|
Abstract |
A first principles study of La(2-2x)Sr(1+2x)Mn(2)O(7) compounds for doping levels 0.3 <= x <= 0.5 shows that the low energy electronic structure of the majority spin carriers is determined by strong momentum-dependent interactions between the Mn e(g) d(x)(2)-y(2) and d(3z)(2)-r(2) orbitals, which, in addition to an x-dependent Jahn-Teller distortion, differ in the ferromagnetic and antiferromagnetic phases. The Fermi surface exhibits nesting behavior that is reflected by peaks in the static susceptibility, whose positions as a function of momentum have a nontrivial dependence on x. |
|