|   | 
Details
   web
Records
Author Cai, Z.L.; Martin, J.M.L.; François, J.P.; Gijbels, R.
Title Ab initio study of the X2\Sigma+ and A 2\Pi states of the SiN radical Type A1 Journal article
Year 1996 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 252 Issue 5/6 Pages 398-404
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The equilibrium bond length, harmonic frequency, first and second order anharmonicity constants, rotational and centrifugal distortion constants, as well as the rotation-vibrational and centrifugal coupling constants for the ground X(2) Sigma(+) and first excited A(2) Pi states of the SiN radical have been calculated at the complete active space SCF (CASSCF), multireference CI (MRCI) and coupled cluster (CCSD(T)) levels using Dunning's correlation-consistent basis sets. The excitation energy of the A(2) Pi State has also been computed at these theoretical levels. Dipole moments of SiN in the X(2) Sigma(+) and A(2) Pi states are given. Our study shows that core correlation must be considered in order to obtain satisfactory accuracy for the spectroscopic constants.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1996UJ45000017 Publication Date 2003-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 28 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12328 Serial 40
Permanent link to this record
 

 
Author Neyts, E.; Shibuta, Y.; Bogaerts, A.
Title Bond switching regimes in nickel and nickel-carbon nanoclusters Type A1 Journal article
Year 2010 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 488 Issue 4/6 Pages 202-205
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Understanding the fundamental dynamics in carbon nanotube (CNT) catalysts is of primary importance to understand CNT nucleation. This Letter reports on calculated bond switching (BS) rates in pure and carbon containing nickel nanoclusters. The rates are analyzed in terms of their temperature dependent spatial distribution and the mobility of the cluster atoms. The BS mechanism is found to change from vibrational to diffusional at around 900 K, with a corresponding strong increase in activation energy. Furthermore, the BS activation energy is observed to decrease as the carbon content in the cluster increases, resulting in an effective liquification of the cluster.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000275751900020 Publication Date 2010-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 20 Open Access
Notes Approved Most recent IF: 1.815; 2010 IF: 2.282
Call Number UA @ lucian @ c:irua:80998 Serial 248
Permanent link to this record
 

 
Author Georgieva, V.; Todorov, I.T.; Bogaerts, A.
Title Molecular dynamics simulation of oxide thin film growth: importance of the inter-atomic interaction potential Type A1 Journal article
Year 2010 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 485 Issue 4/6 Pages 315-319
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A molecular dynamics (MD) study of MgxAlyOz thin films grown by magnetron sputtering is presented using an ionic model and comparing two potential sets with formal and partial charges. The applicability of the model and the reliability of the potential sets for the simulation of thin film growth are discussed. The formal charge potential set was found to reproduce the thin film structure in close agreement with the structure of the experimentally grown thin films. Graphical abstract A molecular dynamics study of growth of MgxAlyOz thin films is presented using an ionic model and comparing two potential sets with formal and partial charges. The simulation results with the formal charge potential set showed a transition in the film from a crystalline to an amorphous structure, when the Mg metal content decreases below 50% in very close agreement with the structure of the experimentally deposited films.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000273782600010 Publication Date 2010-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 16 Open Access
Notes Approved Most recent IF: 1.815; 2010 IF: 2.282
Call Number UA @ lucian @ c:irua:80023 Serial 2170
Permanent link to this record
 

 
Author Shariat, M.; Shokri, B.; Neyts, E.C.
Title On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition Type A1 Journal article
Year 2013 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 590 Issue Pages 131-135
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Despite significant progress in single walled carbon nanotube (SWCNT) production by plasma enhanced chemical vapor deposition (PECVD), the growth mechanism in this method is not clearly understood. We employ reactive molecular dynamics simulations to investigate how plasma-based deposition allows growth at low temperature. We first investigate the SWCNT growth mechanism at low and high temperatures under conditions similar to thermal CVD and PECVD. We then show how ion bombardment during the nucleation stage increases the carbon solubility in the catalyst at low temperature. Finally, we demonstrate how moderate energy ions sputter amorphous carbon allowing for SWCNT growth at 500 K. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000327721000024 Publication Date 2013-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 14 Open Access
Notes Approved Most recent IF: 1.815; 2013 IF: 1.991
Call Number UA @ lucian @ c:irua:112775 Serial 2439
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title On the structure, stability and infrared spectrum of B2N, B2N+, B2N-, BO, B2O and B2N2 Type A1 Journal article
Year 1992 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 193 Issue 4 Pages 243-250
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1992HZ32800007 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 42 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:4194 Serial 2455
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title Potential energy surface of B4 and the total atomization energies of B2, B3 and B4 Type A1 Journal article
Year 1992 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 189 Issue 6 Pages 529-536
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1992HF18100008 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 50 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:4193 Serial 2685
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title The rotational partition function of the symmetric top and the effect of K doubling thereon Type A1 Journal article
Year 1991 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 187 Issue Pages 375-386
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1991GX46000006 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 6 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 38/271 Q1 # METALLURGY & METALLURGICAL ENGINEERING 2/73 Q1 #
Call Number UA @ lucian @ c:irua:713 Serial 2931
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.; Almlöf, J.
Title Structure and infrared spectroscopy of the C11 molecule Type A1 Journal article
Year 1991 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 187 Issue Pages 367-386
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1991GX46000005 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 42 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:718 Serial 3281
Permanent link to this record
 

 
Author Slanina, Z.; Martin, J.M.L.; François, J.P.; Gijbels, R.
Title The structure, energetics, and harmonic vibrations of B3N Type A1 Journal article
Year 1993 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 201 Issue Pages 54-58
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993KF37900010 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 20 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:6145 Serial 3302
Permanent link to this record
 

 
Author Martin, J.M.L.; El-Yazal, J.; François, J.P.; Gijbels, R.
Title Structures and thermochemistry of B3N3 and B4N4 Type A1 Journal article
Year 1995 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 232 Issue Pages 289-294
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995QC33700018 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 35 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:12278 Serial 3320
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neek-Amal, M.; Partoens, B.; Neyts, E.C.
Title The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes Type A1 Journal article
Year 2017 Publication Chemical physics letters Abbreviated Journal (up) Chem Phys Lett
Volume 687 Issue Pages 188-193
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000412453700030 Publication Date 2017-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 2 Open Access Not_Open_Access: Available from 01.11.2019
Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 1.815
Call Number UA @ lucian @ c:irua:146646 Serial 4795
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.K.; Sunkara, M.K.; Bogaerts, A.
Title Plasma Catalysis: Synergistic Effects at the Nanoscale Type A1 Journal article
Year 2015 Publication Chemical reviews Abbreviated Journal (up) Chem Rev
Volume 115 Issue 115 Pages 13408-13446
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Thermal-catalytic gas processing is integral to many current industrial processes. Ever-increasing demands on conversion and energy efficiencies are a strong driving force for the development of alternative approaches. Similarly, synthesis of several functional materials (such as nanowires and nanotubes) demands special processing conditions. Plasma catalysis provides such an alternative, where the catalytic process is complemented by the use of plasmas that activate the source gas. This combination is often observed to result in a synergy between plasma and catalyst. This Review introduces the current state-of-the-art in plasma catalysis, including numerous examples where plasma catalysis has demonstrated its benefits or shows future potential, including CO2 conversion, hydrocarbon reforming, synthesis of nanomaterials, ammonia production, and abatement of toxic waste gases. The underlying mechanisms governing these applications, as resulting from the interaction between the plasma and the catalyst, render the process highly complex, and little is known about the factors leading to the often-observed synergy. This Review critically examines the catalytic mechanisms relevant to each specific application.
Address Department of Chemistry, Research Group PLASMANT, Universiteit Antwerpen , Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000367563000006 Publication Date 2015-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2665 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 47.928 Times cited 204 Open Access
Notes ECN and AB gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant Number G.0217.14N. KO acknowledges partial support by the Australian Research Council and CSIRO’s OCE Science Leaders Program. MKS acknowledges partial support from US National Science Foundation through grants DMS 1125909 and EPSCoR 1355448 and also PhD students Babajide Ajayi, Apolo Nambo and Maria Carreon for their help. Approved Most recent IF: 47.928; 2015 IF: 46.568
Call Number c:irua:130001 Serial 3993
Permanent link to this record
 

 
Author Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.
Title Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress Type A1 Journal article
Year 2016 Publication Chemical science Abbreviated Journal (up) Chem Sci
Volume 7 Issue 7 Pages 489-498
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We performed molecular dynamics simulations to investigate the effect of lipid peroxidation products on the structural and dynamic properties of the cell membrane. Our simulations predict that the lipid order in a phospholipid bilayer, as a model system for the cell membrane, decreases upon addition of lipid peroxidation products. Eventually, when all phospholipids are oxidized, pore formation can occur. This will allow reactive species, such as reactive oxygen and nitrogen species (RONS), to enter the cell and cause oxidative damage to intracellular macromolecules, such as DNA or proteins. On the other hand, upon increasing the cholesterol fraction of lipid bilayers, the cell membrane order increases, eventually reaching a certain threshold, from which cholesterol is able to protect the membrane against pore formation. This finding is crucial for cancer treatment by plasma technology, producing a large number of RONS, as well as for other cancer treatment methods that cause an increase in the concentration of extracellular RONS. Indeed, cancer cells contain less cholesterol than their healthy counterparts. Thus, they will be more vulnerable to the consequences of lipid peroxidation, eventually enabling the penetration of RONS into the interior of the cell, giving rise to oxidative stress, inducing pro-apoptotic factors. This provides, for the first time, molecular level insight why plasma can selectively treat cancer cells, while leaving their healthy counterparts undamaged, as is indeed experimentally demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366826900058 Publication Date 2015-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 106 Open Access
Notes The authors acknowledge nancial support from the Fund for Scientic Research (FWO) Flanders, grant number G012413N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 8.668
Call Number c:irua:131058 Serial 3986
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations Type A1 Journal article
Year 2016 Publication Chemical science Abbreviated Journal (up) Chem Sci
Volume 7 Issue 7 Pages 5280-5286
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomistic simulations can in principle provide an unbiased description of all mechanisms, intermediates, and products of complex chemical processes. However, due to the severe time scale limitation of conventional simulation techniques, unrealistically high simulation temperatures are usually applied, which are a poor approximation of most practically relevant low-temperature applications. In this work, we demonstrate the direct observation at the atomic scale of the pyrolysis and oxidation of n-dodecane at temperatures as low as 700 K through the use of a novel simulation technique, collective variable-driven hyperdynamics (CVHD). A simulated timescale of up to 39 seconds is reached. Product compositions and dominant mechanisms are found to be strongly temperature-dependent, and are consistent with experiments and kinetic models. These simulations provide a first atomic-level look at the full dynamics of the complicated fuel combustion process at industrially relevant temperatures and time scales, unattainable by conventional molecular dynamics simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380893900059 Publication Date 2016-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 22 Open Access
Notes K. M. B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), funded by the Hercules Foundation and the Flemish Government – department EWI. The authors would also like to thank S. Banerjee for assisting with the interpretation of the experimental results. Approved Most recent IF: 8.668
Call Number c:irua:134577 c:irua:135670 Serial 4105
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K. M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C.
Title Atomistic simulations of graphite etching at realistic time scales Type A1 Journal article
Year 2017 Publication Chemical science Abbreviated Journal (up) Chem Sci
Volume 8 Issue 10 Pages 7160-7168
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hydrogen–graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe timescale

limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of 1020 m2 s1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C–C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching – chemical erosion – is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411730500055 Publication Date 2017-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 3 Open Access OpenAccess
Notes DIFFER is part of the Netherlands Organisation for Scientic Research (NWO). K. M. B. is funded as a PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 8.668
Call Number PLASMANT @ plasmant @c:irua:145519 Serial 4707
Permanent link to this record
 

 
Author Snoeckx, R.; Bogaerts, A.
Title Plasma technology – a novel solution for CO2conversion? Type A1 Journal article
Year 2017 Publication Chemical Society reviews Abbreviated Journal (up) Chem Soc Rev
Volume 46 Issue 19 Pages 5805-5863
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion into value-added chemicals and fuels is considered as one of the great challenges of the 21st century. Due to the limitations of the traditional thermal approaches, several novel technologies are being developed. One promising approach in this field, which has received little attention to date, is plasma

technology. Its advantages include mild operating conditions, easy upscaling, and gas activation by energetic electrons instead of heat. This allows thermodynamically difficult reactions, such as CO2 splitting and the dry reformation of methane, to occur with reasonable energy cost. In this review, after exploring the traditional thermal approaches, we have provided a brief overview of the fierce competition between various novel approaches in a quest to find the most effective and efficient CO2 conversion technology. This is needed to critically assess whether plasma technology can be successful in an already crowded arena. The following questions need to be answered in this regard: are there key advantages to using plasma technology over other novel approaches, and if so, what is the flip side to the use of this technology? Can plasma technology be successful on its own, or can synergies be achieved by combining it with other technologies? To answer

these specific questions and to evaluate the potentials and limitations of plasma technology in general, this review presents the current state-of-the-art and a critical assessment of plasma-based CO2 conversion, as well as the future challenges for its practical implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000412141600006 Publication Date 2017-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-0012 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 38.618 Times cited 168 Open Access OpenAccess
Notes We would like to thank W. Wang (University of Antwerp) for providing the data on the thermal equilibrium conversions. Furthermore, we acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) programme ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Methusalem financing of the University of Antwerp, the Fund for Scientific Research Flanders (FWO; Grant no. G.0383.16N, G.0254.14N and G.0217.14N), the TOP research project of the Research Fund of the University of Antwerp (grant ID. 32249). Approved Most recent IF: 38.618
Call Number PLASMANT @ plasmant @c:irua:145921 Serial 4709
Permanent link to this record
 

 
Author Neyts, E.; Eckert, M.; Bogaerts, A.
Title Molecular dynamics simulations of the growth of thin a-C:H films under additional ion bombardment: influence of the growth species and the Ar+ ion kinetic energy Type A1 Journal article
Year 2007 Publication Chemical vapor deposition Abbreviated Journal (up) Chem Vapor Depos
Volume 13 Issue 6/7 Pages 312-318
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000248381800007 Publication Date 2007-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 14 Open Access
Notes Approved Most recent IF: 1.333; 2007 IF: 1.936
Call Number UA @ lucian @ c:irua:64532 Serial 2176
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
Title Molecular dynamics simulations of the sticking and etch behavior of various growth species of (ultra)nanocrystalline diamond films Type A1 Journal article
Year 2008 Publication Chemical vapor deposition Abbreviated Journal (up) Chem Vapor Depos
Volume 14 Issue 7/8 Pages 213-223
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The reaction behavior of species that may affect the growth of ultrananocrystal line and nanocrystalline diamond ((U)NCD) films is investigated by means of molecular dynamics simulations. Impacts of CHx (x = 0 – 4), C2Hx (x=0-6), C3Hx (x=0-2), C4Hx (x = 0 – 2), H, and H-2 on clean and hydrogenated diamond (100)2 x 1 and (111) 1 x 1 surfaces at two different substrate temperatures are simulated. We find that the different bonding structures of the two surfaces cause different temperature effects on the sticking efficiency. These results predict a temperature-dependent ratio of diamond (100) and (111) growth. Furthermore, predictions of which are the most important hydrocarbon species for (U)NCD growth are made.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000259302700008 Publication Date 2008-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 25 Open Access
Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
Call Number UA @ lucian @ c:irua:70001 Serial 2177
Permanent link to this record
 

 
Author Baguer, N.; Neyts, E.; van Gils, S.; Bogaerts, A.
Title Study of atmospheric MOCVD of TiO2 thin films by means of computational fluid dynamics simulations Type A1 Journal article
Year 2008 Publication Chemical vapor deposition Abbreviated Journal (up) Chem Vapor Depos
Volume 14 Issue 11/12 Pages 339-346
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper presents the computational study of the metal-organic (MO) CVD of titanium dioxide (TiO2) films grown using titanium tetraisopropoxide (TTIP) as a precursor and nitrogen as a carrier gas. The TiO2 films are deposited under atmospheric pressure. The effects of the precursor concentration, the substrate temperature, and the hydrolysis reaction on the deposition process are investigated. It is found that hydrolysis of the TTIP decreases the onset temperature of the gas-phase thermal decomposition, and that the deposition rate increases with the precursor concentration and with the decrease of substrate temperature. Concerning the mechanism responsible for the film growth, the model shows that at the lowest precursor concentration, the direct adsorption of the precursor is dominant, while at higher precursor concentrations, the monomer deposition becomes more important.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000262215800003 Publication Date 2008-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 14 Open Access
Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
Call Number UA @ lucian @ c:irua:71905 Serial 3325
Permanent link to this record
 

 
Author Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C.
Title Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage Type A1 Journal Article
Year 2014 Publication Chemical Reviews Abbreviated Journal (up) Chem. Rev.
Volume 114 Issue 8 Pages 4041-4062
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Ammonia is a crucial nutrient used for plant growth and as a building block in pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing non-fossil based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as H source for nitrogen fixation into NH3 by non-equilibrium plasma. The highest selectivity towards NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2014-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2665 ISBN Additional Links
Impact Factor Times cited Open Access
Notes We would like to thank Sylvia Dewilde (Department of Biomedical Sciences) for providing analytical equipment. Approved no
Call Number PLASMANT @ plasmant @ Serial 6337
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A.
Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal (up) Chemical Engineering Journal
Volume 481 Issue Pages 148684
Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168999200001 Publication Date 2024-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access Not_Open_Access
Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993
Permanent link to this record
 

 
Author De Meyer, R.; Gorbanev, Y.; Ciocarlan, R.-G.; Cool, P.; Bals, S.; Bogaerts, A.
Title Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal (up) Chemical Engineering Journal
Volume 488 Issue Pages 150838
Keywords A1 Journal Article; Gas conversion Dry reforming of methane Ammonia Microdischarges Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is a rapidly growing field, often employing a packed-bed dielectric barrier discharge plasma reactor. Such dielectric barrier discharges are complex, especially when a packing material (e.g., a catalyst) is introduced in the discharge volume. Catalysts are known to affect the plasma discharge, though the underlying mechanisms influencing the plasma physics are not fully understood. Moreover, the effect of the catalysts on the plasma discharge and its subsequent effect on the overall performance is often overlooked. In this work, we deliberately design and synthesize catalysts to affect the plasma discharge in different ways. These Ni or Co alumina-based catalysts are used in plasma-catalytic dry reforming of methane and ammonia synthesis. Our work shows that introducing a metal to the dielectric packing can affect the plasma discharge, and that the distribution of the metal is crucial in this regard. Further, the altered discharge can greatly influence the overall performance. In an atmospheric pressure dielectric barrier discharge reactor, this apparently more uniform plasma yields a significantly better performance for ammonia synthesis compared to the more conventional filamentary discharge, while it underperforms in dry reforming of methane. This study stresses the importance of analyzing the plasma discharge in plasma catalysis experiments. We hope this work encourages a more critical view on the plasma discharge characteristics when studying various catalysts in a plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record
Impact Factor 15.1 Times cited Open Access
Notes This research was supported through long-term structural funding (Methusalem FFB15001C) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with grant agreement No 810182 (SCOPE ERC Synergy project) and with grant agreement No 815128 (REALNANO). We acknowledge the practical contribution of Senne Van Doorslaer. Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:205154 Serial 9115
Permanent link to this record
 

 
Author Maerivoet, S.; Tsonev, I.; Slaets, J.; Reniers, F.; Bogaerts, A.
Title Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2 Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal (up) Chemical Engineering Journal
Volume 492 Issue Pages 152006
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract To support experimental research into gas conversion by warm plasmas, models should be developed to explain the experimental observations. These models need to describe all physical and chemical plasma properties in a coupled way. In this paper, we present a modelling approach to solve the complete set of assumed relevant equations, including gas flow, heat balance and species transport, coupled with a rather extensive chemistry set, consisting of 21 species, obtained by reduction of a more detailed chemistry set, consisting of 41 species. We apply this model to study the combined CO2 and CH4 conversion in the presence of O2, in a direct current atmospheric pressure glow discharge. Our model can predict the experimental trends, and can explain why higher O2 fractions result in higher CH4 conversion, namely due to the higher gas temperature, rather than just by additional chemical reactions. Indeed, our model predicts that when more O2 is added, the energy required to reach any set temperature (i.e., the enthalpy) drops, allowing the system to reach higher temperatures with similar amounts of energy. This is in turn related to the higher H2O fraction and lower H2 fraction formed in the plasma, as demonstrated by our model. Altogether, our new self-consistent model can capture the main physics and chemistry occurring in this warm plasma, which is an important step towards predictive modelling for plasma-based gas conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links
Impact Factor 15.1 Times cited Open Access
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID G0I1822N; EOS ID 40007511) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182–SCOPE ERC Synergy project, and grant agreement No. 101081162–PREPARE ERC Proof of Concept project). computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @ Serial 9132
Permanent link to this record
 

 
Author Meng, S.; Li, S.; Sun, S.; Bogaerts, A.; Liu, Y.; Yi, Y.
Title NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts Type A1 Journal article
Year 2024 Publication Chemical engineering science Abbreviated Journal (up) Chemical Engineering Science
Volume 283 Issue Pages 119449
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis has emerged as a promising approach for driving thermodynamically unfavorable chemical

reactions. Nevertheless, comprehending the mechanisms involved remains a challenge, leading to uncertainty

about whether the optimal catalyst in plasma catalysis aligns with that in thermal catalysis. In this research, we

explore this question by studying monometallic catalysts (Fe, Co, Ni and Mo) and bimetallic catalysts (Fe-Co, Mo-

Co, Fe-Ni and Mo-Ni) in both thermal catalytic and plasma catalytic NH3 decomposition. Our findings reveal that

the Fe-Co bimetallic catalyst exhibits the highest activity in thermal catalysis, the Fe-Ni bimetallic catalyst

outperforms others in plasma catalysis, indicating a discrepancy between the optimal catalysts for the two

catalytic modes in NH3 decomposition. Comprehensive catalyst characterization, kinetic analysis, temperature

program surface reaction experiments and plasma diagnosis are employed to discuss the key factors influencing

NH3 decomposition performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001105312500001 Publication Date 2023-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access Not_Open_Access
Notes Universiteit Antwerpen, 32249 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; Approved Most recent IF: 4.7; 2024 IF: 2.895
Call Number PLASMANT @ plasmant @c:irua:201009 Serial 8967
Permanent link to this record
 

 
Author Cornil, D.; Li, H.; Wood, C.; Pourtois, G.; Bredas, J.-L.; Cornil, J.
Title Work-function modification of Au and Ag surfaces upon deposition of self-assembled monolayers : influence of the choice of the theoretical approach and the thiol decomposition scheme Type A1 Journal article
Year 2013 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal (up) Chemphyschem
Volume 14 Issue 13 Pages 2939-2946
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We have characterized theoretically the work-function modifications of the (111) surfaces of gold and silver upon deposition of self-assembled monolayers based on methanethiol and trifluoromethanethiol. A comparative analysis is made between the experimental results and those obtained from two widely used approaches based on density functional theory. The contributions to the total work-function modifications are estimated on the basis of two decomposition schemes of the thiol molecules that have been proposed in the literature. The contributions are found to differ significantly between the two approaches, as do the corresponding adsorption energies.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000324316000014 Publication Date 2013-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 9 Open Access
Notes Approved Most recent IF: 3.075; 2013 IF: 3.360
Call Number UA @ lucian @ c:irua:112278 Serial 3923
Permanent link to this record
 

 
Author Aerts, R.; Somers, W.; Bogaerts, A.
Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
Year 2015 Publication Chemsuschem Abbreviated Journal (up) Chemsuschem
Volume 8 Issue 8 Pages 702-716
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000349954400019 Publication Date 2015-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 131 Open Access
Notes Approved Most recent IF: 7.226; 2015 IF: 7.657
Call Number c:irua:123930 Serial 279
Permanent link to this record
 

 
Author Snoeckx, R.; Ozkan, A.; Reniers, F.; Bogaerts, A.
Title The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal (up) Chemsuschem
Volume 10 Issue 10 Pages 409-424
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recycling of carbon dioxide by its conversion into value-added products has gained significant interest owing to the role it can play for use in an anthropogenic carbon cycle. The combined conversion with H2O could even mimic the natural photosynthesis process. An interesting gas conversion technique currently being considered in the field of CO2 conversion is plasma technology. To investigate whether it is also promising for this combined conversion, we performed a series of experiments and developed a chemical kinetics plasma chemistry model for a deeper understanding of the process. The main products formed were the syngas components CO and H2, as well as O2 and H2O2, whereas methanol formation was only observed in the parts-per-billion to parts-per-million range. The syngas ratio, on the other hand, could easily be controlled by varying both the water content and/or energy input. On the basis of the model, which was validated with experimental results, a chemical kinetics analysis was performed, which allowed the construction and investigation of the different pathways leading to the observed experimental results and which helped to clarify these results. This approach allowed us to evaluate this technology on the basis of its underlying chemistry and to propose solutions on how to further improve the formation of value-added products by using plasma technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394571900012 Publication Date 2016-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 25 Open Access OpenAccess
Notes The authors acknowledge financial support from the Inter-university Attraction Pole (IAP; grant number IAP-VII/12, P7/34) program “PSI-Physical Chemistry of Plasma-Surface Interactions”, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO; grant number G.0066.12N). This work was performed in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. We also would like to thank the financial support given by “Fonds David et Alice Van Buuren”. Finally, we are very grateful to M. Kushner for providing the Global kin code, to T. Dufour for his support during the experiments, and to R. Aerts for his support during the model development. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ c:irua:139880 Serial 4412
Permanent link to this record
 

 
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S.
Title The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal (up) Chemsuschem
Volume 10 Issue 10 Pages 1039-1055
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398182800002 Publication Date 2017-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 75 Open Access OpenAccess
Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532
Permanent link to this record
 

 
Author Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A.
Title Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling Type A1 Journal Article
Year 2017 Publication Chemsuschem Abbreviated Journal (up) Chemsuschem
Volume 10 Issue 10 Pages 2110-2110
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2/O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx. The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber–Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which lowtemperature plasma technology might play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2017-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links
Impact Factor 7.226 Times cited Open Access Not_Open_Access
Notes This research was supported by the European Marie Skłodowska- Curie Individual Fellowship “GlidArc” within Horizon 2020 (Grant No.657304), by the FWO project (grant G.0383.16 N) and by the EU project MAPSYN: Microwave, Acoustic and Plasma assisted SYNthesis, under the grant agreement no. CP-IP 309376 of the European Community’s Seventh Framework Program. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ Serial 4573
Permanent link to this record
 

 
Author Ramakers, M.; Trenchev, G.; Heijkers, S.; Wang, W.; Bogaerts, A.
Title Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal (up) Chemsuschem
Volume 10 Issue 10 Pages 2642-2652
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO2 into chemicals and fuels. Since CO2 is a very stable molecule, a key performance indicator for the research on plasma-based CO2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO2. From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO2 conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403934400014 Publication Date 2017-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 42 Open Access OpenAccess
Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek, G.0383.16N 11U5316N ; Horizon 2020, 657304 ; Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ c:irua:144184 Serial 4616
Permanent link to this record