|   | 
Details
   web
Records
Author Godet, M.; Vergès-Belmin, V.; Gauquelin, N.; Saheb, M.; Monnier, J.; Leroy, E.; Bourgon, J.; Verbeeck, J.; Andraud, C.
Title Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing Type A1 Journal article
Year 2018 Publication Micron Abbreviated Journal Micron
Volume 115 Issue Pages 25-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nd-YAG QS laser cleaning of soiled stone at 1064 nm can sometimes result in a more yellow appearance compared to other cleaning techniques. Especially in France, this yellowing effect is still considered as a major aesthetic issue by the architects and conservators. One explanation states that the yellowing is linked to the formation of iron-rich nanophase(s) through the laser beam interaction with black crusts that would re-deposit on the cleaned substrate after irradiation. To characterize these nanophases, a model crust containing hematite was elaborated and laser irradiated using a Nd-YAG QS laser. The color of the sample shifted instantaneously from red to a bright yellow and numerous particles were ablated in a visible smoke. Transmission electron microscopy (TEM) was used to examine the morphology and the crystallinity of the neo-formed compounds, both on the surface of the samples and in the ablated materials. In addition, an investigation of the chemical and structural properties of the nanophases was conducted by X-ray dispersive energy (EDX) and electron energy loss (EELS) spectroscopies. It was found that both the surface of the sample and the ablated materials are covered by crystallized nano-spheres and nano-residues, all containing iron and oxygen, sometimes along with calcium and sulfur. In particular an interfacial area containing the four elements was evidenced between some nanostructures and the substrate. Magnetite Fe3O4 was also identified at the nanoscale. This study demonstrates that the laser yellowing of a model crust is linked to the presence of iron-rich nanophases including CaxFeySzOδ nanostructures and magnetite Fe3O4 at the surface after irradiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449125600004 Publication Date 2018-08-18
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 9 Open Access Not_Open_Access: Available from 19.08.2020
Notes The authors wish to thank Valérie Lalanne for the sample preparation for TEM and Stijn Van den Broeck for the FIB cut elaboration. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). Approved Most recent IF: 1.98
Call Number EMAT @ emat @c:irua:154356UA @ admin @ c:irua:154356 Serial 5056
Permanent link to this record
 

 
Author Müller-Caspary, K.; Grieb, T.; Müßener, J.; Gauquelin, N.; Hille, P.; Schörmann, J.; Verbeeck, J.; Van Aert, S.; Eickhoff, M.; Rosenauer, A.
Title Electrical Polarization in AlN/GaN Nanodisks Measured by Momentum-Resolved 4D Scanning Transmission Electron Microscopy Type A1 Journal article
Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 122 Issue 10 Pages 106102
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the mapping of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures at unit cell resolution as a key for the correlation of optical and structural phenomena in semiconductor optoelectronics. Momentum-resolved aberration-corrected scanning transmission electron microscopy is employed as a new imaging mode that simultaneously provides four-dimensional data in real and reciprocal space. We demonstrate how internal mesoscale and atomic electric fields can be separated in an experiment, which is verified by comprehensive dynamical simulations of multiple electron scattering. A mean difference of 5.3 +- 1.5 MV/cm is found for the polarization-induced electric fields in AlN and GaN, being in accordance with dedicated simulations and photoluminescence measurements in previous publications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461067700007 Publication Date 2019-03-11
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access OpenAccess
Notes The authors gratefully acknowledge the help of Natalie Claes for analyzing the EDX data. K. M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Young Investigator Group moreSTEM under Contract No. VHNG- 1317 at Forschungszentrum Jülich in Germany. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. N. G. and J. V. acknowledge funding from the Geconcentreerde Onderzoekacties project Solarpaint of the University of Antwerp. T. G. and A. R. acknowledge support from the Deutsche Forschungsgemeinschaft (Germany) under Contract No. RO2057/8-3. This work also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Contract No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N).; Helmholtz Association, VH-NG-1317 ; Forschungszentrum Jülich; Flemish Government; Universiteit Antwerpen; Deutsche Forschungsgemeinschaft, RO2057/8-3 ; H2020 European Research Council, 770887 ; Fonds Wetenschappelijk Onderzoek, G.0368.15N ; Approved Most recent IF: 8.462
Call Number UA @ lucian @UA @ admin @ c:irua:158120 Serial 5157
Permanent link to this record
 

 
Author Yin, C.; Krishnan, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J.
Title Controlling the interfacial conductance in LaAlO3/SrTiO3 in 90 degrees off-axis sputter deposition Type A1 Journal article
Year 2019 Publication Physical review materials Abbreviated Journal
Volume 3 Issue 3 Pages 034002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the fabrication of conducting interfaces between LaAlO3 and SrTiO3 by 90 degrees off-axis sputtering in an Ar atmosphere. At a growth pressure of 0.04 mbar the interface is metallic, with a carrier density of the order of 1 x 10(13) cm(-2) at 3 K. By increasing the growth pressure, we observe an increase of the out-of-plane lattice constants of the LaAlO3 films while the in-plane lattice constants do not change. Also, the low-temperature sheet resistance increases with increasing growth pressure, leading to an insulating interface when the growth pressure reaches 0.10 mbar. We attribute the structural variations to an increase of the La/Al ratio, which also explains the transition from metallic behavior to insulating behavior of the interfaces. Our research shows that the control which is furnished by the Ar pressure makes sputtering as versatile a process as pulsed laser deposition, and emphasizes the key role of the cation stoichiometry of LaAlO3 in the formation of the conducting interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461077100002 Publication Date 2019-03-12
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.926 Times cited 4 Open Access Not_Open_Access
Notes ; We thank Nikita Lebedev, Aymen Ben Hamida, and Prateek Kumar for useful discussions and Giordano Mattoni, Jun Wang, Vincent Joly, and Hozanna Miro for their technical assistance. We also thank Jean-Marc Triscone and his group for sharing their design of the sputtering system with us. This work is part of the FOM research programme DESCO with Project No. 149, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). C.Y. is supported by China Scholarship Council (CSC) with Grant No. 201508110214. N.G., D.K., and J.V. acknowledge financial support from the GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158547 Serial 5243
Permanent link to this record
 

 
Author Gan, Y.; Christensen, D.V.; Zhang, Y.; Zhang, H.; Krishnan, D.; Zhong, Z.; Niu, W.; Carrad, D.J.; Norrman, K.; von Soosten, M.; Jespersen, T.S.; Shen, B.; Gauquelin, N.; Verbeeck, J.; Sun, J.; Pryds, N.; Chen, Y.
Title Diluted oxide interfaces with tunable ground states Type A1 Journal article
Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 31 Issue 10 Pages 1805970
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The metallic interface between two oxide insulators, such as LaAlO3/SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1-xMnxO3/STO (0 <= x <= 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of n(c) = 2.8 x 10(13) cm(-2), where a peak T-SC approximate to 255 mK of superconducting transition temperature is observed. Moreover, the LaAl1-xMnxO3 turns ferromagnetic at x >= 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only d(xy) electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 x 10(12) cm(-2) < n(s) <= 1.1 x 10(13) cm(-2)) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460329300004 Publication Date 2019-01-14
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 31 Open Access Not_Open_Access
Notes ; The authors thank the technical help from J. Geyti. J.R.S. acknowledges the support of the National Basic Research of China (2016YFA0300701, 2018YFA0305704), the National Natural Science Foundation of China (11520101002), and the Key Program of the Chinese Academy of Sciences. N.G., D.K., and J.V. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp, Belgium. ; Approved Most recent IF: 19.791
Call Number UA @ admin @ c:irua:158553 Serial 5245
Permanent link to this record
 

 
Author O'Donnell, D.; Hassan, S.; Du, Y.; Gauquelin, N.; Krishnan, D.; Verbeeck, J.; Fan, R.; Steadman, P.; Bencok, P.; Dobrynin, A.N.
Title Etching induced formation of interfacial FeMn in IrMn/CoFe bilayers Type A1 Journal article
Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 16 Pages 165002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of ion etching on exchange bias in IrMn3/Co70Fe30 bilayers is investigated. In spite of the reduction of saturation magnetization caused by the embedding of Tr from the capping layer into the Co70Fe30 layer during the etching process, the exchange bias in samples with the same thickness of the Co70Fe30 layer is reducing in proportion to the etching power. X-ray magnetic circular dichroism measurements revealed the emergence of an uncompensated Mn magnetization after etching, which is antiferromagnetically coupled to the ferromagnetic layer. This suggests etching induced formation of small interfacial FeMn regions which leads to the decrease of effective exchange coupling between ferromagnetic and antiferromagnetic layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458524800001 Publication Date 2019-01-31
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes ; This work was supported by Seagate Technology (Ireland). Beamline I10, Diamond Light Source, is acknowledged for provided beamtime. ; Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:157458 Serial 5247
Permanent link to this record
 

 
Author Behera, B.C.; Jana, S.; Bhat, S.G.; Gauquelin, N.; Tripathy, G.; Kumar, P.S.A.; Samal, D.
Title Evidence for exchange bias coupling at the perovskite/brownmillerite interface in spontaneously stabilized SrCoO3-\delta/SrCoO2.5 bilayers Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 2 Pages 024425
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Interface effect in complex oxide thin-film heterostructures lies at the vanguard of current research to design technologically relevant functionality and explore emergent physical phenomena. While most of the previous works focus on the perovskite/perovskite heterostructures, the study of perovskite/brownmillerite interfaces remains in its infancy. Here, we investigate spontaneously stabilized perovskite-ferromagnet (SrCoO3-delta)/brownmillerite-antiferromagnet (SrCoO2.5) bilayer with T-N > T-C and discover an unconventional interfacial magnetic exchange bias effect. From magnetometry investigations, it is rationalized that the observed effect stems from the interfacial ferromagnet/antiferromagnet coupling. The possibility for coupled ferromagnet/spin-glass interface engendering such effect is ruled out. Strikingly, a finite coercive field persists in the paramagnetic state of SrCoO3-delta,whereas the exchange bias field vanishes at T-C . We conjecture the observed effect to be due to the effective external quenched staggered field provided by the antiferromagnetic layer for the ferromagnetic spins at the interface. Our results not only unveil a paradigm to tailor the interfacial magnetic properties in oxide heterostructures without altering the cations at the interface, but also provide a purview to delve into the fundamental aspects of exchange bias in such unusual systems, paving a big step forward in thin-film magnetism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456481900003 Publication Date 2019-01-23
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access OpenAccess
Notes ; We are grateful to Sachin Sarangi for his superb technical support during magnetic measurements. We thank Gopal Pradhan for fruitful discussion. We thank Zhicheng Zhong for reading the manuscript and for suggestions. We thank T. Som for extending laboratory facility. D.S. and B.C.B. acknowledge the financial support from Max-Planck Society through Max Planck Partner Group. S.G.B. acknowledges the INSPIRE Faculty Fellowship Programme (DSTO1899) for the financial support. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:157562 Serial 5248
Permanent link to this record
 

 
Author Das, S.; Rata, A.D.; Maznichenko, I., V; Agrestini, I.S.; Pippel, E.; Gauquelin, N.; Verbeeck, J.; Chen, K.; Valvidares, S.M.; Vasili, H.B.; Herrero-Martin, J.; Pellegrin, E.; Nenkov, K.; Herklotz, A.; Ernst, A.; Mertig, I.; Hu, Z.; Doerr, K.
Title Low-field switching of noncollinear spin texture at La0.7Sr0.3MnO3-SrRuO3interfaces Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 2 Pages 024416
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Interfaces of ferroic oxides can show complex magnetic textures which have strong impact on spintronics devices. This has been demonstrated recently for interfaces with insulating antiferromagnets such as BiFeO3. Here, noncollinear spin textures which can be switched in very low magnetic field are reported for conducting ferromagnetic bilayers of La0.7Sr0.3MnO3-SrRuO3 (LSMO-SRO). The magnetic order and switching are fundamentally different for bilayers coherently grown in reversed stacking sequence. The SRO top layer forms a persistent exchange spring which is antiferromagnetically coupled to LSMO and drives switching in low fields of a few milliteslas. Density functional theory reveals the crucial impact of the interface termination on the strength of Mn-Ru exchange coupling across the interface. The observation of an exchange spring agrees with ultrastrong coupling for the MnO2/SrO termination. Our results demonstrate low-field switching of noncollinear spin textures at an interface between conducting oxides, opening a pathway for manipulating and utilizing electron transport phenomena in controlled spin textures at oxide interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455821400005 Publication Date 2019-01-15
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access OpenAccess
Notes ; The research in Halle was supported by Deutsche Forschungsgemeinschaft (DFG), SFB 762 Functional Oxide Interfaces (Projects No. A9 and No. B1). K.C. benefited from support of the DFG (Project 600575). Discussions with M. Trassin, M. Ziese, H. M. Christen, E.-J. Guo, F. Grcondciel, M. Bibes, and H. N. Lee are gratefully acknowledged. N. G. and J. V. acknowledge funding under the GOA project “Solarpaint” of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:156717 Serial 5255
Permanent link to this record
 

 
Author Wang, J.; Shin, Y.; Gauquelin, N.; Yang, Y.; Lee, C.; Jannis, D.; Verbeeck, J.; Rondinelli, J.M.; May, S.J.
Title Physical properties of epitaxial SrMnO2.5−δFγoxyfluoride films Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue 36 Pages 365602
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently, topotactic fluorination has become an alternative way of doping epitaxial perovskite oxides through anion substitution to engineer their electronic properties instead of the more commonly used cation substitution. In this work, epitaxial oxyfluoride SrMnO2.5−δ F γ films were synthesized via topotactic fluorination of SrMnO2.5 films using polytetrafluoroethylene as the fluorine source. Oxidized SrMnO3 films were also prepared for comparison with the fluorinated samples. The F content, probed by x-ray photoemission spectroscopy, was systematically controlled by adjusting fluorination conditions. Electronic transport measurements reveal that increased F content (up to γ  =  0.14) systematically increases the electrical resistivity, despite the nominal electron-doping induced by F substitution for O in these films. In contrast, oxidized SrMnO3 exhibits a decreased resistivity and conduction activation energy. A blue-shift of optical absorption features occurs with increasing F content. Density functional theory calculations indicate that F acts as a scattering center for electronic transport, controls the observed weak ferromagnetic behavior of the films, and reduces the inter-band optical transitions in the manganite films. These results stand in contrast to bulk electron-doped La1−x Ce x MnO3, illustrating how aliovalent anionic substitutions can yield physical behavior distinct from A-site substituted perovskites with the same nominal B-site oxidation states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472232000002 Publication Date 2019-09-11
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access
Notes Work at Drexel was supported by the National Science Foundation (NSF), grant number CMMI-1562223. Thin film synthesis utilized deposition instrumentation acquired through an Army Research Office DURIP grant (W911NF-14-1-0493). Y.S and J.M.R. were supported by NSF (Grant No. DMR-1454688). Calculations were performed using the QUEST HPC Facility at Northwestern, the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. ACI-1053575, and the Center for Nanoscale Materials (Carbon Cluster). Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.V. and N. G. acknowledge funding from a GOA project “Solarpaint” of the University of Antwerp. D.J. acknowledges funding from FWO project G093417N from the Flemish fund for scientific research. Approved Most recent IF: 2.649
Call Number EMAT @ emat @UA @ admin @ c:irua:161174 Serial 5293
Permanent link to this record
 

 
Author Keunecke, M.; Lyzwa, F.; Schwarzbach, D.; Roddatis, V.; Gauquelin, N.; Müller-Caspary, K.; Verbeeck, J.; Callori, S.J.; Klose, F.; Jungbauer, M.; Moshnyaga, V.
Title High-TCInterfacial Ferromagnetism in SrMnO3/LaMnO3Superlattices Type A1 Journal article
Year 2019 Publication Advanced functional materials Abbreviated Journal Adv. Funct. Mater.
Volume Issue Pages 1808270
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Heterostructures of strongly correlated oxides demonstrate various intriguing and potentially useful interfacial phenomena. LaMnO3/SrMnO3 superlattices are presented showcasing a new high‐temperature ferromagnetic phase with Curie temperature, TC ≈360 K, caused by electron transfer from the surface of the LaMnO3 donor layer into the neighboring SrMnO3 acceptor layer. As a result, the SrMnO3 (top)/LaMnO3 (bottom) interface shows an enhancement of the magnetization as depth‐profiled by polarized neutron reflectometry. The length scale of charge transfer, λTF ≈2 unit cells, is obtained from in situ growth monitoring by optical ellipsometry, supported by optical simulations, and further confirmed by high resolution electron microscopy and spectroscopy. A model of the inhomogeneous distribution of electron density in LaMnO3/SrMnO3 layers along the growth direction is concluded to account for a complex interplay between ferromagnetic and antiferromagnetic layers in superlattices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000535358900008 Publication Date 2019-02-10
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1616301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.621 Times cited 26 Open Access
Notes The authors thank EU FP7 Framework (Project IFOX) and DFG (SFB 1073, TP B04, A02, Z02) for the financial support. J.V., K.M.C and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. The PNR experiment was funded by the Australian Nuclear Science and Technology Organization (proposal number P3985). Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:162108 Serial 5294
Permanent link to this record
 

 
Author Nerl, H.C.; Pokle, A.; Jones, L.; Müller‐Caspary, K.; Bos, K.H.W.; Downing, C.; McCarthy, E.K.; Gauquelin, N.; Ramasse, Q.M.; Lobato, I.; Daly, D.; Idrobo, J.C.; Van Aert, S.; Van Tendeloo, G.; Sanvito, S.; Coleman, J.N.; Cucinotta, C.S.; Nicolosi, V.
Title Self‐Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus Type A1 Journal article
Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 29 Issue 37 Pages 1903120
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000478478400001 Publication Date 2019-07-17
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 1 Open Access OpenAccess
Notes European Research Council, 2DNanoCaps TC2D CoG 3D2DPrint CoG Picometrics grant agreement No. 770887; Engineering and Physical Sciences Research Council, EP/P033555/1 EP/R029431 ; Science Foundation Ireland, HPC1600932 ; Approved Most recent IF: 12.124
Call Number EMAT @ emat @c:irua:161901 Serial 5362
Permanent link to this record
 

 
Author Kuo, C.-T.; Lin, S.-C.; Ghiringhelli, G.; Peng, Y.; De Luca, G.M.; Di Castro, D.; Betto, D.; Gehlmann, M.; Wijnands, T.; Huijben, M.; Meyer-Ilse, J.; Gullikson, E.; Kortright, J.B.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Gerber, T.; Balestrino, G.; Brookes, N.B.; Braicovich, L.; Fadley, C.S.
Title Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 23 Pages 235146
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454160800004 Publication Date 2018-12-21
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes J.V. and N.G. acknowledge ˝ funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:156784 Serial 5363
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H.
Title Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells Type P1 Proceeding
Year 2018 Publication 2018 Ieee 7th World Conference On Photovoltaic Energy Conversion (wcpec)(a Joint Conference Of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469200401163 Publication Date 2018-12-08
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 978-1-5386-8529-7 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160468 Serial 5365
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Macke, S.; Gonnissen, J.; Thomas, S.; Zhong, Z.; Li, L.; Si, L.; Van Aert, S.; Hansmann, P.; Held, K.; Xia, J.; Verbeeck, J.; Van Tendeloo, G.; Sawatzky, G.A.; Koster, G.; Huijben, M.; Rijnders, G.
Title Thickness dependent properties in oxide heterostructures driven by structurally induced metal-oxygen hybridization variations Type A1 Journal article
Year 2017 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 27 Issue 17 Pages 1606717
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thickness-driven electronic phase transitions are broadly observed in different types of functional perovskite heterostructures. However, uncertainty remains whether these effects are solely due to spatial confinement, broken symmetry, or rather to a change of structure with varying film thickness. Here, this study presents direct evidence for the relaxation of oxygen-2p and Mn-3d orbital (p-d) hybridization coupled to the layer-dependent octahedral tilts within a La2/3Sr1/3MnO3 film driven by interfacial octahedral coupling. An enhanced Curie temperature is achieved by reducing the octahedral tilting via interface structure engineering. Atomically resolved lattice, electronic, and magnetic structures together with X-ray absorption spectroscopy demonstrate the central role of thickness-dependent p-d hybridization in the widely observed dimensionality effects present in correlated oxide heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000400449200011 Publication Date 2017-03-15
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 55 Open Access
Notes M.H., G.K., and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. J.V. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (Grant Nos. G.0044.13N, G.0374.13N, G.0368.15N, and G.0369.15N). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. N.G., J.G., S.V.A., and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which was funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:152640 Serial 5367
Permanent link to this record
 

 
Author Wang, J.; Nguyen, M.D.; Gauquelin, N.; Verbeeck, J.; Do, M.T.; Koster, G.; Rijnders, G.; Houwman, E.
Title On the importance of the work function and electron carrier density of oxide electrodes for the functional properties of ferroelectric capacitors Type A1 Journal article
Year 2020 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R
Volume 14 Issue 14 Pages 1900520
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is important to understand the effect of the interfaces between the oxide electrode layers and the ferroelectric layer on the polarization response for optimizing the device performance of all-oxide ferroelectric devices. Herein, the effects of the oxide La0.07Ba0.93SnO3 (LBSO) as an electrode material in an PbZr0.52Ti0.48O3 (PZT) ferroelectric capacitor are compared with those of the more commonly used SrRuO3 (SRO) electrode. SRO (top)/PZT/SRO (bottom), SRO/PZT/LBSO, and SRO/PZT/2 nm SRO/LBSO devices are fabricated. Only marginal differences in crystalline properties, determined by X-ray diffraction and scanning transmission electron microscopy, are found. High-quality polarization loops are obtained, but with a much larger coercive field for the SRO/PZT/LBSO device. In contrast to the SRO/PZT/SRO device, the polarization decreases strongly with increasing field cycling. This fatigue problem can be remedied by inserting a 2 nm SRO layer between PZT and LBSO. It is argued that strongly increased charge injection into the PZT occurs at the bottom interface, because of the low PZT/LBSO interfacial barrier and the much lower carrier density in LBSO, as compared with that in SRO, causing a low dielectric constant, depleted layer in LBSO. The charge injection creates a trapped space charge in the PZT, causing the difference in fatigue behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000506195600001 Publication Date 2019-12-12
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 6 Open Access OpenAccess
Notes ; This work was supported by Nederlandse Organisatie voor Wetenschappelijk Onderzoek through grant no.13HTSM01. ; Approved Most recent IF: 2.8; 2020 IF: 3.032
Call Number UA @ admin @ c:irua:165681 Serial 6316
Permanent link to this record
 

 
Author Tran Phong Le, P.; Hofhuis, K.; Rana, A.; Huijben, M.; Hilgenkamp, H.; Rijnders, G.A.J.H.M.; ten Elshof, J.E.; Koster, G.; Gauquelin, N.; Lumbeeck, G.; Schuessler-Langeheine, C.; Popescu, H.; Fortuna, F.; Smit, S.; Verbeek, X.H.; Araizi-Kanoutas, G.; Mishra, S.; Vaskivskyi, I.; Duerr, H.A.; Golden, M.S.
Title Tailoring vanadium dioxide film orientation using nanosheets : a combined microscopy, diffraction, transport, and soft X-ray in transmission study Type A1 Journal article
Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
Volume 30 Issue 1 Pages 1900028
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Vanadium dioxide (VO2) is a much-discussed material for oxide electronics and neuromorphic computing applications. Here, heteroepitaxy of VO2 is realized on top of oxide nanosheets that cover either the amorphous silicon dioxide surfaces of Si substrates or X-ray transparent silicon nitride membranes. The out-of-plane orientation of the VO2 thin films is controlled at will between (011)(M1)/(110)(R) and (-402)(M1)/(002)(R) by coating the bulk substrates with Ti0.87O2 and NbWO6 nanosheets, respectively, prior to VO2 growth. Temperature-dependent X-ray diffraction and automated crystal orientation mapping in microprobe transmission electron microscope mode (ACOM-TEM) characterize the high phase purity, the crystallographic and orientational properties of the VO2 films. Transport measurements and soft X-ray absorption in transmission are used to probe the VO2 metal-insulator transition, showing results of a quality equal to those from epitaxial films on bulk single-crystal substrates. Successful local manipulation of two different VO2 orientations on a single substrate is demonstrated using VO2 grown on lithographically patterned lines of Ti0.87O2 and NbWO6 nanosheets investigated by electron backscatter diffraction. Finally, the excellent suitability of these nanosheet-templated VO2 films for advanced lensless imaging of the metal-insulator transition using coherent soft X-rays is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505545800010 Publication Date 2019-10-31
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19 Times cited 1 Open Access OpenAccess
Notes P.T.P.L. and K.H. contributed equally to this work. The authors thank Mark A. Smithers for performing high-resolution scanning electron microscopy and electron backscattering diffraction. The authors also thank Dr. Nicolas Jaouen for his contribution to the soft X-ray imaging experiments. This work is part of the DESCO research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). P.T.P.L. acknowledges the NWO/CW ECHO grant ECHO.15.CM2.043. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the FLAG-ERA JTC 2017 project GRAPH-EYE. G.L. acknowledges financial support from the Flemish Research Fund (FWO) under project G.0365.15N. I.V. acknowledges support by the U.S. Department of Energy, Office of Science under Award Number 0000231415. Approved Most recent IF: 19; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:165705 Serial 6325
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Wang, J.; Verbeeck, J.; Blom, F.; Koster, G.; Houwman, E.P.; Rijnders, G.
Title Interfacial dielectric layer as an origin of polarization fatigue in ferroelectric capacitors Type A1 Journal article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
Volume 10 Issue 1 Pages 7310
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Origins of polarization fatigue in ferroelectric capacitors under electric field cycling still remain unclear. Here, we experimentally identify origins of polarization fatigue in ferroelectric PbZr0.52Ti0.48O3 (PZT) thin-film capacitors by investigating their fatigue behaviours and interface structures. The PZT layers are epitaxially grown on SrRuO3-buffered SrTiO3 substrates by a pulsed laser deposition (PLD), and the capacitor top-electrodes are various, including SrRuO3 (SRO) made by in-situ PLD, Pt by in-situ PLD (Pt-inPLD) and ex-situ sputtering (Pt-sputtered). We found that fatigue behaviour of the capacitor is directly related to the top-electrode/PZT interface structure. The Pt-sputtered/PZT/SRO capacitor has a thin defective layer at the top interface and shows early fatigue while the Pt-inPLD/PZT/SRO and SRO/PZT/SRO capacitor have clean top-interfaces and show much more fatigue resistance. The defective dielectric layer at the Pt-sputtered/PZT interface mainly contains carbon contaminants, which form during the capacitor ex-situ fabrication. Removal of this dielectric layer significantly delays the fatigue onset. Our results clearly indicate that dielectric layer at ferroelectric capacitor interfaces is the main origin of polarization fatigue, as previously proposed in the charge injection model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000559953800003 Publication Date 2020-04-30
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 18 Open Access OpenAccess
Notes ; The authors acknowledge the financial support of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. ; Approved Most recent IF: 4.6; 2020 IF: 4.259
Call Number EMAT @ emat @c:irua:169865 Serial 6374
Permanent link to this record
 

 
Author Fatermans, J.; den Dekker, Aj.; Müller-Caspary, K.; Gauquelin, N.; Verbeeck, J.; Van Aert, S.
Title Atom column detection from simultaneously acquired ABF and ADF STEM images Type A1 Journal article
Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 219 Issue Pages 113046
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In electron microscopy, the maximum a posteriori (MAP) probability rule has been introduced as a tool to determine the most probable atomic structure from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images exhibiting low contrast-to-noise ratio (CNR). Besides ADF imaging, STEM can also be applied in the annular bright-field (ABF) regime. The ABF STEM mode allows to directly visualize light-element atomic columns in the presence of heavy columns. Typically, light-element nanomaterials are sensitive to the electron beam, limiting the incoming electron dose in order to avoid beam damage and leading to images exhibiting low CNR. Therefore, it is of interest to apply the MAP probability rule not only to ADF STEM images, but to ABF STEM images as well. In this work, the methodology of the MAP rule, which combines statistical parameter estimation theory and model-order selection, is extended to be applied to simultaneously acquired ABF and ADF STEM images. For this, an extension of the commonly used parametric models in STEM is proposed. Hereby, the effect of specimen tilt has been taken into account, since small tilts from the crystal zone axis affect, especially, ABF STEM intensities. Using simulations as well as experimental data, it is shown that the proposed methodology can be successfully used to detect light elements in the presence of heavy elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000594768500005 Publication Date 2020-06-01
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited 9 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N, EOS 30489208). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 823717 – ESTEEM3. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. K. M. C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association (Germany) under contract VH-NG-1317. The authors thank Mark Huijben from the University of Twente (Enschede, The Netherlands) for providing the LiMn2O4 sample used in section 4.2 of this study. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. Approved Most recent IF: 2.2; 2020 IF: 2.843
Call Number EMAT @ emat @c:irua:169706 Serial 6373
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Reith, P.; Halisdemir, U.; Jannis, D.; Spreitzer, M.; Huijben, M.; Abel, S.; Fompeyrine, J.; Verbeeck, J.; Hilgenkamp, H.; Rijnders, G.; Koster, G.
Title Thermal-strain-engineered ferromagnetism of LaMnO3/SrTiO3 heterostructures grown on silicon Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
Volume 4 Issue 2 Pages 024406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The integration of oxides on Si remains challenging, which largely hampers the practical applications of oxide-based electronic devices with superior performance. Recently, LaMnO3/SrTiO3 (LMO/STO) heterostructures have gained renewed interest for the debating origin of the ferromagnetic-insulating ground state as well as for their spin-filter applications. Here we report on the structural and magnetic properties of high-quality LMO/STO heterostructures grown on silicon. The chemical abruptness across the interface was investigated by atomic-resolution scanning transmission electron microscopy. The difference in the thermal expansion coefficients between LMO and Si imposed a large biaxial tensile strain to the LMO film, resulting in a tetragonal structure with c/a∼ 0.983. Consequently, we observed a significantly suppressed ferromagnetism along with an enhanced coercive field, as compared to the less distorted LMO film (c/a∼1.004) grown on STO single crystal. The results are discussed in terms of tensile-strain enhanced antiferromagnetic instabilities. Moreover, the ferromagnetism of LMO on Si sharply disappeared below a thickness of 5 unit cells, in agreement with the LMO/STO case, pointing to a robust critical behavior irrespective of the strain state. Our results demonstrate that the growth of oxide films on Si can be a promising way to study the tensile-strain effects in correlated oxides, and also pave the way towards the integration of multifunctional oxides on Si with atomic-layer control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513552900003 Publication Date 2020-02-12
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 6 Open Access Not_Open_Access
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G093417N ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; European Commission, H2020-ICT-2016-1-732642 ; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167782 Serial 6375
Permanent link to this record
 

 
Author Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S.
Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
Volume 4 Issue 2 Pages 026001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513551200007 Publication Date 2020-02-10
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 13 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167787 Serial 6376
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; van Thiel, T.C.; Brzezicki, W.; Hortensius, J.R.; Afanasiev, D.; Gauquelin, N.; Barone, P.; van den Bos, K.H.W.; van Aert, S.; Verbeeck, J.; Filippetti, A.; Picozzi, S.; Cuoco, M.; Caviglia, A.D.
Title Berry phase engineering at oxide interfaces Type A1 Journal article
Year 2020 Publication Abbreviated Journal Phys. Rev. Research
Volume 2 Issue 2 Pages 023404
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Three-dimensional strontium ruthenate (SrRuO3) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO3 in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO3 exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO3/SrRuO3/SrTiO3 and SrIrO3/SrRuO3/SrIrO3) and asymmetric interfaces (SrTiO3/SrRuO3/SrIrO3). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO3 embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO3 proposed here naturally accounts for these observations and harmonizes a large body of experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000603642700008 Publication Date 2020-06-25
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2643-1564 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 58 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek; European Research Council; Horizon 2020, 677458 770887 731473 ; Fondazione Cariplo, 2013-0726 ; Narodowe Centrum Nauki, 2016/23/B/ST3/00839 ; Fundacja na rzecz Nauki Polskiej; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:172462 Serial 6401
Permanent link to this record
 

 
Author Wang, J.; Gauquelin, N.; Huijben, M.; Verbeeck, J.; Rijnders, G.; Koster, G.
Title Metal-insulator transition of SrVO 3 ultrathin films embedded in SrVO 3 / SrTiO 3 superlattices Type A1 Journal article
Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 117 Issue 13 Pages 133105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The metal-insulator transition (MIT) in strongly correlated oxides is a topic of great interest for its potential applications, such as Mott field effect transistors and sensors. We report that the MIT in high quality epitaxial SrVO3 (SVO) thin films is present as the film thickness is reduced, lowering the dimensionality of the system, and electron-electron correlations start to become the dominant interactions. The critical thickness of 3 u.c is achieved by avoiding effects due to off-stoichiometry using optimal growth conditions and excluding any surface effects by a STO capping layer. Compared to the single SVO thin films, conductivity enhancement in SVO/STO superlattices is observed. This can be explained by the interlayer coupling effect between SVO sublayers in the superlattices. Magnetoresistance and Hall measurements indicate that the dominant driving force of MIT is the electron–electron interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000577126100001 Publication Date 2020-09-28
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 8 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 13HTSM01 ; Approved Most recent IF: 4; 2020 IF: 3.411
Call Number EMAT @ emat @c:irua:172461 Serial 6415
Permanent link to this record
 

 
Author Jovanović, Z.; Gauquelin, N.; Koster, G.; Rubio-Zuazo, J.; Ghosez, P.; Verbeeck, J.; Suvorov, D.; Spreitzer, M.
Title Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface Type A1 Journal article
Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv
Volume 10 Issue 52 Pages 31261-31270
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface<italic>i.e.</italic>formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000566579400025 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited 1 Open Access OpenAccess
Notes Vlaamse regering, Hercules Fund ; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, III 45006 ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Ministerio de Ciencia, Innovación y Universidades; Universiteit Antwerpen, GOA project Solarpaint ; F.R.S.-FNRS, PDR project PROMOSPAN ; Consejo Superior de Investigaciones Cientificas; University of Liège, ARC project AIMED ; Ministry of Education, Science and Sport, M.ERA-NET project SIOX ; Approved Most recent IF: 3.9; 2020 IF: 3.108
Call Number EMAT @ emat @c:irua:172059 Serial 6416
Permanent link to this record
 

 
Author Lebedev, N.; Stehno, M.; Rana, A.; Gauquelin, N.; Verbeeck, J.; Brinkman, A.; Aarts, J.
Title Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO₃/SrTiO₃ interfaces Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 5 Pages 055001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000588209300001 Publication Date 2020-10-14
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 1 Open Access OpenAccess
Notes ; NL and JA gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). The authors thank J Jobst, S Smink, K Lahabi and G Koster for useful discussion. ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:173679 Serial 6545
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Jannis, D.; Cunha, D.M.; Halisdemir, U.; Piamonteze, C.; Lee, J.H.; Belhadi, J.; Eltes, F.; Abel, S.; Jovanovic, Z.; Spreitzer, M.; Fompeyrine, J.; Verbeeck, J.; Bibes, M.; Huijben, M.; Rijnders, G.; Koster, G.
Title Strain-engineered metal-to-insulator transition and orbital polarization in nickelate superlattices integrated on silicon Type A1 Journal article
Year 2020 Publication Advanced Materials Abbreviated Journal Adv Mater
Volume Issue Pages 2004995
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Epitaxial growth of SrTiO3 (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO3/LaFeO3 SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy. Both sets of SLs show a similar thickness-driven metal-to-insulator transition, albeit with resistivity and transition temperature modified by the different amounts of strain. In particular, the large tensile strain promotes a pronounced Ni 3dx2-y2 orbital polarization for the SL grown on Si/STO, comparable to that reported for LaNiO3 SL epitaxially strained to DyScO3 substrate. Those results illustrate the ability to integrate oxide SLs on silicon with structure and property approaching their counterparts grown on STO single crystal, and also open up new prospects of strain engineering in functional oxides based on the Si platform.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000588146500001 Publication Date 2020-11-11
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 18 Open Access OpenAccess
Notes ; This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). M.S. acknowledges funding from Slovenian Research Agency (Grants No. J2-9237 and No. P2-0091). This work received support from the ERC CoG MINT (#615759) and from a PHC Van Gogh grant. M.B. thanks the French Academy of Science and the Royal Netherlands Academy of Arts and Sciences for supporting his stays in the Netherlands. This project has received funding as a transnational access project from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. N.G. and J.V. acknowledge GOA project “Solarpaint” of the University of Antwerp. ; esteem3TA; esteem3reported Approved Most recent IF: 29.4; 2020 IF: 19.791
Call Number UA @ admin @ c:irua:173516 Serial 6617
Permanent link to this record
 

 
Author Mehta, A.N.; Gauquelin, N.; Nord, M.; Orekhov, A.; Bender, H.; Cerbu, D.; Verbeeck, J.; Vandervorst, W.
Title Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning Type A1 Journal article
Year 2020 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 31 Issue 44 Pages 445702
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it dictates the local confinement and symmetry. Determination of stacking order in multilayer MX(2)domains usually relies on prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy combined with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000561424400001 Publication Date 2020-07-14
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited 13 Open Access OpenAccess
Notes ; J.V. acknowledges funding from FLAG-ERA JTC2017 project 'Graph-Eye'. N.G. acknowledges funding from GOA project 'Solarpaint' of the University of Antwerp. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717-ESTEEM3. 4D STEM data was acquired on a hybrid pixel detector funded with a Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government. M. N. acknowledges funding from a Marie Curie Fellowship agreement No 838001. We thank Dr Jiongjiong Mo and Dr Benjamin Groven for developing the CVD-MoS<INF>2</INF> growth on sapphire and providing the material used in this article. ; Approved Most recent IF: 3.5; 2020 IF: 3.44
Call Number UA @ admin @ c:irua:171119 Serial 6649
Permanent link to this record
 

 
Author Lin, S.-C.; Kuo, C.-T.; Shao, Y.-C.; Chuang, Y.-D.; Geessinck, J.; Huijben, M.; Rueff, J.-P.; Graff, I.L.; Conti, G.; Peng, Y.; Bostwick, A.; Gullikson, E.; Nemsak, S.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Ghiringhelli, G.; Schneider, C.M.; Fadley, C.S.
Title Two-dimensional electron systems in perovskite oxide heterostructures : role of the polarity-induced substitutional defects Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal
Volume 4 Issue 11 Pages 115002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The discovery of a two-dimensional electron system (2DES) at the interfaces of perovskite oxides such as LaAlO3 and SrTiO3 has motivated enormous efforts in engineering interfacial functionalities with this type of oxide heterostructures. However, the fundamental origins of the 2DES are still not understood, e.g., the microscopic mechanisms of coexisting interface conductivity and magnetism. Here we report a comprehensive spectroscopic investigation on the depth profile of 2DES-relevant Ti 3d interface carriers using depthand element-specific techniques like standing-wave excited photoemission and resonant inelastic scattering. We found that one type of Ti 3d interface carriers, which give rise to the 2DES are located within three unit cells from the n-type interface in the SrTiO3 layer. Unexpectedly, another type of interface carriers, which are polarity-induced Ti-on-Al antisite defects, reside in the first three unit cells of the opposing LaAlO3 layer (similar to 10 angstrom). Our findings provide a microscopic picture of how the localized and mobile Ti 3d interface carriers distribute across the interface and suggest that the 2DES and 2D magnetism at the LaAlO3/SrTiO3 interface have disparate explanations as originating from different types of interface carriers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000592432200004 Publication Date 2020-11-20
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 7 Open Access OpenAccess
Notes ; We thank G. M. De Luca and L. Braicovich for discussions. Charles S. Fadley was deceased on August 1, 2019. We are grateful for his significant contributions to this work. We thank Advanced Light Source for the access to Beamline 8.0.3 (qRIXS) via Proposal No. 09892 and beamline 7.0.2 (MAESTRO) via Proposal No. RA-00291 that contributed to the results presented here. We thank synchrotron SOLEIL (via Proposal No. 99180118) for the access to Beamline GALAXIES. This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231 (Advanced Light Source), and by DOE Contract No. DE-SC0014697 through the University of California, Davis (S.-C.L., C.-T.K, and C.S.F.), and from the Julich Research Center, Peter Grunberg Institute, PGI-6. I. L. G. wishes to thank Brazilian scientific agencies CNPQ (Project No. 200789/2017-1) and CAPES (CAPES-PrInt-UFPR) for their financial support. J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union's horizon 2020 research and innovation program ES-TEEM3 under grant agreement no 823717. The Qu-Ant-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. ; esteem3TA; esteem3reported Approved Most recent IF: 3.4; 2020 IF: NA
Call Number UA @ admin @ c:irua:174316 Serial 6713
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J.
Title Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries Type A1 Journal article
Year 2021 Publication Energy technology Abbreviated Journal
Volume 9 Issue 4 Pages 2100028
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Surface coating is a crucial method to mitigate the aging problem of high-Ni cathode active materials (CAMs). By avoiding the direct contact of the CAM and the electrolyte, side reactions are hindered. Commonly used techniques like wet or ALD coating are time consuming and costly. Therefore, a more cost-effective coating technique is desirable. Herein, a facile and fast dry powder coating process for CAMs with nanostructured fumed metal oxides are reported. As the model case, the coating of high-Ni NMC (LiNi0.7Mn0.15Co0.15O2) by nanostructured fumed Al2O3 is investigated. A high coverage of the CAM surface with an almost continuous coating layer is achieved, still showing some porosity. Electrochemical evaluation shows a significant increase in capacity retention, cycle life and rate performance of the coated NMC material. The coating layer protects the surface of the CAM successfully and prevents side reactions, resulting in reduced solid electrolyte interface (SEI) formation and charge transfer impedance during cycling. A mechanism on how the coating layer enhances the cycling performance is hypothesized. The stable coating layer effectively prevents crack formation and particle disintegration of the NMC. In depth analysis indicates partial formation of LixAl2O3/LiAlO2 in the coating layer during cycling, enhancing lithium ion diffusivity and thus, also the rate performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000621000700001 Publication Date 2021-01-23
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 25 Open Access OpenAccess
Notes The authors would like to thank Erik Peldszus and Steve Rienecker for the support with scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. Funding from the Flemish Research Fund (FWO) project G0F1320N is acknowledged.; Open access funding enabled and organized by Projekt DEAL. Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:176670 Serial 6724
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Green, R.J.; Lee, J.H.; Piamonteze, C.; Spreitzer, M.; Jannis, D.; Verbeeck, J.; Bibes, M.; Huijben, M.; Rijnders, G.; Koster, G.
Title Spatially controlled octahedral rotations and metal-insulator transitions in nickelate superlattices Type A1 Journal article
Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 21 Issue 3 Pages 1295-1302
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The properties of correlated oxides can be manipulated by forming short-period superlattices since the layer thicknesses are comparable with the typical length scales of the involved correlations and interface effects. Herein, we studied the metal-insulator transitions (MITs) in tetragonal NdNiO3/SrTiO3 superlattices by controlling the NdNiO3 layer thickness, n in the unit cell, spanning the length scale of the interfacial octahedral coupling. Scanning transmission electron microscopy reveals a crossover from a modulated octahedral superstructure at n = 8 to a uniform nontilt pattern at n = 4, accompanied by a drastically weakened insulating ground state. Upon further reducing n the predominant dimensionality effect continuously raises the MIT temperature, while leaving the antiferromagnetic transition temperature unaltered down to n = 2. Remarkably, the MIT can be enhanced by imposing a sufficiently large strain even with strongly suppressed octahedral rotations. Our results demonstrate the relevance for the control of oxide functionalities at reduced dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000619638600014 Publication Date 2021-01-20
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 19 Open Access OpenAccess
Notes This work is supported by the international M-ERA.NET project SIOX (project 4288). J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from FWO Project G093417N from the Flemish fund for scientific research. M.S. acknowledges funding from Slovenian Research Agency (Grants J2-9237 and P2-0091). R.J.G. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. This work received support from the ERC CoG MINT (No. 615759) and from a PHC Van Gogh grant. M.B. thanks the French Academy of Science and the Royal Netherlands Academy of Arts and Sciences for supporting his stays in The Netherlands. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823717 -ESTEEM3. Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:176753 Serial 6736
Permanent link to this record
 

 
Author Ghidelli, M.; Orekhov, A.; Bassi, A.L.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Béché, A.; Gauquelin, N.; Verbeeck, J.; Raskin, J.-p.; Schryvers, D.; Pardoen, T.; Idrissi, H.
Title Novel class of nanostructured metallic glass films with superior and tunable mechanical properties Type A1 Journal article
Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater
Volume Issue Pages 116955
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A novel class of nanostructured Zr50Cu50 (%at.) metallic glass films with superior and tunable mechanical

properties is produced by pulsed laser deposition. The process can be controlled to synthetize a wide

range of film microstructures including dense fully amorphous, amorphous embedded with nanocrystals

and amorphous nano-granular. A unique dense self-assembled nano-laminated atomic arrangement

characterized by alternating Cu-rich and Zr/O-rich nanolayers with different local chemical enrichment

and amorphous or amorphous-crystalline composite nanostructure has been discovered, while

significant in-plane clustering is reported for films synthetized at high deposition pressures. This unique

nanoarchitecture is at the basis of superior mechanical properties including large hardness and elastic

modulus up to 10 and 140 GPa, respectively and outstanding total elongation to failure (>9%), leading to

excellent strength/ductility balance, which can be tuned by playing with the film architecture. These

results pave the way to the synthesis of novel class of engineered nanostructured metallic glass films

with high structural performances attractive for a number of applications in microelectronics and

coating industry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000670077800004 Publication Date 2021-05-12
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 27 Open Access OpenAccess
Notes H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the Fonds de la Recherche Scientifique – FNRS under Grant T.0178.19 and Grant CDR– J011320F. We acknowledge funding for the direct electron detector used in the 4D stem studies from the Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government J.V acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. A.O. has received partial funding from the GOA project “Solarpaint” of the University of Antwerp. A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.G. and A.L.B acknowledge Chantelle Ekanem for support in PLD depositions. Approved Most recent IF: 5.301
Call Number EMAT @ emat @c:irua:178142 Serial 6761
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Blom, F.; Verbeeck, J.; Koster, G.; Houwman, E.P.; Rijnders, G.
Title Interface degradation and field screening mechanism behind bipolar-cycling fatigue in ferroelectric capacitors Type A1 Journal article
Year 2021 Publication Apl Materials Abbreviated Journal Apl Mater
Volume 9 Issue 2 Pages 021113
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Polarization fatigue, i.e., the loss of polarization of ferroelectric capacitors upon field cycling, has been widely discussed as an interface related effect. However, mechanism(s) behind the development of fatigue have not been fully identified. Here, we study the fatigue mechanisms in Pt/PbZr0.52Ti0.48O3/SrRuO3 (Pt/PZT/SRO) capacitors in which all layers are fabricated by pulsed laser deposition without breaking the vacuum. With scanning transmission electron microscopy, we observed that in the fatigued capacitor, the Pt/PZT interface becomes structurally degraded, forming a 5 nm-10 nm thick non-ferroelectric layer of crystalline ZrO2 and diffused Pt grains. We then found that the fatigued capacitors can regain the full initial polarization switching if the externally applied field is increased to at least 10 times the switching field of the pristine capacitor. These findings suggest that polarization fatigue is driven by a two-step mechanism. First, the transient depolarization field that repeatedly appears during the domain switching under field cycling causes decomposition of the metal/ferroelectric interface, resulting in a non-ferroelectric degraded layer. Second, this interfacial non-ferroelectric layer screens the external applied field causing an increase in the coercive field beyond the usually applied maximum field and consequently suppresses the polarization switching in the cycled capacitor. Our work clearly confirms the key role of the electrode/ferroelectric interface in the endurance of ferroelectric-based devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000630052100006 Publication Date 2021-02-09
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 5 Open Access OpenAccess
Notes This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp. This work has also received funding from the European Union's Horizon 2020 research and innovation program under Grant No. 823717-ESTEEM3. We acknowledge D. Chezganov for his useful insights. Approved Most recent IF: 4.335
Call Number UA @ admin @ c:irua:177663 Serial 6783
Permanent link to this record