toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G. url  doi
openurl 
  Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater  
  Volume 29 Issue 20 Pages 8901-8913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000413884900037 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147432 Serial 4886  
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M. pdf  url
doi  openurl
  Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater  
  Volume 30 Issue 10 Pages 3285-3293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000433403800014 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:152048 Serial 4996  
Permanent link to this record
 

 
Author Morozov, V.; Deyneko, D.; Basoyich, O.; Khaikina, E.G.; Spassky, D.; Morozov, A.; Chernyshev, V.; Abakumov, A.; Hadermann, J. pdf  doi
openurl 
  Title Incommensurately modulated structures and luminescence properties of the AgxSm(2-x)/3WO4 (x=0.286, 0.2) scheelites as thermographic phosphors Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater  
  Volume 30 Issue 14 Pages 4788-4798  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ag+ for Sm3+ substitution in the scheelite-type AgxSm(2-x)/3 square(1-2x)/3WO4 tungstates has been investigated for its influence on the cation-vacancy ordering and luminescence properties. A solid state method was used to synthesize the x = 0.286 and x = 0.2 compounds, which exhibited (3 + 1)D incommensurately modulated structures in the transmission electron microscopy study. Their structures were refined using high resolution synchrotron powder X-ray diffraction data. Under near-ultraviolet light, both compounds show the characteristic emission lines for (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2, and 11/2) transitions of the Sm3+ ions in the range 550-720 nm, with the J = 9/2 transition at the similar to 648 nm region being dominant for all photoluminescence spectra. The intensities of the (4)G(5/2) -> H-6(9/2) and (4)G(5/2) -> H-6(7/2) bands have different temperature dependencies. The emission intensity ratios (R) for these bands vary reproducibly with temperature, allowing the use of these materials as thermographic phosphors.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000440105500037 Publication Date 2018-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access  
  Notes ; This research was supported by FWO (Project G039211N), Flanders Research Foundation. The research was carried out within the state assignment of FASO of Russia (Themes No. 0339-2016-0007). V.M. thanks the Russian Foundation for Basic Research (Grant 18-03-00611) for financial support. E.G.K. and O.B. acknowledge financial support from the Russian Foundation for Basic Research (Grant 16-03-00510). D.D. thanks the Foundation of the Russian Federation President (Grant MK-3502.2018.5) for financial support. We are grateful to the ESRF for granting the beamtime. V.C. is grateful for the financial support of the Russian Ministry of Science and Education (Project No. RFMEFI61616X0069). We are grateful to the ESRF for the access to ID22 station (experiment MA-3313). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:153156 Serial 5107  
Permanent link to this record
 

 
Author Tan, X.; Stephens, P.W.; Hendrickx, M.; Hadermann, J.; Segre, C.U.; Croft, M.; Kang, C.-J.; Deng, Z.; Lapidus, S.H.; Kim, S.W.; Jin, C.; Kotliar, G.; Greenblatt, M. url  doi
openurl 
  Title Tetragonal Cs1.17In0.81Cl3 : a charge-ordered indium halide perovskite derivative Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater  
  Volume 31 Issue 6 Pages 1981-1989  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of Cs1.17In0.81Cl3 were prepared by annealing a mixture of CsCl, InCl, and InCl3, stoichiometric for the targeted CsInCl3. Synchrotron powder X-ray diffraction refinement and chemical analysis by energy dispersive X-ray indicated that Cs1.17In0.81Cl3, a tetragonal distorted perovskite derivative (I4/m), is the thermodynamically stable product. The refined unit cell parameters and space group were confirmed by electron diffraction. In the tetragonal structure, In+ and In3+ are located in four different crystallographic sites, consistent with their corresponding bond lengths. In1, In2, and In3 are octahedrally coordinated, whereas In4 is at the center of a pentagonal bipyramid of Cl because of the noncooperative octahedral tilting of In4Cl6. The charged-ordered In+ and In3+ were also confirmed by X-ray absorption and Raman spectroscopy. Cs1.17In0.81Cl3 is the first example of an inorganic halide double perovskite derivative with charged-ordered In+ and In3+. Band structure and optical conductivity calculations were carried out with both generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) approach; the GGA calculations estimated the band gap and optical band gap to be 2.27 eV and 2.4 eV, respectively. The large and indirect band gap suggests that Cs1.17In0.81Cl3 is not a good candidate for photovoltaic application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462950400017 Publication Date 2019-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes ; M.G. and X.T. were supported by the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant No. DE-FOA-0001276. M.G. also acknowledges support of NSF-DMR-1507252 grant. G.K. and C.-J.K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source at the Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The works at IOPCAS were supported by NSF & MOST of China through research projects. ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:159413 Serial 5262  
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M. pdf  url
doi  openurl
  Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal (up) Chem Mater  
  Volume 33 Issue 11 Pages 4188-4195  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000661521800032 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:179679 Serial 6854  
Permanent link to this record
 

 
Author Yan, L.; Niu, H.J.; Duong, G.V.; Suchomel, M.R.; Bacsa, J.; Chalker, P.R.; Hadermann, J.; Van Tendeloo, G.; Rosseinsky, M.J. doi  openurl
  Title Cation ordering within the perovskite block of a six-layer Ruddlesden-Popper oxide from layer-by-layer growth artificial interfaces in complex unit cells Type A1 Journal article
  Year 2011 Publication Chemical science Abbreviated Journal (up) Chem Sci  
  Volume 2 Issue 2 Pages 261-272  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The (AO)(ABO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3, but low-temperature layer-by-layer thin film methods allow the preparation of materials with thicker perovskite blocks, exploiting high surface mobility and lattice matching with the substrate. This paper describes the growth of an n = 6 member CaO[(CSMO)2(LCMO)2 (CSMO)2] in which the six unit cell perovskite block is sub-divided into two central La0.67Ca0.33MnO3 (LCMO) and two terminal Ca0.85Sm0.15MnO3 (CSMO) layers to allow stabilization of the rock salt layer and variation of the transition metal charge.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000286327600010 Publication Date 2010-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 16 Open Access  
  Notes Approved Most recent IF: 8.668; 2011 IF: 7.525  
  Call Number UA @ lucian @ c:irua:88652 Serial 300  
Permanent link to this record
 

 
Author Alaria, J.; Borisov, P.; Dyer, M.S.; Manning, T.D.; Lepadatu, S.; Cain, M.G.; Mishina, E.D.; Sherstyuk, N.E.; Ilyin, N.A.; Hadermann, J.; Lederman, D.; Claridge, J.B.; Rosseinsky, M.J.; doi  openurl
  Title Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components Type A1 Journal article
  Year 2014 Publication Chemical science Abbreviated Journal (up) Chem Sci  
  Volume 5 Issue 4 Pages 1599-1610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000332467400044 Publication Date 2014-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 24 Open Access  
  Notes Approved Most recent IF: 8.668; 2014 IF: 9.211  
  Call Number UA @ lucian @ c:irua:117064 Serial 1045  
Permanent link to this record
 

 
Author Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M. pdf  doi
openurl 
  Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
  Year 2010 Publication Chemical science Abbreviated Journal (up) Chem Sci  
  Volume 1 Issue 6 Pages 751-762  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000283939200013 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 12 Open Access  
  Notes Approved Most recent IF: 8.668; 2010 IF: NA  
  Call Number UA @ lucian @ c:irua:85823 Serial 3517  
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J. pdf  url
doi  openurl
  Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal (up) Chem. Mater.  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 001174840900001 Publication Date 2024-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @c:irua:204354 Serial 8997  
Permanent link to this record
 

 
Author Ryabova, A.S.; Bonnefont, A.; Zagrebin, P.; Poux, T.; Sena, R.P.; Hadermann, J.; Abakumov, A.M.; Kerangueven, G.; Istomin, S.Y.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R. doi  openurl
  Title Study of hydrogen peroxide reactions on manganese oxides as a tool to decode the oxygen reduction reaction mechanism Type A1 Journal article
  Year 2016 Publication ChemElectroChem Abbreviated Journal (up) Chemelectrochem  
  Volume 3 Issue 3 Pages 1667-1677  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hydrogen peroxide has been detected as a reaction intermediate in the electrochemical oxygen reduction reaction (ORR) on transition-metal oxides and other electrode materials. In this work, we studied the electrocatalytic and catalytic reactions of hydrogen peroxide on a set of Mn oxides, Mn2O3, MnOOH, LaMnO3, MnO2, and Mn3O4, that adopt different crystal structures to shed light on the mechanism of the ORR on these materials. We then combined experiment with kinetic modeling with the objective to correlate the differences in the ORR activity to the kinetics of the elementary reaction steps, and we uncovered the importance of structural and compositional factors in the catalytic activity of the Mn oxides. We concluded that the exceptional activity of Mn2O3 in the ORR is due to its high catalytic activity both in the reduction of oxygen to hydrogen peroxide and in the decomposition of the latter, and furthermore, we proposed a tentative link between crystal structure and reactivity.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Place of publication unknown Editor  
  Language Wos 000388377200019 Publication Date 2016-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.136 Times cited 20 Open Access  
  Notes Approved Most recent IF: 4.136  
  Call Number UA @ lucian @ c:irua:139202 Serial 4449  
Permanent link to this record
 

 
Author Kamminga, M.E.; Batuk, M.; Hadermann, J.; Clarke, S.J. pdf  url
doi  openurl
  Title Misfit phase (BiSe)1.10NbSe2 as the origin of superconductivity in niobium-doped bismuth selenide Type A1 Journal article
  Year 2020 Publication Communications Materials Abbreviated Journal (up) Commun Mater  
  Volume 1 Issue 1 Pages 82  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Topological superconductivity is of great contemporary interest and has been proposed in doped Bi<sub>2</sub>Se<sub>3</sub>, in which electron-donating atoms such as Cu, Sr or Nb have been intercalated into the Bi<sub>2</sub>Se<sub>3</sub>structure. For Nb<sub><italic>x</italic></sub>Bi<sub>2</sub>Se<sub>3</sub>, with<italic>T</italic><sub>c</sub> ~ 3 K, it is assumed in the literature that Nb is inserted in the van der Waals gap. However, in this work an alternative origin for the superconductivity in Nb-doped Bi<sub>2</sub>Se<sub>3</sub>is established. In contrast to previous reports, it is deduced that Nb intercalation in Bi<sub>2</sub>Se<sub>3</sub>does not take place. Instead, the superconducting behaviour in samples of nominal composition Nb<sub><italic>x</italic></sub>Bi<sub>2</sub>Se<sub>3</sub>results from the (BiSe)<sub>1.10</sub>NbSe<sub>2</sub>misfit phase that is present in the sample as an impurity phase for small<italic>x</italic>(0.01 ≤ <italic>x</italic> ≤ 0.10) and as a main phase for large<italic>x</italic>(<italic>x</italic> = 0.50). The structure of this misfit phase is studied in detail using a combination of X-ray diffraction and transmission electron microscopy techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610580800001 Publication Date 2020-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2662-4443 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes M.E.K. was supported by the Netherlands Organisation for Scientific Research (NWO, grant code 019.181EN.003). We also acknowledge support from the EPSRC (EP/ R042594/1, EP/P018874/1, EP/M020517/1) and the Leverhulme Trust (RPG-2018-377). J.H. acknowledges support from the University of Antwerp through BOF Grant No. 31445. We thank DLS Ltd for beam time (EE18786), Dr Clare Murray for assistance on I11 and Dr Jon Wade from the Department of Earth Sciences, University of Oxford for performing the SEM measurements. We also thank Dr Michal Dušak and Dr Václav Petřiček for their advice concerning the use of the Jana2006 software. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:176116 Serial 6705  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Callaert, C.; Hadermann, J.; Delville, R.; Caspi, E.'ad N.; Dahlqvist, M.; Rosen, J.; Marshal, A.; Pradeep, K.G.; Schneider, J.M.; Vleugels, J.; Lambrinou, K. pdf  doi
openurl 
  Title Compatibility of Zr₂AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic Type A1 Journal article
  Year 2020 Publication Corrosion Science Abbreviated Journal (up) Corros Sci  
  Volume 171 Issue Pages 108704-108719  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work investigates the compatibility of Zr2AlC MAX phase-based ceramics with liquid LBE, and proposes a mechanism to explain the observed local Zr2AlC/LBE interaction. The ceramics were exposed to oxygen-poor (C-O <= 2.2 x 10(-10) mass%), static liquid LBE at 500 degrees C for 1000 h. A new Zr-2(Al,Bi,Pb)C MAX phase solid solution formed in-situ in the LBE-affected Zr2AlC grains. Out-of-plane ordering was favorable in the new solid solution, whereby A-layers with high and low-Bi/Pb contents alternated in the crystal structure, in agreement with first-principles calculations. Bulk Zr-2(Al,Bi,Pb)C was synthesized by reactive hot pressing to study the crystal structure of the solid solution by neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537624600005 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-938x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.3 Times cited 3 Open Access Not_Open_Access  
  Notes ; B.T. acknowledges the financial support of the SCK CEN Academy for Nuclear Science and Technology (Belgium). This research was partly funded by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/ 2007-2013 under Grant Agreement No. 604862 (FP7 MatISSE), the MYRRHA project (SCK CEN, Belgium), as well as by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). The performed research falls within the framework of the EERA (European Energy Research Alliance) Joint Programme on Nuclear Materials (JPNM). The authors gratefully acknowledge the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM)) and the Knut and Alice Wallenberg (KAW) foundation. The calculations were carried out using supercomputer resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) and the PDC Center for High Performance Computing. E.N.C. thanks Offir Ozeri for his help in NPD data acquiring. ; Approved Most recent IF: 8.3; 2020 IF: 5.245  
  Call Number UA @ admin @ c:irua:170157 Serial 6475  
Permanent link to this record
 

 
Author Morozov, V.A.; Posokhova, S.M.; Deyneko, D., V; Savina, A.A.; Morozov, A., V; Tyablikov, O.A.; Redkin, B.S.; Spassky, D.A.; Hadermann, J.; Lazoryak, B., I doi  openurl
  Title Influence of annealing conditions on the structure and luminescence properties of KGd1-xEux(MoO4)2(0\leq x\leq1) Type A1 Journal article
  Year 2019 Publication CrystEngComm Abbreviated Journal (up) Crystengcomm  
  Volume 21 Issue 42 Pages 6460-6471  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study describes the influence of annealing temperature on the structure and luminescence properties of KGd1-xEux(MoO4)(2) (0 <= x <= 1). Compounds with the general formula (A ', A '')(n)[(W, Mo)O-4](m) are investigated as luminescent materials for photonic applications such as phosphor-converted LEDs (light-emitting diodes). Herein, the KGd0.8Eu0.2(MoO4)(2) light-rose crystal was grown by the Czochralski technique. Moreover, three polymorphs of KGd1-xEux(MoO4)(2) were present in the 923-1223 K range of annealing temperatures under ambient pressure: a triclinic alpha-phase, a disproportionately modulated monoclinic beta-phase and an orthorhombic gamma-phase with a KY(MoO4)(2)-type structure. The different behaviors of KGd(MoO4)(2) and KEu(MoO4)(2) were revealed by DSC studies. The number and the character of phase transitions for KGd1-xEux(MoO4)(2) depended on the elemental composition. The formation of a continuous range of solid solutions with the triclinic alpha-KEu(MoO4)(2)-type structure and ordering of K+ and Eu3+/Gd3+ cations were observed only for alpha-KGd1-xEux(MoO4)(2) (0 <= x <= 1) prepared at 923 K. The structures of gamma-KGd1-xEux(MoO4)(2) (x = 0 and 0.2) were studied using electron diffraction and refined using the powder X-ray diffraction data. The luminescence properties of KGd1-xEux(MoO4)(2) prepared at different annealing temperatures were studied and related to their different structures. The maxima of the D-5(0) -> F-7(2) integral emission intensities were found under excitation at lambda(ex) = 300 nm and lambda(ex) = 395 nm for triclinic scheelite-type alpha-KGd0.6Eu0.4(MoO4)(2) and monoclinic scheelite-type beta-KGd0.4Eu0.6(MoO4)(2) prepared at 1173 K, respectively. The latter shows the brightest red light emission among the KGd1-xEux(MoO4)(2) phosphors. The maximum and integral emission intensity of beta-KGd0.4Eu0.6(MoO4)(2) in the D-5(0) -> F-7(2) transition region is similar to 20% higher than that of the commercially used red phosphor Gd2O2S:Eu3+. Thus, beta-KGd0.4Eu0.6(MoO4)(2) is very attractive for application as a near-UV convertible red-emitting phosphor for LEDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000493072200015 Publication Date 2019-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited Open Access  
  Notes Approved Most recent IF: 3.474  
  Call Number UA @ admin @ c:irua:164603 Serial 6304  
Permanent link to this record
 

 
Author Posokhova, S.M.M.; Morozov, V.A.; Deyneko, D.V.V.; Redkin, B.S.S.; Spassky, D.A.A.; Nagirnyi, V.; Belik, A.A.A.; Hadermann, J.; Pavlova, E.T.T.; Lazoryak, B.I.I. doi  openurl
  Title K₅Eu(MoO₄)₄ red phosphor for solid state lighting applications, prepared by different techniques Type A1 Journal article
  Year 2023 Publication CrystEngComm Abbreviated Journal (up) Crystengcomm  
  Volume 25 Issue 5 Pages 835-847  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The influence of preparation techniques on the structure and luminescent properties of K5Eu(MoO4)(4) (KEMO) was investigated. KEMO phosphors were synthesized by three different techniques: solid state and sol-gel (sg) methods as well as the Czochralski (CZ) crystal growth technique. Laboratory powder X-ray diffraction (PXRD) studies revealed that all KEMO samples had a structure analogous to that of other high temperature alpha-K5R(MoO4)(4) palmierite-type phases (space group (SG) R3m). Contrary to laboratory PXRD data, electron diffraction revealed that the KEMO crystal grown by the CZ technique had a (3 + 1)D incommensurately modulated structure (super space group (SSG) C2/m(0 beta 0)00) with the modulation vector q = 0.689b*. A detailed analysis of electron diffraction patterns has shown formation of three twin domains rotated along the c axis of the R-subcell at 60 degrees with respect to each other. Synchrotron XRD patterns showed additional ultra-wide reflexes in addition to reflections of the R-subcell of the palmierite. However, the insufficient number of reflections, their low intensity and large width in the synchrotron X-ray diffraction patterns made it impossible to refine the structure as incommensurately modulated C2/m(0 beta 0)00. An average structure was refined in the C2/m space group with random distribution of K1 and Eu1 in [M1A(2)O(8)]-layers of the palmierite-type structure. The dependence of luminescent properties on utilized synthesis techniques was studied. The emission spectra of all samples exhibit intense red emission originating from the D-5(0) -> F-7(2) Eu3+ transition. The integrated intensity of the emission from the Eu3+ 5D0 term was found to be the highest in the crystal grown by the CZ technique. The quantum yield measured for KEMO crystals demonstrates a very high value of 66.5%. This fact confirms that KEMO crystals are exceptionally attractive for applications as a near-UV converting red phosphor for LEDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000912021300001 Publication Date 2023-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.1; 2023 IF: 3.474  
  Call Number UA @ admin @ c:irua:194320 Serial 7317  
Permanent link to this record
 

 
Author Tyablikov, O.A.; Batuk, D.; Tsirlin, A.A.; Batuk, M.; Verchenko, V.Y.; Filimonov, D.S.; Pokholok, K.V.; Sheptyakov, D.V.; Rozova, M.G.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M.; pdf  url
doi  openurl
  Title {110}-Layered B-cation ordering in the anion-deficient perovskite Pb2.4Ba2.6Fe2Sc2TiO13 with the crystallographic shear structure Type A1 Journal article
  Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (up) Dalton T  
  Volume 44 Issue 44 Pages 10753-10762  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel anion-deficient perovskite-based compound, Pb2.4Ba2.6Fe2Sc2TiO13, was synthesized via the citrate-based route. This compound is an n = 5 member of the A(n)B(n)O(3n-2) homologous series with unit-cell parameters related to the perovskite subcell a(p) approximate to 4.0 angstrom as a(p)root 2 x a(p) x 5a(p)root 2. The crystal structure of Pb2.4Ba2.6Fe2Sc2TiO13 consists of quasi-2D perovskite blocks with a thickness of three octahedral layers separated by the 1/2[110]((1) over bar 01)(p) crystallographic shear (CS) planes, which are parallel to the {110} plane of the perovskite subcell. The CS planes transform the corner-sharing octahedra into chains of edge-sharing distorted tetragonal pyramids. Using a combination of neutron powder diffraction, Fe-57 Mossbauer spectroscopy and atomic resolution electron energy-loss spectroscopy we demonstrate that the B-cations in Pb2.4Ba2.6Fe2Sc2TiO13 are ordered along the {110} perovskite layers with Fe3+ in distorted tetragonal pyramids along the CS planes, Ti4+ preferentially in the central octahedra of the perovskite blocks and Sc3+ in the outer octahedra of the perovskite blocks. Magnetic susceptibility and Mossbauer spectroscopy indicate a broadened magnetic transition around T-N similar to 45 K and the onset of local magnetic fields at low temperatures. The magnetic order is probably reminiscent of that in other A(n)B(n)O(3n-2) homologues, where G-type AFM order within the perovskite blocks has been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000355701000026 Publication Date 2015-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 1 Open Access  
  Notes Approved Most recent IF: 4.029; 2015 IF: 4.197  
  Call Number c:irua:127001 Serial 22  
Permanent link to this record
 

 
Author Paria Sena, R.; Babaryk, A.A.; Khainakov, S.; Garcia-Granda, S.; Slobodyanik, N.S.; Van Tendeloo, G.; Abakumov, A.M.; Hadermann, J. pdf  url
doi  openurl
  Title A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)36.3O94 with advanced transmission electron microscopy and neutron diffraction Type A1 Journal article
  Year 2016 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (up) Dalton T  
  Volume 45 Issue 45 Pages 973-979  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) A, b = 12.493(3) A, c = 3.95333(15) A. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.  
  Address Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium. joke.hadermann@uantwerpen.be babaryk@univ.kiev.ua  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367614700018 Publication Date 2015-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 6 Open Access  
  Notes We thank Dr E. Suard and Dr O. Fabello for assistance in collecting the neutron diffraction data. R.P.S. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS. The titan microscope was partly funded by the Hercules fund from the Flemish Government. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. AAB acknowledges the JSPDS ICDD Grant-in-Aid program (12-02).; esteem2jra1; esteem2jra2 Approved Most recent IF: 4.029  
  Call Number c:irua:130408 c:irua:130408 Serial 3998  
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
  Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (up) Dalton T  
  Volume 47 Issue 44 Pages 15783-15790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450208000019 Publication Date 2018-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.029 Times cited Open Access Not_Open_Access  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029  
  Call Number EMAT @ emat @c:irua:155771 Serial 5137  
Permanent link to this record
 

 
Author Mallick, S.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A. url  doi
openurl 
  Title The crystal and defect structures of polar KBiNb2O7 Type A1 Journal article
  Year 2022 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (up) Dalton T  
  Volume 51 Issue 5 Pages 1866-1873  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0. ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately an ~11% chance of being defective – a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741540300001 Publication Date 2022-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford/Warwick Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE18786). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (RB 2000148). SM thanks Somerville College for an Oxford Ryniker Lloyd scholarship. PSH and WZ thank the National Science Foundation (DMR-2002319) for support. Approved Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:185504 Serial 6951  
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental Materials Abbreviated Journal (up) Dent Mater  
  Volume 32 Issue 32 Pages e327-e337  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract OBJECTIVE: The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. METHODS: Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha=0.05). RESULTS: Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. SIGNIFICANCE: Three different approaches were compared to improve the translucency of 3Y-TZP ceramics.  
  Address KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000389516400003 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.07 Times cited Open Access  
  Notes The authors acknowledge the Research Fund of KU Leu- ven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post- doctoral fellowship (PDM/15/153). We thank M. Peumans for the translucency measurements. Approved Most recent IF: 4.07  
  Call Number EMAT @ emat @ c:irua:136821 Serial 4313  
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental materials Abbreviated Journal (up) Dent Mater  
  Volume 32 Issue 12 Pages E327-E337  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000389516400003 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.07 Times cited 47 Open Access  
  Notes Approved Most recent IF: 4.07  
  Call Number UA @ lucian @ c:irua:140246 Serial 4447  
Permanent link to this record
 

 
Author Drozhzhin, O.A.; Sumanov, V.D.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Baranov, A.N.; Stevenson, K.J.; Antipov, E.V. pdf  url
doi  openurl
  Title Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 191 Issue 191 Pages 149-157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical properties and phase transformations during (de)insertion of Li+ in LiFePO4, LiFe0.9Mn0.1PO4 and LiFe0.5Mn0.5PO4 are studied by means of galvanostatic cycling, potential intermittent titration technique (PITT) and in situ X-ray powder diffraction. Different modes of switching between the solid solution and two-phase regimes are revealed which are influenced by the Mn content in Li1-xFe1-yMnyPO4. Additionally, an increase in electrochemical capacity with the Mn content is observed at high rates of galvanostatic cycling (10C, 20C), which is in good agreement with the numerically estimated contribution of the solid solution mechanism determined from PITT data. The observed asymmetric behavior of the phase transformations in Li1-xFe0.5Mn0.5PO4 during charge and discharge is discussed. For the first time, the crystal structures of electrochemically deintercalated Li1-xFe0.5Mn0.5PO4 with different Li content – LiFe0.5Mn0.5PO4, Li0.5Fe0.5Mn0.5PO4 and Li0.1Fe0.5Mn0.5PO4 – are refined, including the occupancy factors of the Li position. This refinement is done using electron diffraction tomography data. The crystallographic analyses of Li1-xFe0.5Mn0.5PO4 reveal that at x = 0.5 and 0.9 the structure retains the Pnma symmetry and the main motif of the pristine x = 0 structure without noticeable short range order effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371143200018 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 27 Open Access  
  Notes This work was supported by the Russian Foundation of Basic Research (grants No. 14-29-04064 and 14-03-31473), Skolkovo Institute of Science and Technology, and the Lomonosov Moscow State University Program of Development. J. Hadermann, O. M. Karakulina and A. M. Abakumov acknowl- edge support from FWO under grant G040116N. Approved Most recent IF: 4.798  
  Call Number c:irua:131911 Serial 4032  
Permanent link to this record
 

 
Author Ryabova, A.S.; Istomin, S.Y.; Dosaev, K.A.; Bonnefont, A.; Hadermann, J.; Arkharova, N.A.; Orekhov, A.S.; Sena, R.P.; Saveleva, V.A.; Kerangueven, G.; Antipov, E., V.; Savinova, E.R.; Tsirlina, G.A. pdf  url
doi  openurl
  Title Mn₂O₃ oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media : highly active if properly manipulated Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal (up) Electrochim Acta  
  Volume 367 Issue Pages 137378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We consider compositional and structural factors which can affect the activity of bixbyite alpha-Mn2O3 towards the oxygen reduction reaction (ORR) and the stability of this oxide in alkaline solution. We compare electrochemistry of undoped, Fe and Al-doped alpha-Mn2O3 with bixbyite structure and braunite Mn7SiO12 having bixbyite-related crystal structure, using the rotating disk electrode (RDE), the rotating ring-disk electrode (RRDE), and cyclic voltammetry (CV) techniques. All manganese oxides under study are stable in the potential range between the ORR onset and ca. 0.7 V vs. Reversible Hydrogen Electrode (RHE). It is found that any changes introduced in the bixbyite structure and/or composition of alpha-Mn2O3 lead to an activity drop in both the oxygen reduction and hydrogen peroxide reactions in this potential interval. For the hydrogen peroxide reduction reaction these modifications also result in a change in the nature of the rate-determining step. The obtained results confirm that due to its unique crystalline structure undoped alpha-Mn2O3 is the most ORR active (among currently available) Mn oxide catalyst and favor the assumption of the key role of the (111) surface of alpha-Mn2O3 in the very high activity of this material towards the ORR. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000607621500013 Publication Date 2020-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:176080 Serial 6731  
Permanent link to this record
 

 
Author Fedotov, S.S.; Aksyonov, D.A.; Samarin, A.S.; Karakulina, O.M.; Hadermann, J.; Stevenson, K.J.; Khasanova, N.R.; Abakumov, A.M.; Antipov, E., V pdf  url
doi  openurl
  Title Tuning the crystal structure of A2CoPO4F(A=Li,Na) fluoride-phosphates : a new layered polymorph of LiNaCoPO4F Type A1 Journal article
  Year 2019 Publication European journal of inorganic chemistry Abbreviated Journal (up) Eur J Inorg Chem  
  Volume 2019 Issue 2019 Pages 4365-4372  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Co-containing fluoride-phosphates are of interest in sense of delivering high electrode potentials and attractive specific energy values as positive electrode materials for rechargeable batteries. In this paper we report on a new Co-based fluoride-phosphate, LiNaCoPO4F, with a layered structure (2D), which was Rietveld-refined based on X-ray powder diffraction data [P2(1)/c, a = 6.83881(4) angstrom, b = 11.23323(5) angstrom, c = 5.07654(2) angstrom, beta = 90.3517(5) degrees, V = 389.982(3) angstrom(3)] and validated by electron diffraction and high-resolution scanning transmission electron microscopy. The differential scanning calorimetry measurements revealed that 2D-LiNaCoPO4F forms in a narrow temperature range of 520-530 degrees C and irreversibly converts to the known 3D-LiNaCoPO4F modification (Pnma) above 530 degrees C. The non-carbon-coated 2D-LiNaCoPO4F shows reversible electrochemical activity in Li-ion cell in the potential range of 3.0-4.9 V vs. Li/Li+ with an average potential of approximate to 4.5 V and in Na-ion cell in the range of 3.0-4.5 V vs. Na/Na+ exhibiting a plateau profile centered around 4.2 V, in agreement with the calculated potentials by density functional theory. The energy barriers for both Li+ and Na+ migration in 2D-LiNaCoPO4F amount to 0.15 eV along the [001] direction rendering 2D-LiNaCoPO4F as a viable electrode material for high-power Li- and Na-ion rechargeable batteries. The discovery and stabilization of the 2D-LiNaCoPO4F polymorph indicates that temperature influence on the synthesis of A(2)MPO(4)F fluoride-phosphates needs more careful examination with perspective to unveil new structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000484135500001 Publication Date 2019-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited Open Access  
  Notes ; This work is supported by the Russian Science Foundation (grant 17-73-30006). The authors greatly thank Dr. D. Rupasov for TG-DSC experiments, B. D. Shmykov and A. I. Manoilov for assistance with sample preparation, the Skoltech Center for Energy Science and Technology and the Moscow State University Program of Development up to 2020. J. Hadermann and O. M. Karakulina acknowledge support from the FWO under grant G040116N. ; Approved Most recent IF: 2.444  
  Call Number UA @ admin @ c:irua:162857 Serial 5403  
Permanent link to this record
 

 
Author Ranjbar, S.; Hadipour, A.; Vermang, B.; Batuk, M.; Hadermann, J.; Garud, S.; Sahayaraj, S.; Meuris, M.; Brammertz, G.; da Cunha, A.F.; Poortmans, J. pdf  url
doi  openurl
  Title P-N Junction Passivation in Kesterite Solar Cells by Use of Solution-Processed TiO2 Layer Type A1 Journal article
  Year 2017 Publication IEEE journal of photovoltaics Abbreviated Journal (up) Ieee J Photovolt  
  Volume 7 Issue 7 Pages 1130-1135  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this work, we used a solution-processed TiO2 layer between Cu2ZnSnSe4 and CdS buffer layer to reduce the recombination at the p–n junction. Introducing the TiO2 layer showed a positive impact on VOC but fill factor and efficiency decreased. Using a KCN treatment, we could create openings in the TiO2 layer, as confirmed by transmission electron microscopy measurements. Formation of these openings in the TiO2 layer led to the improvement of the short-circuit current, fill factor, and the efficiency of the modified solar cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404258900026 Publication Date 2017-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-3381 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.712 Times cited 2 Open Access OpenAccess  
  Notes This work was supported in part by the European Union’s Horizon 2020 research and innovation program under Grant 640868, in part by the Flemish government, Department Economy, Science and Innovation, in part by the FEDER funds through the COMPETE 2020 Programme, and in part by the National Funds through FCT – Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013. The work of S. Ranjbar was supported by the Portuguese Science and Technology Foundation through Ph.D. grant SFRH/BD/78409/2011. The work of B. Vermang was supported by the Flemish Research Foundation FWO (mandate 12O4215N). Approved Most recent IF: 3.712  
  Call Number EMAT @ emat @ c:irua:143986 Serial 4583  
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem  
  Volume 53 Issue 4 Pages 2171-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000332144100039 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:113507 Serial 198  
Permanent link to this record
 

 
Author Abakumov, A.M.; Morozov, V.A.; Tsirlin, A.A.; Verbeeck, J.; Hadermann, J. pdf  doi
openurl 
  Title Cation ordering and flexibility of the BO42- tetrahedra in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem  
  Volume 53 Issue 17 Pages 9407-9415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The factors mediating cation ordering in the scheelite-based molybdates and tungstates are discussed on the basis of the incommensurately modulated crystal structures of the CaEu2(BO4)(4) (B = Mo, W) red phosphors solved from high-resolution synchrotron powder X-ray diffraction data. Monoclinic CaEu2(WO4)(4) adopts a (3 + 1)-dimensionally modulated structure [superspace group I2/b(alpha beta 0)00, a = 5.238 73(1)A, b = 5.266 35(1) A, c = 11.463 19(9) A, gamma = 91.1511(2)degrees, q = 0.56153(6)a* + 0.7708(9)b*, R-F = 0.050, R-p = 0.069], whereas tetragonal CaEu2(MoO4)(4) is (3 + 2)-dimensionally modulated [superspace group I4(1)/ a(alpha beta 0)00(-beta alpha 0)00, a = 5.238 672(7) A, c = 11.548 43(2) A, q(1) = 035331(8)a* + 0.82068(9)b*, q(2) = -0.82068(9)a* + 0.55331(8)b*, R-F = 0.061, R-p = 0.082]. In both cases the modulation arises from the ordering of the Ca/Eu cations and the cation vacancies at the A-sublattice of the parent scheelite ABO(4) structure. The cation ordering is incomplete and better described with harmonic rather than with steplike occupational modulation functions. The structures respond to the variation of the effective charge and cation size at the A-position through the flexible geometry of the MoO42- and WO42- tetrahedra demonstrating an alternation of stretching the B-O bond lengths and bending the O-B-O bond angles. The tendency towards A-site cation ordering in scheelites is rationalized using the difference in ionic radii and concentration of the A-site vacancies as parameters and presented in the form of a structure map.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000341229600068 Publication Date 2014-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 48 Open Access  
  Notes Fwo G039211n Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:119292UA @ admin @ c:irua:119292 Serial 297  
Permanent link to this record
 

 
Author King, G.; Abakumov, A.M.; Hadermann, J.; Alekseeva, A.M.; Rozova, M.G.; Perkisas, T.; Woodward, P.M.; Van Tendeloo, G.; Antipov, E.V. doi  openurl
  Title Crystal structure and phase transitions in Sr3WO6 Type A1 Journal article
  Year 2010 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem  
  Volume 49 Issue 13 Pages 6058-6065  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structures of the beta and gamma polymorphs of Sr3WO6 and the gamma <->beta phase transition have been investigated using electron diffraction, synchrotron X-ray powder diffraction, and neutron powder diffraction. The gamma-Sr3WO6 polymorph is stable above T-c approximate to 470 K and adopts a monoclinically distorted double perovskite A(2)BB'O-6= Sr2SrWO6 structure (space group Cc, a = 10.2363(1)angstrom, b= 17.9007(1)angstrom, c= 11.9717(1)angstrom, beta=125.585(1)degrees at T= 1373 K, Z=12, corresponding to a = a(p)+1/2b(p) – 1/2c(p), b =3/2b(p) + 3/2c(p), c =-b(p) + c(p), a(p),b(p), c(p), lattice vectors of the parent Fm (3) over barm double perovskite structure). Upon cooling it undergoes a continuous phase transition into the triclinically distorted beta-Sr3WO6 phase (space group Cl, a = 10.09497(3)angstrom, b = 17.64748(5)angstrom, c = 11.81400(3)angstrom, alpha = 89.5470(2)degrees, beta= 125.4529(2)degrees, gamma =90.2889(2)degrees at T= 300 K). Both crystal structures of Sr3WO6 belong to a family of double perovskites with broken corner sharing connectivity of the octahedral framework. A remarkable feature of the gamma-Sr3WO6 structure is a non-cooperative rotation of the WO6 octahedra. One third of the WO6 octahedra are rotated by 45 about either the bp or the cp axis of the parent double perovskite structure. As a result, the WO6 octahedra do not share corners but instead share edges with the coordination polyhedra of the Sr cations at the B positions increasing their coordination number from 6 to 7 or 8. The crystal structure of the beta-phase is very close to the structure of the gamma-phase; decreasing symmetry upon the gamma ->beta transformation occurs because of unequal octahedral rotation angles about the bp and cp axes and increasing distortions of the WO6 octahedra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000279211500036 Publication Date 2010-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 18 Open Access  
  Notes Approved Most recent IF: 4.857; 2010 IF: 4.326  
  Call Number UA @ lucian @ c:irua:83877 Serial 562  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Tsirlin, A.A.; McCammon, C.M.; Dubrovinsky, L.; Hadermann, J. pdf  doi
openurl 
  Title Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem  
  Volume 52 Issue 17 Pages 10009-10020  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites are investigated using the (Pb1−zSrz)1−xFe1+xO3−y perovskites as a model system. The orientation of the CS planes in the system varies unevenly with z. A comparison of the structures with different CS planes revels that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000326129000037 Publication Date 2013-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 11 Open Access  
  Notes Fwo Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:111394 Serial 822  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Rozova, M.G.; Sarakinou, E.; Antipov, E.V. doi  openurl
  Title Expanding the Ruddlesden-Popper manganite family : the n=3 La3.2Ba0.8Mn3O10 Member Type A1 Journal article
  Year 2012 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem  
  Volume 51 Issue 21 Pages 11487-11492  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La3.2Ba0.8Mn3O10, a representative of the rare n = 3 members of the Ruddlesden-Popper manganites A(n+1)Mn(n)O(3n+1), was synthesized in an evacuated sealed silica tube. Its crystal structure was refined from a combination of powder X-ray diffraction (PXD) and precession electron diffraction (PED) data, with the rotations of the MnO6 octahedra described within the symmetry-adapted mode approach (space group Cccm, a = 29.068(1) angstrom, b = 5.5504(5) angstrom, c = 5.5412(5) angstrom; PXD RF = 0.053, RP = 0.026; PED RF = 0.248). The perovskite block in La3.2Ba0.8Mn3O10 features an octahedral tilting distortion with out-of-phase rotations of the Mn06 octahedra according to the (Phi,Phi,0)(Phi,Phi,0) mode, observed for the first time in the n = 3 Ruddlesden-Popper structures. The Mn06 octahedra demonstrate a noticeable deformation with the elongation of two apical Mn-O bonds due to the Jahn-Teller effect in the Mn3+ cations. The relationships between the octahedral tilting distortion, the ionic radii of the cations at the A- and B-positions, and the mismatch between the perovslcite and rock-salt blocks of the Ruddlesden-Popper structure are discussed. At low temperatures, La3.2Ba0.8Mn3O10 reveals a sizable remnant magnetization of about 1.3 mu(B)/Mn at 2K, and shows signatures of spin freezing below 150 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000313220200036 Publication Date 2012-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.857; 2012 IF: 4.593  
  Call Number UA @ lucian @ c:irua:110121 Serial 1133  
Permanent link to this record
 

 
Author Retuerto, M.; Yin, Z.; Emge, T.J.; Stephens, P.W.; Li, M.R.; Sarkar, T.; Croft, M.C.; Ignatov, A.; Yuan, Z.; Zhang, S.J.; Jin, C.; Paria Sena, R.; Hadermann, J.; Kotliar, G.; Greenblatt, M.; pdf  url
doi  openurl
  Title Hole doping and structural transformation in CsTl1-xHgxCl3 Type A1 Journal article
  Year 2015 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem  
  Volume 54 Issue 54 Pages 1066-1075  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract CsTlCl3 and CsTlF3 perovskites have been theoretically predicted to be superconductors when properly hole-doped. Both compounds have been previously prepared as pure compounds: CsTlCl3 in a tetragonal (I4/m) and a cubic (Fm3̅m) perovskite polymorph and CsTlF3 as a cubic perovskite (Fm3̅m). In this work, substitution of Tl in CsTlCl3 with Hg is reported, in an attempt to hole-dope the system and induce superconductivity. The whole series CsTl1xHgxCl3 (x = 0.0, 0.1, 0.2, 0.4, 0.6, and 0.8) was prepared. CsTl0.9Hg0.1Cl3 is tetragonal as the more stable phase of CsTlCl3. However, CsTl0.8Hg0.2Cl3 is already cubic with the space group Fm3̅m and with two different positions for Tl+ and Tl3+. For x = 0.4 and 0.5, solid solutions could not be formed. For x ≥ 0.6, the samples are primitive cubic perovskites with one crystallographic position for Tl+, Tl3+, and Hg2+. All of the samples formed are insulating, and there is no signature of superconductivity. X-ray absorption spectroscopy indicates that all of the samples have a mixed-valence state of Tl+ and Tl3+. Raman spectroscopy shows the presence of the active TlClTl stretching mode over the whole series and the intensity of the TlClHg mode increases with increasing Hg content. First-principle calculations confirmed that the phases are insulators in their ground state and that Hg is not a good dopant in the search for superconductivity in this system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000348887400048 Publication Date 2014-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 5 Open Access  
  Notes Approved Most recent IF: 4.857; 2015 IF: 4.762  
  Call Number c:irua:124420 Serial 1476  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: