toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yu, Y.; Chen, X.; Liu, X.; Li, J.; Sanyal, B.; Kong, X.; Peeters, F.M.; Li, L. doi  openurl
  Title Ferromagnetism with in-plane magnetization, Dirac spin-gapless semiconducting properties, and tunable topological states in two-dimensional rare-earth metal dinitrides Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 2 Pages 024407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Since the successful synthesis of bulk single crystals MoN2 and ReN2, which have a layered structure, transition-metal dinitrides have attracted considerable attention in recent years. Here, we focus on rare-earth metal (Rem) elements, and propose seven stable Rem dinitride monolayers with a 1T structure, namely, 1T-RemN2. We use first-principles calculations, and find that these monolayers have a ferromagnetic ground state with in-plane magnetization. Without spin-orbit coupling (SOC), the band structures are spin-polarized with Dirac points at the Fermi level. Remarkably, the 1T-LuN2 monolayer exhibits an isotropic magnetocrystalline anisotropy energy in the xy plane with in-plane magnetization, indicating easy tunability of the magnetization direction. When rotating the magnetization vector in the xy plane, we propose a model that accurately describes the variation of the SOC band gap and the two possible topological states (Weyl-like semimetal and Chern insulator states) whose properties are tunable. The Weyl-like semimetal state is a critical point between the two Chern insulator states with opposite sign of the Chern numbers (+/- 1). The nontrivial band gap (up to 60.3 meV) and the Weyl-like semimetal state are promising for applications in spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000742384700001 Publication Date 2022-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 4 Open Access Not_Open_Access: Available from 06.07.2202  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:186514 Serial 6991  
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K. pdf  doi
openurl 
  Title Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning Type A1 Journal article
  Year 2016 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 615-622  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract (down) Since the recent development of a mobile setup, MA-XRF scanning proved a valuable tool for the non-invasive, technical study of paintings. In this work, the applicability of MA-XRF scanning for investigating stained-glass windows inside a conservation studio is assessed by analysis of a high-profile, well-studied late-mediaeval panel. Although accurate quantification of components is not feasible with this analytical imaging technique, plotting the detected intensities of K versus Ca in a scatter plot allowed distinguishing glass fragments of different compositional types within the same panel. In particular, clusters in the Ca/K correlation plot revealed the presence of two subtypes of potash glass and three subtypes of high lime low alkali glass. MA-XRF results proved consistent with previous quantitative SEM-EDX analysis on two samples and analytical-based theories on glass production in the Low Countries formulated in literature. A bi-plot of the intensities of the more energetic Rb-K versus Sr-K emission lines yielded a similar glass type differentiation and is here presented as suitable alternative in case the Ca/K signal ratio is affected by superimposed weathering crusts. Apart from identification of the chromophores responsible for the green, blue and red glass colors, contrasting the associated elemental distribution maps obtained on the exterior and interior side of the glass permitted discriminating between colored pot metal glass and multi-layered flashed glass as well. Finally, the benefit of obtaining compositional information from the entire surface, as opposed to point analysis, was illustrated by the discovery of what appears to be a green cobalt glass a feature that was previously missed on this well-studied stained-glass window, both by connoisseurs and spectroscopic sample analysis. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600074 Publication Date 2015-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 22 Open Access  
  Notes ; The staff of the Museums of the City of Bruges, i.e. Director Till-Holger Borchert and Deputy Curator Kristel Van Audenaeren, are acknowledged for this pleasant collaboration and the authorization for the publication of the images in this article. This research was supported by the InBev-Baillet Latour fund. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:131100 Serial 5514  
Permanent link to this record
 

 
Author Vanraes, P.; Parayil Venugopalan, S.; Besemer, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Assessing neutral transport mechanisms in aspect ratio dependent etching by means of experiments and multiscale plasma modeling Type A1 Journal Article
  Year 2023 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume 32 Issue 6 Pages 064004  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (down) Since the onset of pattern transfer technologies for chip manufacturing, various strategies have been developed to circumvent or overcome aspect ratio dependent etching (ARDE). These methods have, however, their own limitations in terms of etch non-idealities, throughput or costs. Moreover, they have mainly been optimized for individual in-device features and die-scale patterns, while occasionally ending up with poor patterning of metrology marks, affecting the alignment and overlay in lithography. Obtaining a better understanding of the underlying mechanisms of ARDE and how to mitigate them therefore remains a relevant challenge to date, for both marks and advanced nodes. In this work, we accordingly assessed the neutral transport mechanisms in ARDE by means of experiments and multiscale modeling for SiO<sub>2</sub>etching with CHF<sub>3</sub>/Ar and CF<sub>4</sub>/Ar plasmas. The experiments revealed a local maximum in the etch rate for an aspect ratio around unity, i.e. the simultaneous occurrence of regular and inverse reactive ion etching lag for a given etch condition. We were able to reproduce this ARDE trend in the simulations without taking into account charging effects and the polymer layer thickness, suggesting shadowing and diffuse reflection of neutrals as the primary underlying mechanisms. Subsequently, we explored four methods with the simulations to regulate ARDE, by varying the incident plasma species fluxes, the amount of polymer deposition, the ion energy and angular distribution and the initial hardmask sidewall angle, for which the latter was found to be promising in particular. Although our study focusses on feature dimensions characteristic to metrology marks and back-end-of-the-line integration, the obtained insights have a broader relevance, e.g. to the patterning of advanced nodes. Additionally, this work supports the insight that physisorption may be more important in plasma etching at room temperature than originally thought, in line with other recent studies, a topic on which we recommend further research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001021250100001 Publication Date 2023-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes P Vanraes acknowledges funding by ASML for the project ‘Computational simulation of plasma etching of trench structures’. P Vanraes and A Bogaerts want to express their gratitude to Mark J Kushner (University of Michigan) for the sharing of the HPEM and MCFPM codes, and for the interesting exchange of views. P Vanraes wishes to thank Violeta Georgieva and Stefan Tinck for the fruitful discussions on the HPEM code, Yu-Ru Zhang for an example of the CCP reactor code and Karel Venken for his technical help with the server maintenance and use. S P Venugopalan and M Besemer wish to thank Luigi Scaccabarozzi, Sander Wuister, Coen Verschuren, Michael Kubis, Kuan-Ming Chen, Ruben Maas, Huaichen Zhang and Julien Mailfert (ASML) for the insightful discussions. Approved Most recent IF: 3.8; 2023 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:197760 Serial 8811  
Permanent link to this record
 

 
Author Biely, K.; Maes, D.; Van Passel, S. url  doi
openurl 
  Title The idea of weak sustainability is illegitimate Type A1 Journal article
  Year 2018 Publication Environment, development and sustainability Abbreviated Journal  
  Volume 20 Issue 1 Pages 223-232  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract (down) Since the introduction of the sustainability challenge, scientists disagree over the interpretation of the term sustainability. Weak and strong sustainability are the two main interpretations of sustainability, which are opposing each other. Some researchers stated that the interpretation of the term depends on the context; others disagree pointing out that it always implies the meaning of continuation. The term sustainability can be used as attribute, which adds a certain characteristic to the noun. If something can be attributed as being sustainable, it can also be unsustainable. The sustainability challenge consists of shifting from the current unsustainable towards a sustainable system. This paper outlines that the weak sustainability term is illegitimate, as it leads to a contradiction with the acknowledged assumption that the current state is unsustainable. This contradiction is revealed through an analysis of the occurrence of decoupling in agriculture: Agricultural land use could be decoupled from agricultural production, but only with the trade-off of massive increases in fertilizer, pesticide, energy and water usage. This paper outlines an inherent inconsistency within the ongoing discussion about the interpretation of sustainability. Through identifying the invalidity of the weak sustainability interpretation the focus can be shifted form the discourse to the sustainability challenge itself.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423142700011 Publication Date 2016-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-585x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; The authors would like to thank the reviewers for their time and their comments on the draft version. This paper was supported by the Horizon 2020 project SUFISA (Grant Agreement No. 635577). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:149043 Serial 6212  
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Radu, I.P.; Pourtois, G. pdf  doi
openurl 
  Title Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures : a first-principles study Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 8 Pages 7725-7734  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D -based nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395494200119 Publication Date 2017-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 10 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:142483 Serial 4696  
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Functional silicene and stanene nanoribbons compared to graphene: electronic structure and transport Type A1 Journal article
  Year 2016 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 3 Issue 1 Pages 015001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Since the advent of graphene, other 2D materials have garnered interest; notably the single element materials silicene, germanene, and stanene. Weinvestigate the ballistic current-voltage (I-V) characteristics of armchair silicene and stanene armchair nanoribbons (AXNRs with X = Si, Sn) using a combination of density functional theory and non-equilibrium Green's functions. The impact of out-of-plane electric field and in-plane uniaxial strain on the ribbon geometries, electronic structure, and (I-V)s are considered and contrasted with graphene. Since silicene and stanene are sp(2)/sp(3) buckled layers, the electronic structure can be tuned by an electric field that breaks the sublattice symmetry, an effect absent in graphene. This decreases the current by similar to 50% for Sn, since it has the largest buckling. Uniaxial straining of the ballistic channel affects the AXNR electronic structure in multiple ways: it changes the bandgap and associated effective carrier mass, and creates a local buckling distortion at the lead-channel interface which induces a interface dipole. Due to the increasing sp(3) hybridization character with increasing element mass, large reconstructions rectify the strained systems, an effect absent in sp(2) bonded graphene. This results in a smaller strain effect on the current: a decrease of 20% for Sn at 15% tensile strain compared to a similar to 75% decrease for C.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000373936300021 Publication Date 2016-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 19 Open Access  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:144746 Serial 4658  
Permanent link to this record
 

 
Author Chen, Y.; Hong-Yu, W.; Peeters, F.M.; Shanenko, A.A. pdf  doi
openurl 
  Title Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core Type A1 Journal article
  Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 27 Issue 27 Pages 125701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Since the 1960's it has been well known that the basic superconductive quantities can exhibit oscillations as functions of the thickness (diameter) in superconducting nanofilms (nanowires) due to the size quantization of the electronic spectrum. However, very little is known about the effects of quantum confinement on the microscopic properties of vortices. Based on a numerical solution to the Bogoliubov-de Gennes equations, we study the quantum-size oscillations of the vortex core resulting from the sequential interchange of the Kramer-Pesch and anti-Kramer-Pesch regimes with changing nanocylinder radius. The physics behind the anti-Kramer-Pesch anomaly is displayed by utilizing a semi-analytical Anderson approximate solution. We also demonstrate that the anti-Kramer-Pesch vortex core is robust against thermal smearing and results in a distinctive two-maxima structure in the local density of states, which can be used to identify the existence of the anti-Kramer-Pesch vortex.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000351294700018 Publication Date 2015-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 4 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. NSFC-11304134, the Flemish Science Foundation (FWO-Vl), and the Methusalem program. AAS acknowledges the support of the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). WHY acknowledges the support of Scientific Research Fund of Zhejiang Provincial Education Department (Y201120994). ; Approved Most recent IF: 2.649; 2015 IF: 2.346  
  Call Number c:irua:125460 Serial 2787  
Permanent link to this record
 

 
Author Koirala, B.; Rasti, B.; Bnoulkacem, Z.; De Lima Ribeiro, A.; Madriz, Y.; Herrmann, E.; Gestels, A.; De Kerf, T.; Janssens, K.; Steenackers, G.; Gloaguen, R.; Scheunders, P. pdf  url
doi  openurl
  Title An extensive multisensor hyperspectral benchmark datasets of intimate mixtures of mineral powders Type P1 Proceeding
  Year 2023 Publication IEEE International Geoscience and Remote Sensing Symposium proceedings T2 – IGARSS 2023 – 2023 IEEE International Geoscience and Remote Sensing Symposium, 16-21 July 2023, Pasadena, CA, USA Abbreviated Journal  
  Volume Issue Pages 5890-5893 T2 - IGARSS 2023 - 2023 IEEE Internation  
  Keywords P1 Proceeding; Economics; Vision lab; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract (down) Since many materials behave as heterogeneous intimate mixtures with which each photon interacts differently, the relationship between spectral reflectance and material composition is very complex. Quantitative validation of spectral unmixing algorithms requires high-quality ground truth fractional abundance data, which are very difficult to obtain.In this work, we generated a comprehensive hyperspectral dataset of intimate mineral powder mixtures by homogeneously mixing five different clay powders (Kaolin, Roof clay, Red clay, mixed clay, and Calcium hydroxide). In total 325 samples were prepared. Among the 325 samples, 60 mixtures were binary, 150 were ternary, 100 were quaternary, and 15 were quinary. For each mixture (and pure clay powder), reflectance spectra are acquired by 13 different sensors, with a broad wavelength range between the visible and the long-wavelength infrared regions (i.e., between 350 nm and 15385 nm) and with a large variation in sensor types, platforms, and acquisition conditions. We will make this dataset public, to be used by the community for the validation of nonlinear unmixing methodologies (https://github.com/VisionlabUA/Multisensor_datasets)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001098971606002 Publication Date 2023-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 979-83-503-2010-7 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201596 Serial 9035  
Permanent link to this record
 

 
Author De Backer, J. url  openurl
  Title The versatile nature of cytoglobin, the Swiss army knife among globins, with a preference for oxidative stress Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages XVIII, 232 p.  
  Keywords Doctoral thesis; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract (down) Since its discovery 20 years ago, many studies have been performed to gain insight into the functional role of cytoglobin (Cygb). However, Cygb has been proven to be a promiscuous protein. Yet, there is a consensus that Cygb is a cytoprotective protein involved in redox homeostasis. CYGB is a ubiquitously expressed hexacoordinated globin that is highly expressed in melanocytes and is often found to be downregulated during melanocyte-to-melanoma transition. In Chapter III, we investigated the molecular mechanism through which CYGB could be involved in redox regulation. Here, we showed that CYGB contains two redox-sensitive cysteine residues and that the formation of an intramolecular disulfide bridge resulted in the heme group becoming more accessible to external ligands. This supports the hypothesis that Cys38 and Cys83 serve as sensitive redox sensors. In Chapter IV we showed that CYGB mRNA and protein levels were elevated upon exposure to hypoxia. Interestingly, this upregulation was most likely HIF-2α-dependent. We propose that in melanoma, HIF-2α, rather than HIF-1α, positively regulates CYGB under hypoxic conditions in a cell type specific way. In Chapter V, the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels was investigated. We confirmed that NTP endows cytotoxicity that induces cell death through apoptosis and that this was mediated through the production of ROS. Moreover, we showed that CYGB protects melanoma cells from ROS-induced apoptosis by the scavenging of ROS. Interestingly, CYGB expression influenced the expression of NRF2 and HO-1. We identified the lncRNA MEG3 as a possible mechanism through which NRF2 expression and its downstream target HO-1 can be regulated by CYGB. In chapter VI, increased basal ROS levels and higher degree of lipid peroxidation upon RSL3 treatment contributed to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB expression regulation was identified as a critical determinant of the ferroptosis–pyroptosis therapy response. This suggests that CYGB is involved in the regulation of multiple modes of programmed cell death. FInally, we sought to delineate the RONS that are responsible for plasma-induced ICD. Our results highlight the importance of the short-lived species. Furthermore, we are first to demonstrate that NTP-created vaccine is safely prepared and offers complete protection. Moreover, we provide conclusive evidence that direct application of NTP induces ICD in melanoma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:193568 Serial 7277  
Permanent link to this record
 

 
Author Dubrovinsky, L.; Dubrovinskaia, N.; Prakapenka, V.B.; Abakumov, A.M. url  doi
openurl 
  Title Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar Type A1 Journal article
  Year 2012 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 3 Issue Pages 1163-1167  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Since invention of the diamond anvil cell technique in the late 1950s for studying materials at extreme conditions, the maximum static pressure generated so far at room temperature was reported to be about 400 GPa. Here we show that use of micro-semi-balls made of nanodiamond as second-stage anvils in conventional diamond anvil cells drastically extends the achievable pressure range in static compression experiments to above 600 GPa. Micro-anvils (10-50 mu m in diameter) of superhard nano-diamond (with a grain size below similar to 50 nm) were synthesized in a large volume press using a newly developed technique. In our pilot experiments on rhenium and gold we have studied the equation of state of rhenium at pressures up to 640 GPa and demonstrated the feasibility and crucial necessity of the in situ ultra high-pressure measurements for accurate determination of material properties at extreme conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313514100073 Publication Date 2012-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 150 Open Access  
  Notes Approved Most recent IF: 12.124; 2012 IF: 10.015  
  Call Number UA @ lucian @ c:irua:110134 Serial 1563  
Permanent link to this record
 

 
Author Brosens, F.; Magnus, W. doi  openurl
  Title Newtonian trajectories : a powerful tool for solving quantum dynamics Type A1 Journal article
  Year 2010 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 150 Issue 43/44 Pages 2102-2105  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract (down) Since Ehrenfests theorem, the role and importance of classical paths in quantum dynamics have been examined by several means. Along this line, we show that the classical equations of motion provide a solution to quantum dynamics, if appropriately incorporated into the Wigner distribution function, exactly reformulated in a type of Boltzmann equation. Also the quantum-mechanical features of the canonical ensemble can be studied in this framework of Newtonian dynamics, if the initial distribution function is appropriately constructed from the statistical operator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000284251700006 Publication Date 2010-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 7 Open Access  
  Notes ; The authors thank J.T. Devreese and J. Tempere for interesting and helpful discussions, and, in particular, L.F. Lemmens for several valuable suggestions. One of the authors (F.B.) acknowledges the FWO projects G.0115.06 and G.0365.08 as well as the WOG project WO.033.09N, for financial support. ; Approved Most recent IF: 1.554; 2010 IF: 1.981  
  Call Number UA @ lucian @ c:irua:85795 Serial 2338  
Permanent link to this record
 

 
Author Al-Emam, E.; Soenen, H.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Characterization of polyvinyl alcohol-borax/agarose (PVA-B/AG) double network hydrogel utilized for the cleaning of works of art Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 106  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract (down) Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators' tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580572500001 Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited 1 Open Access  
  Notes ; Ehab Al-Emam thanks the Egyptian Ministry of Higher Education for funding his Ph.D. scholarship in addition to being grateful to University of Antwerp for additional funding. ; Approved Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:173594 Serial 6466  
Permanent link to this record
 

 
Author Radepont, M.; de Nolf, W.; Janssens, K.; van der Snickt, G.; Coquinot, Y.; Klaassen, L.; Cotte, M. doi  openurl
  Title The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite (\alpha-Hg3S2Cl2), kenhsuite (\gamma-Hg3S2Cl2) and calomel (Hg2Cl2) in historical paintings Type A1 Journal article
  Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 26 Issue 5 Pages 959-968  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Since antiquity, the red pigment mercury sulfide (α-HgS), called cinnabar in its natural form or vermilion red when synthetic, was very often used in frescoes and paintings, even if it was known to suffer occasionally from degradation. The paint hereby acquires a black or silver-grey aspect. The chemical characterization of these alteration products is rather challenging mainly because of the micrometric size and heterogeneity of the surface layers that develop and that are responsible for the color change. Methods such as electron microscopy, synchrotron-based microscopic X-ray fluorescence, microscopic X-ray absorption near edge spectroscopy, Raman microscopy and secondary ion microscopy have been previously employed to identify the (Hg- and S-) compounds present and to study their co-localization. Next to these, also microscopic X-ray diffraction (XRD) (either by making use of laboratory X-ray sources or when used at a synchrotron facility) allows the identification of the crystal phases that are present in degraded HgS paint layers. In this paper we employ these various forms of micro-XRD to analyze degraded red paint in different paintings and compare the results with other X-ray based methods. Whereas the elemental analyses of the degradation products revealed, next to mercury and sulfur, the presence of chlorine, X-ray diffraction allowed the identification, next to α-HgS, of the Hg and S-containing compound calomel (Hg2Cl2) but also of the Hg, S and Cl-containing minerals corderoite (α-Hg3S2Cl2) and kenhsuite (γ-Hg3S2Cl2). These observations are consistent with X-ray absorption spectroscopy measurements performed at the S- and Cl-edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000289731900011 Publication Date 2011-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 40 Open Access  
  Notes ; The authors gratefully acknowledge GOA programme “XANES meets EELS'' (University of Antwerp Research Council), the IUAP VI/P16 programme ”Nacho'' (BELSPO, Brussels, Belgium) and FWO (Brussels, Belgium) projects no. G.0689.06, G.0704.08 and G017909N for financial support, the ESRF for granting beamtime under proposals no. EC442 and EC720, and Gema Martinez-Criado for practical help on ID18F. The KMSKA staff is also gratefully acknowledged for their help and interest. Javier Chillida is thanked for providing us with the Pedralbes samples. The authors are also indebted to the CHARISMA project (grant agreement 228330) for financial support. ; Approved Most recent IF: 3.379; 2011 IF: 3.220  
  Call Number UA @ admin @ c:irua:89927 Serial 5896  
Permanent link to this record
 

 
Author Gropp, C.; Canossa, S.; Wuttke, S.; Gándara, F.; Li, Q.; Gagliardi, L.; Yaghi, O.M. pdf  url
doi  openurl
  Title Standard Practices of Reticular Chemistry Type A1 Journal article
  Year 2020 Publication Acs Central Science Abbreviated Journal Acs Central Sci  
  Volume 6 Issue 8 Pages 1255-1273  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Since 1995 when the first of metal−organic frameworks was crystallized with the strong bond approach, where metal ions are joined by charged organic linkers exemplified by carboxylates, followed by proof of their porosity in 1998 and ultrahigh porosity in 1999, a revolution in the development of their chemistry has ensued. This is being reinforced by the discovery of two- and three-dimensional covalent organic frameworks in 2005 and 2007. Currently, the chemistry of such porous, crystalline frameworks is collectively referred to as reticular chemistry, which is being practiced in over 100 countries. The involvement of researchers from various backgrounds and fields, and the vast scope of this chemistry and its societal applications, necessitate articulating the “Standard Practices of Reticular Chemistry”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566668400005 Publication Date 2020-08-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2374-7943 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 18.2 Times cited Open Access OpenAccess  
  Notes S.C. acknowledges the Research Foundation Flanders (FWO) for supporting his research (Project 12ZV120N). Approved Most recent IF: 18.2; 2020 IF: 7.481  
  Call Number EMAT @ emat @c:irua:172057 Serial 6423  
Permanent link to this record
 

 
Author Mishra, V.K.; Kumar, P.; Van Poppel, M.; Bleux, N.; Frijns, E.; Reggente, M.; Berghmans, P.; Int Panis, L.; Samson, R. pdf  doi
openurl 
  Title Wintertime spatio-temporal variation of ultrafine particles in a Belgian city Type A1 Journal article
  Year 2012 Publication The science of the total environment Abbreviated Journal  
  Volume 431 Issue Pages 307-313  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Simultaneous measurements of ultrafine particles (UFPs) were carried out at four sampling locations situated within a 1 km(2) grid area in a Belgian city, Borgerhout (Antwerp). All sampling sites had different orientation and height of buildings and dissimilar levels of anthropogenic activities (mainly traffic volume). The aims were to investigate: (i) the spatio-temporal variation of UFP within the area, (ii) the effect of wind direction with respect to the volume of traffic on UFP levels, and (iii) the spatial representativeness of the official monitoring station situated in the study area. All sampling sites followed similar diurnal patterns of UFP variation, but effects of local traffic emissions were evident. Wind direction also had a profound influence on UFP concentrations at certain sites. The results indicated a clear influence of local weather conditions and the more dominant effect of traffic volumes. Our analysis indicated that the regional air quality monitoring station represented the other sampling sites in the study area reasonably well; temporal patterns were found to be comparable though the absolute average concentrations showed differences of up to 35%. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306887900037 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:101123 Serial 8759  
Permanent link to this record
 

 
Author Bakalov, P.; Esfahani, D.N.; Covaci, L.; Peeters, F.M.; Tempere, J.; Locquet, J.-P. url  doi
openurl 
  Title Electric-field-driven Mott metal-insulator transition in correlated thin films : an inhomogeneous dynamical mean-field theory approach Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 165112  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract (down) Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the properties of correlated thin films for various values of the chemical potential, temperature, interaction strength, and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered in which the particle density n, quasiparticle residue Z, and spectral weight at the Fermi level A(ω=0) of each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for n are overall more reliable than those for Z and A(ω=0). The hysteretic behavior (memory effect) characteristic of the bulk doping driven Mott transition persists in the slab.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000373572700002 Publication Date 2016-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was partially funded by the Flemish Fund for Scientific Research (FWO Belgium) under FWO Grant No. G.0520.10 and the joint FWF (Austria)-FWO Grant No. GOG6616N, and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132872 Serial 4167  
Permanent link to this record
 

 
Author Tinck, S.; De Schepper, P.; Bogaerts, A. pdf  doi
openurl 
  Title Numerical investigation of SiO2 coating deposition in wafer processing reactors with SiCl4/O2/Ar inductively coupled plasmas Type A1 Journal article
  Year 2013 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 10 Issue 8 Pages 714-730  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Simulations and experiments are performed to obtain a better insight in the plasma enhanced chemical vapor deposition process of SiO2 by SiCl4/O2/Ar plasmas for introducing a SiO2-like coating in wafer processing reactors. Reaction sets describing the plasma and surface chemistry of the SiCl4/O2/Ar mixture are presented. Typical calculation results include the bulk plasma characteristics, i.e., electrical properties, species densities, and information on important production and loss processes, as well as the chemical composition of the deposited coating, and the thickness uniformity of the film on all reactor surfaces. The film deposition characteristics, and the trends for varying discharge conditions, are explained based on the plasma behavior, as calculated by the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000327790000006 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.846; 2013 IF: 2.964  
  Call Number UA @ lucian @ c:irua:109900 Serial 2397  
Permanent link to this record
 

 
Author Pham, A.-T.; Sorée, B.; Magnus, W.; Jungemann, C.; Meinerzhagen, B.; Pourtois, G. pdf  doi
openurl 
  Title Quantum simulations of electrostatics in Si cylindrical junctionless nanowire nFETs and pFETs with a homogeneous channel including strain and arbitrary crystallographic orientations Type A1 Journal article
  Year 2012 Publication Solid state electronics Abbreviated Journal Solid State Electron  
  Volume 71 Issue Pages 30-36  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Simulation results of electrostatics in Si cylindrical junctionless nanowire transistors with a homogenous channel are presented. Junctionless transistors including strain and arbitrary crystallographic orientations are studied. Size quantization effects are simulated by self-consistent solutions of the Poisson and Schrodinger equations. The 6 x 6 k.p method is employed for the calculation of the valence subband structure in a junctionless nanowire pFET. The influence of stress/strain and crystallographic channel orientation on to the electrostatics in terms of subband structure, charge density, and C-V curve is systematically studied. (C) 2011 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000303033800007 Publication Date 2011-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.58 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 1.58; 2012 IF: 1.482  
  Call Number UA @ lucian @ c:irua:98245 Serial 2786  
Permanent link to this record
 

 
Author Jain, R.; Vikas; Rather, J.A. pdf  doi
openurl 
  Title Voltammetric behaviour of drotaverine hydrochloride in surfactant media and its enhancement determination in Tween-20 Type A1 Journal article
  Year 2011 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal  
  Volume 82 Issue 2 Pages 333-339  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Simple, sensitive and rapid adsorptive voltammetric behaviour of drotaverine hydrochloride onto the HMDE has been explored and validated in surfactant media by using cyclic, differential pulse and square-wave voltammetry. Addition of Tween-20 to the drotaverine hydrochloride containing electrolyte enhances the reduction current signal. The voltammograms of the drug with Tween-20 in phosphate buffers of pH 2.511.0 exhibit a single well defined reduction peak which may be due to the reduction of Cdouble bond; length as m-dashC group. The cyclic voltammetric studies indicated the reduction of drotaverine hydrochloride at the electrode surface through two electron irreversible step and diffusion-controlled. The peak current showed a linear dependence with the drug concentration over the range 0.87.2 μg mL−1. The calculated LOD and LOQ are 1.8 and 6.0 ng mL−1 by SWCAdSV and 8.1 and 27.2 ng mL−1 by DPCAdSV, respectively. The procedure was applied to the assay of the drug in tablet form with mean percentage recoveries of 100.2% with SWCAdSV and 99.7% with DPCAdSV. The validity of the proposed methods was further assessed by applying a standard addition technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000285858200010 Publication Date 2010-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:98686 Serial 8742  
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Poelman, H.; Galvita, V.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. pdf  doi
openurl 
  Title One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation Type A1 Journal article
  Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol  
  Volume 6 Issue 6 Pages 1863-1869  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Simple methods for producing noble metal catalysts with well-defined active sites and improved performance are highly desired in the chemical industry. However, the development of such methods still presents a formidable synthetic challenge. Here, we demonstrate a one-pot synthesis route for the controlled production of bimetallic Pt–In catalysts based on the single-step formation of Mg,Al,Pt,In-containing layered double hydroxides (LDHs). Besides their simple synthesis, these Pt–In catalysts exhibit superior propane dehydrogenation activity compared to their multi-step synthesized analogs. The presented material serves as a showcase for the one-pot synthesis of a broader class of LDH-derived mono- and multimetallic Pt catalysts. The compositional flexibility provided by LDH materials can pave the way towards highperforming Pt-based catalysts with tunable physicochemical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372172800031 Publication Date 2015-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.773 Times cited 12 Open Access  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) by supplying financing of beam time at the DUBBLE beamline of the ESRF and travel costs and a post-doctoral fellowship for S. T. The authors acknowledge the assistance from the DUBBLE (XAS campaign 26-01-979) and SuperXAS staff (Proposal 20131191). E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to O. Janssens for performing ex situ XRD characterization. Approved Most recent IF: 5.773  
  Call Number c:irua:133167 Serial 4057  
Permanent link to this record
 

 
Author Gielis, J. url  doi
openurl 
  Title Simon Stevin as a central figure in the development of abstract algebra and generic programming Type A1 Journal article
  Year 2023 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 34 Issue 2 Pages 155-168  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Simon Stevin (1548-1620) is mainly known for the decimal system and his Clootkrans proof. His influence is also profound in infinitesimal calculus, mechanics, and even in abstract algebra and today’s conception of polynomials, algorithms, and generic programming. Here we review his influence as assessed in generic programming. According to Dr. Stepanov, one of the most influential researchers in generic programming, Stevin’s work on polynomials can be regarded as the essence of generic programming: an algorithm from one domain can be applied in another similar domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001068714100003 Publication Date 2023-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access: Available from 08.02.2024  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198000 Serial 8929  
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Tempère, J.; Kong, M.; Peeters, F.M. url  doi
openurl 
  Title Artificial living crystals in confined environment Type A1 Journal article
  Year 2017 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 95 Issue 6 Pages 062602  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract (down) Similar to the spontaneous formation of colonies of bacteria, flocks of birds, or schools of fish, “living crystals” can be formed by artificial self-propelled particles such as Janus colloids. Unlike usual solids, these “crystals” are far from thermodynamic equilibrium. They fluctuate in time forming a crystalline structure, breaking apart and re-forming again. We propose a method to stabilize living crystals by applying a weak confinement potential that does not suppress the ability of the particles to perform self-propelled motion, but it stabilizes the structure and shape of the dynamical clusters. This gives rise to such configurations of living crystals as “living shells” formed by Janus colloids. Moreover, the shape of the stable living clusters can be controlled by tuning the potential strength. Our proposal can be verified experimentally with either artificial microswimmers such as Janus colloids, or with living active matter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402667600006 Publication Date 2017-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 10 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Research Foundation (FWO-Vl) (Belgium), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), and the Research Fund of the University of Antwerp. W.Y. acknowledges the support from the National Natural Science Foundation of China under Grants No. 11204199 and No. 51135007, the China Scholarship Council, the 131 project and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and a project under Grant No. 2016-096 by Shanxi Scholarship Council of China. ; Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:144205 Serial 4641  
Permanent link to this record
 

 
Author Claes, N.; Asapu, R.; Blommaerts, N.; Verbruggen, S.W.; Lenaerts, S.; Bals, S. pdf  url
doi  openurl
  Title Characterization of silver-polymer core–shell nanoparticles using electron microscopy Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 10 Pages 9186-9191  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Silver-polymer core–shell nanoparticles show interesting optical properties, making them widely applicable in the field of plasmonics. The uniformity, thickness and homogeneity of the polymer shell will affect the properties of the system which makes a thorough structural characterization of these core–shell silver-polymer nanoparticles of great importance. However, visualizing the shell and the particle simultaneously is far from straightforward due to the sensitivity of the polymer shell towards the electron beam. In this study, we use different 2D and 3D electron microscopy techniques to investigate different structural aspects of the polymer coating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437007700028 Publication Date 2018-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access OpenAccess  
  Notes N. C. and S. B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the FWO through project funding (G038116N). R. A. and S. L. acknowledge the Research Foundation Flanders (FWO) for financial support. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:151290UA @ admin @ c:irua:151290 Serial 4959  
Permanent link to this record
 

 
Author Asapu, R.; Ciocarlan, R.-G.; Claes, N.; Blommaerts, N.; Minjauw, M.; Ahmad, T.; Dendooven, J.; Cool, P.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 41577-41585  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Silver nanoparticles are widely used in the field of plasmonics because of their unique optical properties. The wavelength-dependent surface plasmon resonance gives rise to a strongly enhanced electromagnetic field, especially at so-called hot spots located in the nanogap in-between metal nanoparticle assemblies. Therefore, the interparticle distance is a decisive factor in plasmonic applications, such as surface-enhanced Raman spectroscopy (SERS). In this study, the aim is to engineer this interparticle distance for silver nanospheres using a convenient wet-chemical approach and to predict and quantify the corresponding enhancement factor using both theoretical and experimental tools. This was done by building a tunable ultrathin polymer shell around the nanoparticles using the layer-by-layer method, in which the polymer shell acts as the separating interparticle spacer layer. Comparison of different theoretical approaches and corroborating the results with SERS analytical experiments using silver and silver−polymer core−shell nanoparticle clusters as SERS substrates was also done. Herewith, an approach is provided to estimate the extent of plasmonic near-field enhancement both theoretically as well as experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000417005900057 Publication Date 2017-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 29 Open Access OpenAccess  
  Notes financial support through a research fellowship. C.D. wishes to thank the Hercules foundation for the financial support (SPINAL). P.C. and R.-G.C. acknowledge financial support by FWO Vlaanderen (project no. G038215N). N.C. and S.B. acknowledge the financial support from the European Research Council (ERC starting grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @c:irua:147243 Serial 4804  
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title High thermoelectric figure of merit in p-type Mg₃Si₂Te₆: role of multi-valley bands and high anharmonicity Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal  
  Volume 11 Issue 33 Pages 11185-11194  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Silicon-based materials are attractive for thermoelectric applications due to their thermal stability, chemical inertness, and natural abundance of silicon. Here, using a combination of first-principles and Boltzmann transport calculations we report the thermoelectric properties of the recently synthesized compound Mg3Si2Te6. Our analysis reveals that Mg3Si2Te6 is a direct bandgap semiconductor with a bandgap of 1.6 eV. The combination of heavy and light valence bands, along with a high valley degeneracy, results in a large power factor under p-type doping. We also find that Mg is weakly bonded both within and between the layers, leading to low phonon group velocities. The vibrations of the Mg atoms are localized and make a significant contribution to phonon-phonon scattering. This high anharmonicity, coupled with low phonon group velocity, results in a low lattice thermal conductivity of & kappa;(l) = 0.5 W m(-1) K-1 at room temperature, along the cross-plane direction. Combining excellent electronic transport properties and low & kappa;(l), p-type Mg3Si2Te6 achieves figure-of-merit (zT) values greater than 1 at temperatures above 600 K. Specifically, a zT of 2.0 is found at 900 K along the cross-plane direction. Our findings highlight the importance of structural complexity and chemical bonding in electronic and phonon transport, providing guiding insights for further design of Si-based thermoelectrics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041124900001 Publication Date 2023-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.4; 2023 IF: 5.256  
  Call Number UA @ admin @ c:irua:198296 Serial 8821  
Permanent link to this record
 

 
Author Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O.I.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Classification and control of the origin of photoluminescence from Si nanocrystals Type A1 Journal article
  Year 2008 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 3 Issue 3 Pages 174-178  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000254743600017 Publication Date 2008-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387;1748-3395; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 426 Open Access  
  Notes Fwo Approved Most recent IF: 38.986; 2008 IF: 20.571  
  Call Number UA @ lucian @ c:irua:102630 Serial 373  
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Ealet, B.; Pourtois, G.; Chiappe, D.; Cinquanta, E.; Grazianetti, C.; Fanciulli, M.; Molle, A.; Afanas’ev, V.V.; Stesmans, A.; doi  openurl
  Title Theoretical aspects of graphene-like group IV semiconductors Type A1 Journal article
  Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 291 Issue Pages 98-103  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Silicene and germanene are the silicon and germanium counterparts of graphene, respectively. Recent experimental works have reported the growth of silicene on (1 1 1)Ag surfaces with different atomic configurations, depending on the growth temperature and surface coverage. We first theoretically study the structural and electronic properties of silicene on (1 1 1) Ag surfaces, focusing on the (4 x 4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), the corrugated silicene layer, with the Ag substrate removed, is predicted to be semiconducting, with a computed energy bandgap of about 0.3 eV. However, the hybridization between the Si 3p orbitals and the Ag 5s orbital in the silicene/(1 1 1)Ag slab model leads to an overall metallic system, with a distribution of local electronic density of states, which is related to the slightly disordered structure of the silicene layer on the (1 1 1)Ag surface. We next study the interaction of silicene and germanene with different hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (0 0 0 1)ZnS or ZnSe surfaces, which should be more energetically stable for very thin layers, silicene and germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy bandgap can be controlled by an out-of-plane electric field, an important finding for the potential use of these materials in nanoelectronic devices. (C) 2013 Elsevier B. V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000329327700022 Publication Date 2013-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 20 Open Access  
  Notes Approved Most recent IF: 3.387; 2014 IF: 2.711  
  Call Number UA @ lucian @ c:irua:113765 Serial 3603  
Permanent link to this record
 

 
Author Li, C.; Sanli, E.S.; Barragan-Yani, D.; Stange, H.; Heinemann, M.-D.; Greiner, D.; Sigle, W.; Mainz, R.; Albe, K.; Abou-Ras, D.; van Aken, P. A. url  doi
openurl 
  Title Secondary-Phase-Assisted Grain Boundary Migration in CuInSe2 Type A1 Journal article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 124 Issue 9 Pages 095702  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Significant structural evolution occurs during the deposition of CuInSe2 solar materials when the Cu content increases. We use in situ heating in a scanning transmission electron microscope to directly observe how grain boundaries migrate during heating, causing nondefected grains to consume highly defected grains. Cu substitutes for In in the near grain boundary regions, turning them into a Cu-Se phase topotactic with the CuInSe2 grain interiors. Together with density functional theory and molecular dynamics calculations, we reveal how this Cu-Se phase makes the grain boundaries highly mobile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518464200009 Publication Date 2020-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes Horizon 2020 Framework Programme, 823717—ESTEEM3 ; Max-Planck-Gesellschaft; Helmholtz Virtual Institute; Approved Most recent IF: 8.6; 2020 IF: 8.462  
  Call Number UA @ lucian @c:irua:167699 Serial 6393  
Permanent link to this record
 

 
Author Dhayalan, S.K.; Nuytten, T.; Pourtois, G.; Simoen, E.; Pezzoli, F.; Cinquanta, E.; Bonera, E.; Loo, R.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Vandervorst, W. pdf  doi
openurl 
  Title Insights into the C Distribution in Si:C/Si:C:P and the Annealing Behavior of Si:C Layers Type A1 Journal article
  Year 2019 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 8 Issue 4 Pages P209-P216  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Si:C and Si:C:P alloys are potential candidates for source-drain stressor applications in n-type Fin Field Effect Transistors (FinFETs). Increasing the C content to achieve high strain results in the arrangement of C atoms as third nearest neighbors (3nn) in the Si: C lattice. During thermal annealing, the presence of C atoms as 3nn may promote clustering at the interstitial sites, causing loss of stress. The concentration of C atoms as 3nn is reduced by the incorporation of a small amount of Ge atoms during the growth, whereas in-situ P doping does not influence this 3nn distribution [J Solid State Sci. Technol vol 6, p 755, 2017]. Small amounts of Ge are provided during low temperature selective epitaxial growth scheme, which are based on cyclic deposition and etching (CDE). In this work, we aim to provide physical insights into the aforementioned phenomena, to understand the behavior of 3nn C atoms and the types of defects that are formed in the annealed Si: C films. Using ab-initio simulations, the Ge-C interaction in the Si matrix is investigated and this insight is used to explain how the Ge incorporation leads to a reduced 3nn distribution of the C atoms. The interaction between C and P in the Si: C: P films is also investigated to explain why the P incorporation has not led to a reduction in the 3nn distribution. We then report on the Raman characterization of Si: C layers subjected to post epi annealing. As the penetration depth of the laser is dependent on the wavelength, Raman measurements at two different wavelengths enable us to probe the depth distribution of 3nn C atoms after applying different annealing conditions. We observed a homogeneous loss in 3nn C throughout the layer. Whereas in the kinematic modeling of high resolution X-ray diffraction spectra, a gradient in the substitutional C loss was observed close to the epitaxial layer/substrate interface. This gradient can be due to the out diffusion of C atoms into the Si substrate or to the formation of interstitial C clusters, which cannot be distinguished in HR-XRD. Deep Level Transient Spectroscopy indicated that the prominent out-diffusing species was interstitial CO complex while the interstitial C defects were also prevalent in the epi layer. (c) 2019 The Electrochemical Society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465069200001 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.787 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.787  
  Call Number UA @ admin @ c:irua:160399 Serial 5275  
Permanent link to this record
 

 
Author Denneulin, T.; Rouvière, J.L.; Béché, A.; Py, M.; Barnes, J.P.; Rochat, N.; Hartmann, J.M.; Cooper, D. pdf  doi
openurl 
  Title The reduction of the substitutional C content in annealed Si/SiGeC superlattices studied by dark-field electron holography Type A1 Journal article
  Year 2011 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 26 Issue 12 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Si/Si(1 − x − y)GexCy superlattices are used in the construction of new microelectronic architectures such as multichannel transistors. The introduction of carbon in SiGe allows for compensation of the strain and to avoid plastic relaxation. However, the formation of incoherent β-SiC clusters during annealing limits the processability of SiGeC. This precipitation leads to a modification of the strain in the alloy due to the reduction of the substitutional carbon content. Here, we investigated the strain in annealed Si/Si0.744Ge0.244C0.012 superlattices grown by reduced pressure chemical vapour deposition using dark-field electron holography. The variation of the substitutional C content was calculated by correlating the results with finite-element simulations. The obtained values were then compared with Fourier-transformed infrared spectrometry measurements. It was shown that after annealing for 2 min at 1050 °C carbon no longer has any influence on strain in the superlattice, which behaves like pure SiGe. However, a significant proportion of substitutional C atoms remain in a third-nearest neighbour (3nn) configuration. It was deduced that the influence of 3nn C on strain is negligible and that only isolated atoms have a significant contribution. It was also proposed that the 3nn configuration is an intermediary step during the formation of SiC clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000300151300010 Publication Date 2011-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited Open Access  
  Notes Approved Most recent IF: 2.305; 2011 IF: 1.723  
  Call Number UA @ lucian @ c:irua:136427 Serial 4508  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: