth mechanism in this method is not clearly understood. We employ reactive molecular dynamics simulations to investigate how plasma-based deposition allows growth at low temperature. We first investigate the SWCNT growth mechanism at low and high temperatures under conditions similar to thermal CVD and PECVD. We then show how ion bombardment during the nucleation stage increases the carbon solubility in the catalyst at low temperature. Finally, we demonstrate how moderate energy ions sputter amorphous carbon allowing for SWCNT growth at 500 K. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000327721000024 Publication Date 2013-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 14 Open Access
Notes Approved Most recent IF: 1.815; 2013 IF: 1.991
Call Number UA @ lucian @ c:irua:112775 Serial 2439
Permanent link to this record
 

 
Author Xu, P.; Qi, D.; Schoelz, J.K.; Thompson, J.; Thibado, P.M.; Wheeler, V.D.; Nyakiti, L.O.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Neek-Amal, M.; Peeters, F.M.;
Title Multilayer graphene, Moire patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC Type A1 Journal article
Year 2014 Publication Carbon Abbreviated Journal Carbon
Volume 80 Issue Pages 75-81
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Epitaxial graphene is grown on a non-polar n(+) 6H-SiC m-plane substrate and studied using atomic scale scanning tunneling microscopy. Multilayer graphene is found throughout the surface and exhibits rotational disorder. Moire patterns of different spatial periodicities are found, and we found that as the wavelength increases, so does the amplitude of the modulations. This relationship reveals information about the interplay between the energy required to bend graphene and the interaction energy, i.e. van der Waals energy, with the graphene layer below. Our experiments are supported by theoretical calculations which predict that the membrane topographical amplitude scales with the Moire pattern wavelength, L as L-1 + alpha L-2. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000344132400009 Publication Date 2014-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 14 Open Access
Notes ; P.X. and P.M.T. gratefully acknowledge the financial support of ONR under grant N00014-10-1-0181 and NSF under grant DMR-0855358. L.O.N. acknowledges the support of American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the U.S. Naval Research Laboratory is supported by the Office of Naval Research. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, and the EUROgraphene project CONGRAN. M.N.-A was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:121194 Serial 2221
Permanent link to this record
 

 
Author Frangis, N.; Van Tendeloo, G.; van Landuyt, J.; Muret, P.; Nguyen, T.T.A.
Title Structural characterisation of erbium silicide thin films of an Si(111) substrate Type A1 Journal article
Year 1996 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 234 Issue 2 Pages 244-250
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) ErSi2-x films (x = 0.1-0.3) grown by co-evaporation at different deposition ratios have been characterised by transmission electron microscopy, electron diffraction and high resolution electron microscopy. A very good epitaxial growth relation with the Si substrate was deduced for a1 samples and observed phases. Different defect modulated structures are formed; they can be described as structural variants (orthorhombic or rhombohedral) of the basic structure. The modulated phases are related to deviations from stoichiometry similar to crystallographic shear structures. The ErSi1.9 material contains Si precipitates, illustrating the preference for the ErSi1.7 composition to be maintained.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1996TX65100020 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.999 Times cited 14 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:15451 Serial 3213
Permanent link to this record
 

 
Author Szafran, B.; Bednarek, S.; Adamowski, J.; Tavernier, M.B.; Anisimovas, E.; Peeters, F.M.
Title Accuracy of the Hartree-Fock method for Wigner molecules at high magnetic fields Type A1 Journal article
Year 2004 Publication European physical journal : D : atomic, molecular and optical physics Abbreviated Journal Eur Phys J D
Volume 28 Issue 3 Pages 373-380
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Few-electron systems confined in two-dimensional parabolic quantum dots at high magnetic fields are studied by the Hartree-Fock (HF) and exact diagoiialization methods. A generalized multicenter Gaussian basis is proposed in the HF method. A comparison of the HF and exact, results allows as to discuss the relevance of the symmetry of the charge density distribution for the accuracy of the HF method. It is shown that the energy estimates obtained with the broken-symmetry HF wave functions become exact in the infinite magnetic-field limit. In this limit the charge density of the broken-symmetry solution call be identified with the classical charge distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000220378400008 Publication Date 2004-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6060;1434-6079; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.288 Times cited 14 Open Access
Notes Approved Most recent IF: 1.288; 2004 IF: 1.692
Call Number UA @ lucian @ c:irua:103246 Serial 43
Permanent link to this record
 

 
Author De Meulenaere, P.; van Dyck, D.; Van Tendeloo, G.; van Landuyt, J.
Title Dynamical electron diffraction in substitutionally disordered column structures Type A1 Journal article
Year 1995 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 60 Issue 1 Pages 171-185
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) For column structures, such as fee-based alloys viewed along the cube direction, the concept of electron channelling through the atom columns is more and more used to interpret the corresponding HREM images. In the case of(partially) disordered columns, the projected potential approach which is used in the channelling description must be questioned since the arrangement of the atoms along the beam direction might affect the exit wave of the electrons. In this paper, we critically inspect this top-bottom effect using multi-slice calculations. A modified channelling theory is introduced which turns out to be very appropriate for the interpretation of these results. For substitutionally disordered column structures, it is also discussed how to link the chemical composition of the material to statistical data of the HREM image. This results in a convenient tool to discern images taken at different thicknesses and focus values.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995TG59500017 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 14 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13013 Serial 770
Permanent link to this record
 

 
Author Torre, I.; de Castro, L.V.; Van Duppen, B.; Barcons Ruiz, D.; Peeters, F.M.; Koppens, F.H.L.; Polini, M.
Title Acoustic plasmons at the crossover between the collisionless and hydrodynamic regimes in two-dimensional electron liquids Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 14 Pages 144307
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Hydrodynamic flow in two-dimensional electron systems has so far been probed only by dc transport and scanning gate microscopy measurements. In this work we discuss theoretically signatures of the hydrodynamic regime in near-field optical microscopy. We analyze the dispersion of acoustic plasmon modes in two-dimensional electron liquids using a nonlocal conductivity that takes into account the effects of (momentumconserving) electron-electron collisions, (momentum-relaxing) electron-phonon and electron-impurity collisions, and many-body interactions beyond the celebrated random phase approximation. We derive the dispersion and, most importantly, the damping of acoustic plasmon modes and their coupling to a near-field probe, identifying key experimental signatures of the crossover between collisionless and hydrodynamic regimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465160000003 Publication Date 2019-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work has been sponsored by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 785219 “Graphene Core2” and via the European Research Council (ERC) Grant Agreement No. 786285. B.V.D. is supported by a post-doctoral fellowship of the Flemish Science Foundation (FWO-Vl). F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Mineco grant Plan Nacional (FIS2016-81044-P) and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. F.M.P. and L.V.d.C. were supported by the Methusalem Program of the Flemish Government. We thank Niels Hesp and Hanan Hertzig Sheinfux for useful discussions. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:159333 Serial 5193
Permanent link to this record
 

 
Author De Schepper, E.; Van Passel, S.; Lizin, S.; Achten, W.M.J.; Van Acker, K.
Title Cost-efficient emission abatement of energy and transportation technologies : mitigation costs and policy impacts for Belgium Type A1 Journal article
Year 2014 Publication Clean Technologies And Environmental Policy Abbreviated Journal Clean Technol Envir
Volume 16 Issue 6 Pages 1107-1118
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract (up) In the light of global warming, this paper develops a framework to compare energy and transportation technologies in terms of cost-efficient GHG emission reduction. We conduct a simultaneous assessment of economic and environmental performances through life cycle costing and life cycle assessment. To calculate the GHG mitigation cost, we create reference systems within the base scenario. Further, we extend the concept of the mitigation cost, allowing (i) comparision of technologies given a limited investment resource, and (ii) evaluation of the direct impact of policy measures by means of the subsidized mitigation cost. The framework is illustrated with a case of solar photovoltaics (PV), grid powered battery electric vehicles (BEVs), and solar powered BEVs for a Belgian small and medium sized enterprise. The study's conclusions are that the mitigation cost of solar PV is high, even though this is a mature technology. The emerging mass produced BEVs on the other hand are found to have a large potential for cost-efficient GHG mitigation as indicated by their low cost of mitigation. Finally, based on the subsidized mitigation cost, we conclude that the current financial stimuli for all three investigated technologies are excessive when compared to the CO2 market value under the EU Emission Trading Scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339874900010 Publication Date 2014-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-954x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.331 Times cited 14 Open Access
Notes ; ; Approved Most recent IF: 3.331; 2014 IF: 1.934
Call Number UA @ admin @ c:irua:127543 Serial 6175
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Pawlowski, J.; Partoens, B.
Title All-electrical control of quantum gates for single heavy-hole spin qubits Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 19 Pages 195307-195312
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) In this paper several nanodevices which realize basic single heavy-hole qubit operations are proposed and supported by time-dependent self-consistent Poisson-Schrodinger calculations using a four band heavy-hole-light-hole model. In particular we propose a set of nanodevices which can act as Pauli X, Y, Z quantum gates and as a gate that acts similar to a Hadamard gate (i.e., it creates a balanced superposition of basis states but with an additional phase factor) on the heavy-hole spin qubit. We also present the design and simulation of a gated semiconductor nanodevice which can realize an arbitrary sequence of all these proposed single quantum logic gates. The proposed devices exploit the self-focusing effect of the hole wave function which allows for guiding the hole along a given path in the form of a stable solitonlike wave packet. Thanks to the presence of the Dresselhaus spin-orbit coupling, the motion of the hole along a certain direction is equivalent to the application of an effective magnetic field which induces in turn a coherent rotation of the heavy-hole spin. The hole motion and consequently the quantum logic operation is initialized only by weak static voltages applied to the electrodes which cover the nanodevice. The proposed gates allow for an all electric and ultrafast (tens of picoseconds) heavy-hole spin manipulation and give the possibility to implement a scalable architecture of heavy-hole spin qubits for quantum computation applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319252200003 Publication Date 2013-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Polish National Science Center (Grant No. DEC-2011/03/N/ST3/02963), as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme, co-financed by the European Regional Development Fund. This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109002 Serial 88
Permanent link to this record
 

 
Author Özen, M.; Mertens, M.; Luyten, J.; Snijkers, F.; d' Hondt, H.; Cool, P.
Title Hydrothermal synthesis of carbonate-free submicron-sized barium titanate from an amorphous precursor : synthesis and characterization Type A1 Journal article
Year 2012 Publication Ceramics international Abbreviated Journal Ceram Int
Volume 38 Issue 1 Pages 619-625
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract (up) In this paper, the amorphous barium titanate precursor was prepared by the peroxo-hydroxide method and post-treated by various drying procedures, such as: room temperature drying, room temperature vacuum drying and vacuum drying at 50 degrees C. The objective in the latter two treatments was to increase the Ti-O-Ba bonds of the precursor. The post-treated precursors were compared with the untreated (i.e., 'wet') precursor. Also, a barium titanate precursor was prepared by an alkoxide route. Afterwards, the precursors were hydrothermally treated at 200 degrees C in a 10 M NaOH solution. Vacuum drying of the precursor seemingly promoted the formation of Ti-O-Ti bonds in the hydrothermal end-product. The low Ba:Ti ratio (0.66) of the alkoxide-route prepared precursor lead to a multi-phase hydrothermal product with BaTiO(3) as the main phase. In contrast, phase pure BaTiO(3), i.e. without BaCO(3) contamination, was obtained for the precursor which was dried at room temperature. Cube-shaped and highly crystalline BaTiO(3) particles were observed by electron microscopy for the hydrothermally treated peroxo-hydroxide-route prepared precursor. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Barking Editor
Language Wos 000298766900083 Publication Date 2011-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-8842; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.986 Times cited 14 Open Access
Notes Approved Most recent IF: 2.986; 2012 IF: 1.789
Call Number UA @ lucian @ c:irua:96263 Serial 1541
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M.
Title Inductively coupled plasma-mass spectrometry: insights through computer modeling Type A1 Journal article
Year 2017 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 32 Issue 32 Pages 233-261
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) In this tutorial review paper, we illustrate how computer modeling can contribute to a better insight in inductively coupled plasma-mass spectrometry (ICP-MS). We start with a brief overview on previous efforts, studying the fundamentals of the ICP and ICP-MS, with main focus on previous modeling activities. Subsequently, we explain in detail the model that we developed in previous years, and we show typical calculation results, illustrating the plasma characteristics, gas flow patterns and the sample transport, evaporation and ionization. We also present the effect of various experimental parameters, such as operating conditions, geometrical aspects and sample characteristics, to illustrate how modeling can help to elucidate the optimal conditions for improved analytical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395529800002 Publication Date 2016-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 14 Open Access OpenAccess
Notes The authors are very grateful to H. Lindner for the initial model development and for the many interesting discussions. They also gratefully acknowledge nancial support from the Fonds voor Wetenschappelijk Onderzoek (FWO; Grant number 6713). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.379
Call Number PLASMANT @ plasmant @ c:irua:140074 Serial 4416
Permanent link to this record
 

 
Author Gholampour, N.; Chaemchuen, S.; Hu, Z.-Y.; Mousavi, B.; Van Tendeloo, G.; Verpoort, F.
Title Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 322 Issue Pages 702-709
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) In-situ fabrication of palladium(0) nanoparticles inside zeolitic imidazolate frameworks (ZIF-8) has been established via one-step facile spray-dry technique. Crystal structures and morphologies of the Pd@ZIF-8 samples are investigated by powder XRD, TEM, SAED, STEM, and EDX techniques. High angle annular dark field scanning transmission electron microscopy (HAAD-STEM) and 3D tomographic analysis confirm the presence of palladium nanoparticles inside the ZIF-8 structure. The porosity, surface area and N-2 physisorption properties are evaluated for Pd@ZIF-8 with various palladium contents. Furthermore, Pd@ZIF-8 samples are effectively applied as heterogeneous catalysts in alkenes hydrogenation. This straightforward method is able to speed up the synthesis of encapsulation of metal nanoparticles in metal organic frameworks. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000401594200069 Publication Date 2017-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 0300-9467 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 14 Open Access OpenAccess
Notes ; The authors would like to express their deep accolade to “State Key Laboratory of Advanced Technology for Materials Synthesis and Processing” for financial support. S.C. appreciates of the National Natural Science Foundation of China (303-41150231), the Fundamental Research Funds for the Central Universities (WUT: 2016IVA092) and the Research Fund for the Doctoral Program of Higher Education of China (471-40120222). N.G. thanks the Chinese Scholarship Council (CSC) for her Ph.D. study grant 2013GXZ985. Z.-Y. H and G. V.T. acknowledge the support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; Approved Most recent IF: 6.216
Call Number UA @ lucian @ c:irua:144152 Serial 4686
Permanent link to this record
 

 
Author Zanin, L.; Tomasi, N.; Rizzardo, C.; Gottardi, S.; Terzano, R.; Alfeld, M.; Janssens, K.; De Nobili, M.; Mimmo, T.; Cesco, S.
Title Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes Type A1 Journal article
Year 2015 Publication Physiologia plantarum Abbreviated Journal Physiol Plantarum
Volume 154 Issue 1 Pages 82-94
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) Iron (Fe) sources available for plants in the rhizospheric solution are mainly a mixture of complexes between Fe and organic ligands, including phytosiderophores (PS) and water-extractable humic substances (WEHS). In comparison with the other Fe sources, Fe-WEHS are more efficiently used by plants, and experimental evidences show that Fe translocation contributes to this better response. On the other hand, very little is known on the mechanisms involved in Fe allocation in leaves. In this work, physiological and molecular processes involved in Fe distribution in leaves of Fe-deficient Cucumis sativus supplied with Fe-PS or Fe-WEHS up to 5days were studied combining different techniques, such as radiochemical experiments, synchrotron micro X-ray fluorescence, real-time reverse transcription polymerase chain reaction and in situ hybridization. In Fe-WEHS-fed plants, Fe was rapidly (1day) allocated into the leaf veins, and after 5days, Fe was completely transferred into interveinal cells; moreover, the amount of accumulated Fe was much higher than with Fe-PS. This redistribution in Fe-WEHS plants was associated with an upregulation of genes encoding a ferric(III)-chelate reductase (FRO), a Fe2+ transporter (IRT1) and a natural resistance-associated macrophage protein (NRAMP). The localization of FRO and IRT1 transcripts next to the midveins, beside that of NRAMP in the interveinal area, may suggest a rapid and efficient response induced by the presence of Fe-WEHS in the extra-radical solution for the allocation in leaves of high amounts of Fe. In conclusion, Fe is more efficiently used when chelated to WEHS than PS and seems to involve Fe distribution and gene regulation of Fe acquisition mechanisms operating in leaves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353067500007 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.33 Times cited 14 Open Access
Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma 'Futuro in Ricerca') and Free University of Bolzano (TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 'Structuring the European Research Area' Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). We thank Karen Appel for her scientific and technical support in obtaining the experimental data at Beamline L (HASYLAB, DESY, Hamburg, Germany). ; Approved Most recent IF: 3.33; 2015 IF: 3.138
Call Number UA @ admin @ c:irua:132500 Serial 5678
Permanent link to this record
 

 
Author Georgieva, V.; Voter, A.F.; Bogaerts, A.
Title Understanding the surface diffusion processes during magnetron sputter-deposition of complex oxide Mg-Al-O thin films Type A1 Journal article
Year 2011 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume 11 Issue 6 Pages 2553-2558
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) It is known that film structure may change dramatically with the extent of surface diffusion during the film growth process. In the present work, surface diffusion, induced thermally or activated by energetic impacts, is investigated theoretically under conditions appropriate for magnetron sputter-deposition of MgAlO thin films with varying stoichiometry. The distribution of surface diffusion energy barriers available to the system was determined for each stoichiometry, which allowed assessing in a qualitative way how much surface diffusion will take place on the time scale available between deposition events. The activation energy barriers increase with the Al concentration in the film, and therefore, the surface diffusion rates in the time frame of typical deposition rates drop, which can explain the decrease in crystallinity in the film structure and the transition to amorphous structure. The deposition process and the immediate surface diffusion enhanced by the energetic adatoms are simulated by means of a molecular dynamics model. The longer-time thermal surface diffusion and the energy landscape are studied by the temperature accelerated dynamics method, applied in an approximate way. The surface diffusion enhanced by the energetic impacts appears to be very important for the film structure in the low-temperature deposition regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000291074600068 Publication Date 2011-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 14 Open Access
Notes Approved Most recent IF: 4.055; 2011 IF: 4.720
Call Number UA @ lucian @ c:irua:89566 Serial 3806
Permanent link to this record
 

 
Author Venturi, F.; Calizzi, M.; Bals, S.; Perkisas, T.; Pasquini, L.
Title Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates Type A1 Journal article
Year 2015 Publication Materials research express Abbreviated Journal Mater Res Express
Volume 2 Issue 2 Pages 015007
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract (up) Magnesium nanoparticles (NPs) with initial size in the 10-50 nmrange were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000369978500007 Publication Date 2014-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.068 Times cited 14 Open Access Not_Open_Access
Notes ; Financial support by COST Action MP1103 'Nanostructured Materials for Solid-State Hydrogen Storage' is gratefully acknowledged. ; Approved Most recent IF: 1.068; 2015 IF: NA
Call Number UA @ lucian @ c:irua:132275 Serial 4240
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Graphene on hexagonal lattice substrate : stress and pseudo-magnetic field Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 17 Pages 173106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Moire patterns in the pseudo-magnetic field and in the strain profile of graphene (GE) when put on top of a hexagonal lattice substrate are predicted from elasticity theory. The van der Waals interaction between GE and the substrate induces out-of-plane deformations in graphene which results in a strain field, and consequently in a pseudo-magnetic field. When the misorientation angle is about 0.5 degrees, a three-fold symmetric strain field is realized that results in a pseudo-magnetic field very similar to the one proposed by F. Guinea, M. I. Katsnelson, and A. K. Geim [Nature Phys. 6, 30 (2010)]. Our results show that the periodicity and length of the pseudo-magnetic field can be tuned in GE by changing the misorientation angle and substrate adhesion parameters and a considerable energy gap (23 meV) can be obtained due to out-of-plane deformation of graphene which is in the range of recent experimental measurements (20-30 meV). (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000336142500066 Publication Date 2014-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:117724 Serial 1375
Permanent link to this record
 

 
Author Bittencourt, C.; van Lier, G.; Ke, X.; Suarez-Martinez, I.; Felten, A.; Ghijsen, J.; Van Tendeloo, G.; Ewels, C.O.
Title Spectroscopy and defect identification for fluorinated carbon nanotubes Type A1 Journal article
Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 6 Pages 920-925
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) Multi-wall carbon nanotubes (MWCNTs) were exposed to a CF4 radio-frequency (rf) plasma. High-resolution photoelectron spectroscopy shows that the treatment effectively grafts fluorine atoms onto the MWCNTs, altering the valence electronic states. Fluorine surface concentration can be tuned by varying the exposure time. Evaporation of gold onto MWCNTs is used to mark active site formation. High-resolution transmission electron microscopy coupled with density functional theory (DFT) modelling is used to characterise the surface defects formed, indicating that the plasma treatment does not etch the tube surface. We suggest that this combination of theory and microscopy of thermally evaporated gold atoms onto the CNT surface may be a powerful approach to characterise both surface defect density as well as defect type.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000265469200011 Publication Date 2009-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 14 Open Access
Notes Iuap; Fwo Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:77315 Serial 3073
Permanent link to this record