|   | 
Details
   web
Records
Author Schryvers, D.; Cao, S.; Tirry, W.; Idrissi, H.; Van Aert, S.
Title Advanced three-dimensional electron microscopy techniques in the quest for better structural and functional materials Type A1 Journal article
Year 2013 Publication Science and technology of advanced materials Abbreviated Journal Sci Technol Adv Mat
Volume 14 Issue 1 Pages 014206-14213
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) After a short review of electron tomography techniques for materials science, this overview will cover some recent results on different shape memory and nanostructured metallic systems obtained by various three-dimensional (3D) electron imaging techniques. In binary NiTi, the 3D morphology and distribution of Ni4Ti3 precipitates are investigated by using FIB/SEM slice-and-view yielding 3D data stacks. Different quantification techniques will be presented including the principal ellipsoid for a given precipitate, shape classification following a Zingg scheme, particle distribution function, distance transform and water penetration. The latter is a novel approach to quantifying the expected matrix transformation in between the precipitates. The different samples investigated include a single crystal annealed with and without compression yielding layered and autocatalytic precipitation, respectively, and a polycrystal revealing different densities and sizes of the precipitates resulting in a multistage transformation process. Electron tomography was used to understand the interaction between focused ion beam-induced Frank loops and long dislocation structures in nanobeams of Al exhibiting special mechanical behaviour measured by on-chip deposition. Atomic resolution electron tomography is demonstrated on Ag nanoparticles in an Al matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Sendai Editor
Language Wos 000316463800008 Publication Date 2013-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1468-6996;1878-5514; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.798 Times cited 6 Open Access
Notes Fwo; Iap; Esteem Approved Most recent IF: 3.798; 2013 IF: 2.613
Call Number UA @ lucian @ c:irua:107343 Serial 77
Permanent link to this record
 

 
Author Lu, J.; Martinez, G.T.; Van Aert, S.; Schryvers, D.
Title Lattice deformations in quasi-dynamic strain glass visualised and quantified by aberration corrected electron microscopy Type A1 Journal article
Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 251 Issue 10 Pages 2034-2040
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Advanced transmission electron microscopy and statistical parameter estimated quantification procedures were applied to study the room temperature quasi-dynamical strain glass state in NiTi alloys. Nanosized strain pockets are visualised and the displacements of the atom columns are quantified. A comparison is made with conventional high-resolution transmission electron microscopy images of point defect induced strains in NiAl alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000344360000009 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 2 Open Access
Notes Fwo Approved Most recent IF: 1.674; 2014 IF: 1.489
Call Number UA @ lucian @ c:irua:120471 Serial 1801
Permanent link to this record
 

 
Author Wang, X.; Amin-Ahmadi, B.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
Title Effect of annealing on the transformation behavior and mechanical properties of two nanostructured Ti-50.8at.%Ni thin wires produced by different methods Type A1 Journal article
Year 2013 Publication Materials science forum Abbreviated Journal
Volume 738/739 Issue Pages 306-310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A Ti-50.8at.%Ni wire produced using a co-drawing method and a commercial Ti-50.8at.%Ni wire were annealed at different temperatures between 450°C and 700°C. Grains with diameter less than 100nm were revealed by transmission electron microscopy for both wires before annealing treatment. However, the microstructural heterogeneity of the co-drawn wire is more obvious than that of the commercial wire. Multi-stage martensitic transformation was observed in the co-drawn wire, compared with the one-stage A↔M transformation in the commercial wire after annealing at 600°C for 30min. The differences of total elongation, plateau strain and pseudoelastic recoverable strain between the commercial wire and the co-drawn wire were also observed. The differences of the transformation behavior and mechanical properties between the commercial wire and the co-drawn wire are attributed to the microstructural difference between these two wires.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000316089000055 Publication Date 2013-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-9752; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104691 Serial 798
Permanent link to this record
 

 
Author Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D.
Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
Year 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 22 Issue 22 Pages 1222-1232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393853100011 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 2 Open Access
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891
Call Number EMAT @ emat @ c:irua:138980 Serial 4333
Permanent link to this record
 

 
Author Idrissi, H.; Schryvers, D.; Salje, E.K.H.; Zhang, H.; Carpenter, M.A.; Moya, X.
Title Pinning of the martensitic microstructures by dislocations in Cu74.08Al23.13Be2.79 Type P1 Proceeding
Year 2009 Publication Abbreviated Journal
Volume Issue Pages 02029,1-02029,5
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract (down) A single crystal of Cu74.08Al23.13Be2.79 undergoes a martensitic phase transition at 246K and 232K under heating and cooling, respectively. Surprisingly, the martensite phase is elastically much harder than the austenite phase showing that interfaces between various crystallographic variants are strongly pinned and can not be moved by external stress while the phase boundary between the austenite and martensite regions in the sample remains mobile. This unusual behavior was revealed by Dynamical Mechanical Analysis and Resonant Ultrasound Spectroscopy. Transmission Electron Microscopy shows that the pinning is generated by dislocations, which are inherited from the austenite phase. Such dislocations can hinder the movement of stacking faults in the 18R martensite structure or twin boundaries between martensite variants.
Address
Corporate Author Thesis
Publisher Edp Place of Publication Coutaboeuf Editor
Language Wos 000274582300033 Publication Date 2009-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:81952 Serial 2626
Permanent link to this record
 

 
Author Salje, E.K.H.; Zhang, H.; Idrissi, H.; Schryvers, D.; Carpenter, M.A.; Moya, X.; Planes, A.
Title Mechanical resonance of the austenite/martensite interface and the pinning of the martensitic microstructures by dislocations in Cu74.08Al23.13Be2.79 Type A1 Journal article
Year 2009 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 80 Issue 13 Pages 134114,1-1134114,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A single crystal of Cu74.08Al23.13Be2.79 undergoes a martensitic phase transition at 246 and 232 K under heating and cooling, respectively. The phase fronts between the austenite and martensite regions of the sample are weakly mobile with a power-law resonance under external stress fields. Surprisingly, the martensite phase is elastically much harder than the austenite phase showing that interfaces between various crystallographic variants are strongly pinned and cannot be moved by external stress while the phase boundary between the austenite and martensite regions in the sample remains mobile. This unusual behavior was studied by dynamical mechanical analysis (DMA) and resonant ultrasound spectroscopy. The remnant strain, storage modulus, and internal friction were recorded simultaneously for different applied forces in DMA. With increasing forces, the remnant strain increases monotonously while the internal friction peak height shows a minimum at 300 mN. Transmission electron microscopy shows that the pinning is generated by dislocations which are inherited from the austenite phase.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000271351300033 Publication Date 2009-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes Multimat Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:78542 Serial 1975
Permanent link to this record
 

 
Author Delville, R.; Schryvers, D.; Zhang, Z.; James, R.D.
Title Transmission electron microscopy investigation of microstructures in low-hysteresis alloys with special lattice parameters Type A1 Journal article
Year 2009 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 60 Issue 5 Pages 293-296
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) A sharp drop in hysteresis is observed for shape memory alloys satisfying the compatibility condition between austenite and martensite, i.e. ë2 = 1, where ë2 is the middle eigenvalue of the transformation strain matrix. The present work investigates the evolution of microstructure by transmission electron microscopy as the composition of the Ti50Ni50−xPdx system is systemically tuned to achieve the condition ë2 = 1. Changes in morphology, twinning density and twinning modes are reported along with twinless martensite and exact austenitemartensite interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000262553300007 Publication Date 2008-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 56 Open Access
Notes Multimat Approved Most recent IF: 3.747; 2009 IF: 2.949
Call Number UA @ lucian @ c:irua:76017 Serial 3710
Permanent link to this record
 

 
Author Kuriplach, J.; van Petegem, S.; Hou, M.; Van Tendeloo, G.; Schryvers, D.; et al.
Title Positron annihilation study of nanocrystalline Ni3Al : simulations and measurements Type A1 Journal article
Year 2001 Publication Materials science forum T2 – 12th International Conference on Positron Annihilation (ICPA-12), AUG 06-12, 2000, UNIV BUNDERSWEHR MUNCHEN, NEUBIBERG, GERMANY Abbreviated Journal
Volume 363-3 Issue Pages 94-96
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A positron lifetime experiment is performed on samples produced by the compaction of nanocrystalline Ni3Al powder synthesized by the inert-gas condensation technique. In the lifetime spectrum we observe two components corresponding to defects. Computer (virtual) samples of n-Ni3Al are obtained using molecular dynamics combined with the Metropolis Monte Carlo technique. Positron lifetime calculations are then performed on selected regions of simulated samples. For this purpose, a new computational technique based on a generalization of the atomic superposition method for non-periodic systems was developed. Lifetimes calculated in this way are compared to experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-87849-875-3 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:102865 Serial 2681
Permanent link to this record
 

 
Author Ji, G.; Tan, Z.; Shabadi, R.; Li, Z.; Grünewald, W.; Addad, A.; Schryvers, D.; Zhang, D.
Title Triple ion beam cutting of diamond/Al composites for interface characterization Type A1 Journal article
Year 2014 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 89 Issue Pages 132-137
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A novel triple ion beam cutting technique was employed to prepare high-quality surfaces of diamond/Al composites for interfacial characterization, which has been unachievable so far. Near-perfect and artifact-free surfaces were obtained without mechanical pre-polishing. Hence, the as-prepared surfaces are readily available for further study and also, ready to be employed in a focus ion beam system for preferential selection of transmission electron microscopy samples. Dramatically different diamond/Al interface configurations – sub-micrometer Al2O3 particles and clean interfaces were unambiguously revealed.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000333513400015 Publication Date 2014-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes Fwo Approved Most recent IF: 2.714; 2014 IF: 1.845
Call Number UA @ lucian @ c:irua:113394 Serial 3735
Permanent link to this record
 

 
Author Ghidelli, M.; Orekhov, A.; Bassi, A.L.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Béché, A.; Gauquelin, N.; Verbeeck, J.; Raskin, J.-p.; Schryvers, D.; Pardoen, T.; Idrissi, H.
Title Novel class of nanostructured metallic glass films with superior and tunable mechanical properties Type A1 Journal article
Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater
Volume Issue Pages 116955
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) A novel class of nanostructured Zr50Cu50 (%at.) metallic glass films with superior and tunable mechanical

properties is produced by pulsed laser deposition. The process can be controlled to synthetize a wide

range of film microstructures including dense fully amorphous, amorphous embedded with nanocrystals

and amorphous nano-granular. A unique dense self-assembled nano-laminated atomic arrangement

characterized by alternating Cu-rich and Zr/O-rich nanolayers with different local chemical enrichment

and amorphous or amorphous-crystalline composite nanostructure has been discovered, while

significant in-plane clustering is reported for films synthetized at high deposition pressures. This unique

nanoarchitecture is at the basis of superior mechanical properties including large hardness and elastic

modulus up to 10 and 140 GPa, respectively and outstanding total elongation to failure (>9%), leading to

excellent strength/ductility balance, which can be tuned by playing with the film architecture. These

results pave the way to the synthesis of novel class of engineered nanostructured metallic glass films

with high structural performances attractive for a number of applications in microelectronics and

coating industry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000670077800004 Publication Date 2021-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 27 Open Access OpenAccess
Notes H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the Fonds de la Recherche Scientifique – FNRS under Grant T.0178.19 and Grant CDR– J011320F. We acknowledge funding for the direct electron detector used in the 4D stem studies from the Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government J.V acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. A.O. has received partial funding from the GOA project “Solarpaint” of the University of Antwerp. A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.G. and A.L.B acknowledge Chantelle Ekanem for support in PLD depositions. Approved Most recent IF: 5.301
Call Number EMAT @ emat @c:irua:178142 Serial 6761
Permanent link to this record
 

 
Author Yao, X.; Li, Y.; Cao, S.; Ma, X.; Zhang, X.-ping; Schryvers, D.
Title Optimization of Automated Crystal Orientation and Phase Mapping in TEM Applied to Ni-Ti All Round Shape Memory Alloy Type P1 Proceeding
Year 2015 Publication MATEC web of conferences T2 – Proceedings of ESOMAT 2015 10th European Symposium on Martensitic Transformations, September 14-18, 2015, Antwerp, Belgium Abbreviated Journal
Volume 33 Issue 33 Pages 03022
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract (down) A new application which focuses on an artificial sphincter fabricated by Ni-Ti SMAs for human implantation is under investigation by applying the all-round shape memory effect with precise control of the phase transformation temperatures. In this study, a Ni51at.%-Ti alloy was fabricated by arc melting with fast solidification, followed by a proper strained aging which induces the two way shape memory effect needed for this particular application. Differential scanning calorimetry was used to investigate the thermal behavior and transmission electron microscopy was used for studying the microstructure of the alloys. With the latter the novel technique of automated crystal orientation microscopy is used and optimized to obtain phase and orientation mapping of the various structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372402800037 Publication Date 2015-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2261-236X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes The author gratefully acknowledges the Chinese Scholarship Council (CSC) for providing a scholarship. Approved Most recent IF: NA
Call Number c:irua:129977 Serial 3988
Permanent link to this record
 

 
Author Pardoen, T.; Colla, M.-S.; Idrissi, H.; Amin-Ahmadi, B.; Wang, B.; Schryvers, D.; Bhaskar, U.K.; Raskin, J.-P.
Title A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects Type A1 Journal article
Year 2016 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 17 Issue 17 Pages 485-495
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A nanomechanical on-chip test platform has recently been developed to deform under a variety of loading conditions freestanding thin films, ribbons and nanowires involving submicron dimensions. The lab-on-chip involves thousands of elementary test structures from which the elastic modulus, strength, strain hardening, fracture, creep properties can be extracted. The technique is amenable to in situ transmission electron microscopy (TEM) investigations to unravel the fundamental underlying deformation and fracture mechanisms that often lead to size-dependent effects in small-scale samples. The method allows addressing electrical and magnetic couplings as well in order to evaluate the impact of large mechanical stress levels on different solid-state physics phenomena. We had the chance to present this technique in details to Jacques Friedel in 2012 who, unsurprisingly, made a series of critical and very relevant suggestions. In the spirit of his legacy, the paper will address both mechanics of materials related phenomena and couplings with solids state physics issues.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373524300020 Publication Date 2015-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 7 Open Access
Notes This research has been performed with the financial support of the “Politique scientifique fédérale” under the framework of the interuniversity attraction poles program, IAP7/21, as well as with the support of the “Communauté française de Belgique” under the program “Actions de recherche concertées” ARC 05/10-330 and ARC Convention No. 11/16-037. The support of the “Fonds belge pour la recherche dans l'industrie et l'agriculture (FRIA)” for M.-S. Colla is also gratefully acknowledged as are the FWO research projects G012012N “Understanding nanocrystalline mechanical behavior from structural investigations” for B. Amin-Ahmadi. Approved Most recent IF: 2.048
Call Number c:irua:129995 Serial 4014
Permanent link to this record
 

 
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W.
Title Compositional characterization of nickel silicides by HAADF-STEM imaging Type A1 Journal article
Year 2011 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 46 Issue 7 Pages 2001-2008
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A methodology for the quantitative compositional characterization of nickel silicides by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imaging is presented. HAADF-STEM images of a set of nickel silicide reference samples Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 are taken at identical experimental conditions. The correlation between sample thickness and HAADF-STEM intensity is discussed. In order to quantify the relationship between the experimental Z-contrast intensities and the composition of the analysed layers, the ratio of the HAADF-STEM intensity to the sample thickness or to the intensity of the silicon substrate is determined for each nickel silicide reference sample. Diffraction contrast is still detected on the HAADF-STEM images, even though the detector is set at the largest possible detection angle. The influence on the quantification results of intensity fluctuations caused by diffraction contrast and channelling is examined. The methodology is applied to FUSI gate devices and to horizontal TFET devices with different nickel silicides formed on source, gate and drain. It is shown that, if the elements which are present are known, this methodology allows a fast quantitative 2-dimensional compositional analysis.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000286633000002 Publication Date 2011-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 1 Open Access
Notes Approved Most recent IF: 2.599; 2011 IF: 2.015
Call Number UA @ lucian @ c:irua:88950 Serial 446
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Schryvers, D.
Title Twin-jet electropolishing for damage-free transmission electron microscopy specimen preparation of metallic microwires Type A1 Journal article
Year 2020 Publication Microscopy Research And Technique Abbreviated Journal Microsc Res Techniq
Volume Issue Pages 1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A method to prepare TEM specimens from metallic microwires and based on conventional twin-jet electropolishing is introduced. The wire is embedded in an opaque epoxy resin medium and the hardened resin is mechanically polished to reveal the wire on both sides. The resin containing wire is then cut into discs of the appropriate size. The obtained embedded wire is electropolished in a conventional twin-jet electropolishing machine until electron transparency in large areas without radiation damage is achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000567944200001 Publication Date 2020-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1059-910x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited Open Access OpenAccess
Notes ; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: G.0366.15N ; Approved Most recent IF: 2.5; 2020 IF: 1.147
Call Number UA @ admin @ c:irua:171969 Serial 6642
Permanent link to this record
 

 
Author Van Tendeloo, G.; De Meulenaere, P.; Schryvers, D.
Title Landscape roughness at an atomic scale Type A1 Journal article
Year 1997 Publication Physica: D : nonlinear phenomena Abbreviated Journal Physica D
Volume 107 Issue Pages 401-410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A large number of materials have a highly degenerate ground state and therefore a complex microstructure. Because of this degenerate state, phase transitions between the different phases play an important role. High resolution techniques in electron microscopy and nano-scale chemical analysis allow to study not only the microstructure but also the interfaces down to an atomic scale. We focus particularly on the ambiguity of alloys oil approaching the phase transition. The short range order (SRO) in ''1 1/20'' type alloys and the microstructure of ''tweed'' and needle formation in martensite like alloys with composition Ni5Al3 are considered in more detail.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1997YC73400034 Publication Date 2003-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-2789; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.514 Times cited 2 Open Access
Notes Approved Most recent IF: 1.514; 1997 IF: 1.508
Call Number UA @ lucian @ c:irua:21347 Serial 1775
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Mohanchandra, K.P.; Carman, G.P.; van Humbeeck, J.
Title Fabrication and characterization of functionally graded Ni-Ti multilayer thin films Type A1 Journal article
Year 2009 Publication Functional materials letters Abbreviated Journal Funct Mater Lett
Volume 2 Issue 2 Pages 61-66
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) A functionally graded multilayer NiTi thin film was deposited on a SiO2/Si substrate by d.c. sputtering using a ramped heated NiTi alloy target. The stand-alone films were crystallized at 500°C in vacuum better than 10-7 Torr. Transmission electron microscopy micrographs taken along the film cross section show two distinct regions, thin and thick, with weak R and B2 phases, respectively. The film compositions along the thickness were measured and quantified using the standard-less EELSMODEL method. The film deposited during the initial thermal ramp (thin regions) displays an average of 54 at.% Ni while the film deposited at a more elevated target temperature (thick regions) shows about 51 at.% Ni.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000271077000003 Publication Date 2009-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1793-6047;1793-7213; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.234 Times cited 9 Open Access
Notes Fwo Approved Most recent IF: 1.234; 2009 IF: 2.561
Call Number UA @ lucian @ c:irua:77655 Serial 1165
Permanent link to this record
 

 
Author Boyat, X.; Ballat-Durand, D.; Marteau, J.; Bouvier, S.; Favergeon, J.; Orekhov, A.; Schryvers, D.
Title Interfacial characteristics and cohesion mechanisms of linear friction welded dissimilar titanium alloys: Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and Ti–6Al–2Sn–4Zr–2Mo (Ti6242) Type A1 Journal article
Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 158 Issue Pages 109942
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) A detailed microstructural examination endeavoring to understand the interfacial phenomena yielding to cohesion

in solid-state assembling processes was performed. This study focuses on the transition zone of a dissimilar

titanium alloy joint obtained by Linear Friction Welding (LFW) the β-metastable Ti17 to the near-α

Ti6242. The transition zone delimitating both alloys is characterized by a sharp microstructure change from

acicular HCP (Hexagonal Close-Packed) α′ martensitic laths in the Ti6242 to equiaxed BCC β (Body-Centered

Cubic) subgrains in the Ti17; these α′ plates were shown to precipitate within prior-β subgrains remarkably more

rotated than the ones formed in the Ti17. Both α′ and β microstructures were found to be intermingled within

transitional subgrains demarcating a limited gradient from one chemical composition to the other. These peculiar

interfacial grains revealed that the cohesive mechanisms between the rubbing surfaces occurred in the

single-phase β domain under severe strain and high-temperature conditions. During the hot deformation process,

the mutual migration of the crystalline interfaces from one material to another assisted by a continuous dynamic

recrystallization process was identified as the main adhesive mechanism at the junction zone. The latter led to

successful cohesion between the rubbing surfaces. Once the reciprocating motion stopped, fast cooling caused

both materials to experience either a βlean→α′ or βlean→βmetastable transformation in the interfacial zone depending

on their local chemical composition. The limited process time and the subsequent hindered chemical

homogenization at the transition zone led to retaining the so-called intermingled α’/βm subgrains constituting

the border between both Ti-alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503314000018 Publication Date 2019-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited Open Access
Notes The authors gratefully acknowledge the financial support of the French National Research Agency (ANR) through the OPTIMUM ANR- 14-CE27-0017 project. The authors would also like to thank the Hautsde- France Region and the European Regional Development Fund (ERDF) 2014/2020 for the co-funding of this work. The authors would also like to thank ACB for providing LFW samples as well as Airbus for their technical support. Approved Most recent IF: 2.714
Call Number EMAT @ emat @c:irua:165084 Serial 5441
Permanent link to this record
 

 
Author Wang, X.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
Title R-phase transition and related mechanical properties controlled by low-temperature aging treatment in a Ti50.8 at.% Ni thin wire Type A1 Journal article
Year 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 72-73 Issue Pages 21-24
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) A cold-drawn Ti50.8 at.% Ni wire was annealed at 600 °C for 30 min, followed by aging at 250 °C for different times. A microstructure with small grains and nanoscaled precipitates was obtained. The thermally induced martensite transformation is suppressed in the samples aged for 4 h or longer, leaving a one-stage R-phase transition between −150 and +150 °C. The transformation behavior, work output and recovery stress associated with the R-phase transition are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000329148500006 Publication Date 2013-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 27 Open Access
Notes Fwo Approved Most recent IF: 3.747; 2014 IF: 3.224
Call Number UA @ lucian @ c:irua:111847 Serial 2806
Permanent link to this record
 

 
Author Oleshko, V.; Schryvers, D.; Gijbels, R.; Jacob, W.
Title Investigation of Ag, Ag2S and Ag(Br,I) small particles by HREM and AEM Type H3 Book chapter
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 293-294
Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:20553 Serial 1729
Permanent link to this record
 

 
Author Potapov, P.L.; Kulkova, S.E.; Schryvers, D.; Verbeeck, J.
Title Structural and chemical effects on EELS L3,2 ionization edges in Ni-based intermetallic compounds Type A1 Journal article
Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 64 Issue Pages 184110,1-9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000172239400038 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes Approved Most recent IF: 3.836; 2001 IF: NA
Call Number UA @ lucian @ c:irua:48393 Serial 3192
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Schryvers, D.
Title ALPHABETA: a dedicated open-source tool for calculating TEM stage tilt angles Type A1 Journal article
Year 2019 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford
Volume 273 Issue 3 Pages 189-198
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458426100004 Publication Date 2018-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.692 Times cited 2 Open Access Not_Open_Access
Notes ENGIE Ph.D. sponsorship, 2015-AC-007 – BSUEZ6900 ; Approved Most recent IF: 1.692
Call Number EMAT @ emat @UA @ admin @ c:irua:157474 Serial 5163
Permanent link to this record
 

 
Author Cao, S.; Tirry, W.; Schryvers, D.
Title 3D reconstruction of a Ni51Ti49 alloy with precipitates by FIB-SEM alice-and-view Type A3 Journal article
Year 2007 Publication Materia Japan Abbreviated Journal
Volume 46 Issue Pages 803-804
Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:67711 Serial 15
Permanent link to this record
 

 
Author Schryvers, D.
Title Advanced TEM studies of martensite and related phase transformations Type H1 Book chapter
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 947-956
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos 000086479100208 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48373 Serial 76
Permanent link to this record
 

 
Author Yang, Z.; Tirry, W.; Schryvers, D.
Title Analytical TEM investigations on concentration gradients surrounding Ni4Ti3 precipitates in Ni-Ti shape memory material Type A1 Journal article
Year 2005 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 52 Issue 11 Pages 1129-1134
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000228190200010 Publication Date 2005-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 49 Open Access
Notes GOA project; MCRTN-FP6-505226 Multimat Approved Most recent IF: 3.747; 2005 IF: 2.228
Call Number UA @ lucian @ c:irua:55687 Serial 110
Permanent link to this record
 

 
Author Fredrickx, P.; Wouters, J.; Schryvers, D.
Title The application of transmission electron microscopy (TEM) in the research of inorganic colorants in stained glass windows and parchment illustrations Type H3 Book chapter
Year 2003 Publication Abbreviated Journal
Volume Issue Pages 137-143
Keywords H3 Book chapter; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Archetype Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48779 Serial 144
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.; Santamarta, R.; Tirry, W.
Title Applications of advanced transmission electron microscopic techniques to Ni-Ti based shape memory materials Type A1 Journal article
Year 2004 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 378 Issue 1/2 Pages 11-15
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000223329900003 Publication Date 2004-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 6 Open Access
Notes Approved Most recent IF: 3.094; 2004 IF: 1.445
Call Number UA @ lucian @ c:irua:48783 Serial 145
Permanent link to this record
 

 
Author Pauwels, B.; Yandouzi, M.; Schryvers, D.; Van Tendeloo, G.; Verschoren, G.; Lievens, P.; Hou, M.; van Swygenhoven, H.
Title Atomic scale characterization of supported and assembled nanoparticles Type P3 Proceeding
Year 2001 Publication Abbreviated Journal
Volume Issue Pages B8.3,1-6
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48390 Serial 181
Permanent link to this record
 

 
Author Zhurkin, E.; Hou, M.; van Swygenhoven, H.; Pauwels, B.; Yandouzi, M.; Schryvers, D.; Van Tendeloo, G.; Lievens, P.; Verschoren, G.; Kuriplach, J.; van Peteghem, S.; Segers, D.; Dauwe, C.
Title Atomic scale modeling of supported and assembled nanoparticles Type P3 Proceeding
Year 2001 Publication Abbreviated Journal
Volume Issue Pages B8.2,1-6
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48391 Serial 186
Permanent link to this record
 

 
Author Van Tendeloo, G.; Schryvers, D.
Title Atomic structure of alloys close to phase transitions Type A1 Journal article
Year 2000 Publication Nucleation and growth processes in materials Abbreviated Journal
Volume 580 Issue Pages 283-292
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000165506200043 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48377 Serial 197
Permanent link to this record
 

 
Author Schryvers, D.; Holland-Moritz, D.
Title Austenite and martensite microstructures in splat-cooled Ni-Al Type A1 Journal article
Year 1998 Publication Intermetallics Abbreviated Journal Intermetallics
Volume 6 Issue Pages 427-436
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Chicago, Ill. Editor
Language Wos 000074235500010 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.14 Times cited 13 Open Access
Notes Approved Most recent IF: 3.14; 1998 IF: 1.785
Call Number UA @ lucian @ c:irua:48365 Serial 209
Permanent link to this record