|
Record |
Links |
|
Author |
Xu, P.; Qi, D.; Schoelz, J.K.; Thompson, J.; Thibado, P.M.; Wheeler, V.D.; Nyakiti, L.O.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Neek-Amal, M.; Peeters, F.M.; |
|
|
Title |
Multilayer graphene, Moire patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC |
Type |
A1 Journal article |
|
Year |
2014 |
Publication |
Carbon |
Abbreviated Journal |
Carbon |
|
|
Volume |
80 |
Issue |
|
Pages |
75-81 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Epitaxial graphene is grown on a non-polar n(+) 6H-SiC m-plane substrate and studied using atomic scale scanning tunneling microscopy. Multilayer graphene is found throughout the surface and exhibits rotational disorder. Moire patterns of different spatial periodicities are found, and we found that as the wavelength increases, so does the amplitude of the modulations. This relationship reveals information about the interplay between the energy required to bend graphene and the interaction energy, i.e. van der Waals energy, with the graphene layer below. Our experiments are supported by theoretical calculations which predict that the membrane topographical amplitude scales with the Moire pattern wavelength, L as L-1 + alpha L-2. (C) 2014 Elsevier Ltd. All rights reserved. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Oxford |
Editor |
|
|
|
Language |
|
Wos |
000344132400009 |
Publication Date |
2014-08-19 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0008-6223; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.337 |
Times cited |
14 |
Open Access |
|
|
|
Notes |
; P.X. and P.M.T. gratefully acknowledge the financial support of ONR under grant N00014-10-1-0181 and NSF under grant DMR-0855358. L.O.N. acknowledges the support of American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the U.S. Naval Research Laboratory is supported by the Office of Naval Research. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, and the EUROgraphene project CONGRAN. M.N.-A was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; |
Approved |
Most recent IF: 6.337; 2014 IF: 6.196 |
|
|
Call Number |
UA @ lucian @ c:irua:121194 |
Serial |
2221 |
|
Permanent link to this record |