toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schalm, O.; Caen, J.; Janssens, K. doi  openurl
  Title Homogeneity, composition and deterioration of window glass fragments and paint layers from two seventeenth-century stained glass windows created by Jan de Caumont (similar to 1580-1659) Type A1 Journal article
  Year (down) 2010 Publication Studies in conservation Abbreviated Journal Stud Conserv  
  Volume 55 Issue 3 Pages 216-226  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000285283600009 Publication Date 2014-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3630; 2047-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.578 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 0.578; 2010 IF: 0.605  
  Call Number UA @ admin @ c:irua:85835 Serial 5645  
Permanent link to this record
 

 
Author Kovba, M.L.; Skolis, Y.Y.; Abakumov, A.M.; Hadermann, J.; Sukhushina, I.S. pdf  doi
openurl 
  Title The synthesis and thermodynamic properties of strontium fluoromanganite Sr2.5Mn6O12.5-\deltaF2 Type A1 Journal article
  Year (down) 2010 Publication Russian journal of physical chemistry A Abbreviated Journal Russ J Phys Chem A+  
  Volume 84 Issue 12 Pages 2033-2038  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The existence of the [SrF(0.8)O(0.1)](2.5)[Mn(6)O(12)] = Sr(2.5)Mn(6)O(12.5 – delta)F(2) compound was established in the SrO-Mn(2)O(3)-SrF(2) system at 900A degrees C and p(O(2)) = 1 atm. The crystal structure of strontium fluoromanganite was determined from the X-ray powder diffraction data, electron diffraction, and high-resolution electron microscopy. It can be described in the monoclynic system with four Miller hklm indices: hklm: H = h a* + k b* + l c (1) (*) + m q (1), q (1), q (1) = c (2) (*) = gamma c (1) (*) , gamma a parts per thousand 0.632, a a parts per thousand a a parts per thousand 9.72 , b a parts per thousand 9.55 , c (1) a parts per thousand 2.84 , c (2) a parts per thousand 4.49 , monoclinic angle gamma a parts per thousand 95.6A degrees. The electromotive force method with a solid fluorine ion electrolyte was used to refine the composition of fluoromanganite and determine the thermodynamic functions of its formation from phases neighboring in the phase diagram (SrMn(3)O(6), Mn(2)O(3), SrF(2), and oxygen), Delta GA degrees, kJ/mol = -(111.7 +/- 1.9) + (89.5 +/- 1.5) x 10(-3) T.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000284775000004 Publication Date 2011-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-0244;1531-863X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.581 Times cited 1 Open Access  
  Notes Approved Most recent IF: 0.581; 2010 IF: 0.503  
  Call Number UA @ lucian @ c:irua:99190 Serial 3601  
Permanent link to this record
 

 
Author Saniz, R.; Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Quasiparticle energies and uniaxial pressure effects on the properties of SnO2 Type A1 Journal article
  Year (down) 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue Pages 261901-261901,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We calculate the quasiparticle energy spectrum of SnO2 within the GW approximation, properly taking into account the contribution of core levels to the energy corrections. The calculated fundamental gap is of 3.85 eV. We propose that the difference with respect to the experimental optical gap (3.6 eV) is due to excitonic effects in the latter. We further consider the effect applied on uniaxial pressure along the c-axis. Compared to GW, the effect of pressure on the quasiparticle energies and band gap is underestimated by the local-density approximation. The quasiparticle effective masses, however, appear to be well described by the latter.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000285768100015 Publication Date 2010-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 23 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:85759 Serial 2803  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages 235425-235425,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286769100008 Publication Date 2010-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:86911 Serial 1010  
Permanent link to this record
 

 
Author Li, L.L.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Intrinsic optical anisotropy of [001]-grown short-period InAs/GaSb superlattices Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages 235422-235422,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the intrinsic optical anisotropy or polarization induced by the microscopic interface asymmetry (MIA) in no-common-atom (NCA) InAs/GaSb superlattices (SLs) grown along the [001] direction. The eight-band K⋅P model is used to calculate the electronic band structures and incorporates the MIA effect. A Boltzmann equation approach is employed to calculate the optical properties. We found that in NCA InAs/GaSb SLs, the MIA effect causes a large in-plane optical anisotropy for linearly polarized light and the largest anisotropy occurs for light polarized along the [110] and [11̅ 0] directions. The relative difference between the optical-absorption coefficient for [110]-polarized light and that for [11̅ 0]-polarized light is found to be larger than 50%. The dependence of the in-plane optical anisotropy on temperature, photoexcited carrier density, and layer width is examined in detail. This study is important for optical devices which require the polarization control and selectivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286768800007 Publication Date 2010-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported partly by the Flemish Science Foundation (FWO-VL), the Belgium Science Policy (IAP), the NSF of China (Grants No. 10664006, No. 10504036, and No. 90503005), Special Funds of 973 Project of China (Grant No. 2005CB623603), and Knowledge Innovation Program of the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:88909 Serial 1717  
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S. doi  openurl
  Title Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
  Year (down) 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 23 Pages 233109,1-233109,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000285364000067 Publication Date 2010-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 43 Open Access  
  Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:86972 Serial 1056  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Kronig-Penney model on bilayer graphene : spectrum and transmission periodic in the strength of the barriers Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages 235408-235408,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show that the transmission through single and double δ-function potential barriers of strength P=VWb/ℏvF in bilayer graphene is periodic in P with period π. For a certain range of P values we find states that are bound to the potential barrier and that run along the potential barrier. Similar periodic behavior is found for the conductance. The spectrum of a periodic succession of δ-function barriers (Kronig-Penney model) in bilayer graphene is periodic in P with period 2π. For P smaller than a critical value Pc, the spectrum exhibits two Dirac points while for P larger than Pc an energy gap opens. These results are extended to the case of a superlattice of δ-function barriers with P alternating in sign between successive barriers; the corresponding spectrum is periodic in P with period π.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286766900008 Publication Date 2010-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 34 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the Canadian NSERC under Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:88910 Serial 1768  
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Second-order multiple-quanta flux entry into a perforated spherical mesoscopic superconductor Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 21 Pages 214501-214501,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Flux entry in type-II superconductors without prominent symmetry is a first-order phase transition, where flux enters conventionally gradual in units of a flux quantum. Here we show that neither is necessarily the case in a mesoscopic superconducting sphere with a perforation. In axially applied magnetic field, vortices initially occupy the hole, and can oppose further flux entry in the sample. As a result, multiple-quanta flux entry is found at significantly higher field, and it can manifest as a second-order transition due to suppressed geometric barrier at the equatorial belt of the sample. At high fields a new state is found, with gradually destroyed condensate from the equator inwards, the exact opposite of surface superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286737800007 Publication Date 2010-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the ESF “Nanoscience and Engineering in Superconductivity” program. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:88039 Serial 2957  
Permanent link to this record
 

 
Author Zelaya, E.; Schryvers, D. doi  openurl
  Title FCC surface precipitation in Cu-Zn-Al after low angle GA+ ion irradiation Type A1 Journal article
  Year (down) 2010 Publication Materials transactions Abbreviated Journal Mater Trans  
  Volume 51 Issue 12 Pages 2177-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The precipitation of a disordered FCC surface structure after low angle Ga+ ion irradiation during focused ion beam thinning of a B2 Cu-Zn-Al alloy with e/a=1.48 is reported. Conventional as well as high-resolution transmission electron microscopy techniques reveal FCC layers on both sides of the thinned sample. The occurrence of this structure is attributed to disordering and dezincification of the alloy resulting from the sputtering process during the irradiation. Changes in crystallographic sample orientation with respect to the incoming ion beam do not have a significant effect on the appearance of the FCC surface structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sendai Editor  
  Language Wos 000287390300009 Publication Date 2010-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1347-5320;1345-9678; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.713 Times cited 2 Open Access  
  Notes Bof; Fwo Approved Most recent IF: 0.713; 2010 IF: 0.787  
  Call Number UA @ lucian @ c:irua:85997 Serial 1175  
Permanent link to this record
 

 
Author Sankaran, K.; Pourtois, G.; Degraeve, R.; Zahid, M.B.; Rignanese, G.-M.; Van Houdt, J. doi  openurl
  Title First-principles modeling of intrinsic and extrinsic defects in \gamma-Al2O3 Type A1 Journal article
  Year (down) 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 21 Pages 212906  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of a set of intrinsic and extrinsic point defects in gamma-Al2O3 are investigated using quasiparticle calculations within the G(0)W(0) approximation. We find that the electronic signature of atomic vacancies lie deep in the band gap, close to the top of the valence band edge. The introduction of C, Si, and N impurities induces defective levels that are located close to the conduction band edge and near the middle of the band gap of the oxide. The comparison with electrical measurements reveals that the energy levels of some of these defects match with the electronic fingerprint of the defects reported in gamma-Al2O3 based nonvolatile memories. (C) 2010 American Institute of Physics. [doi:10.1063/1.3507385]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000284618300039 Publication Date 2010-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:105617 Serial 1213  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
  Year (down) 2010 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 17 Issue 11 Pages 113512-113512,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000285486500105 Publication Date 2010-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.115; 2010 IF: 2.320  
  Call Number UA @ lucian @ c:irua:84763 Serial 429  
Permanent link to this record
 

 
Author Biermans, E.; Molina, L.; Batenburg, K.J.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Measuring porosity at the nanoscale by quantitative electron tomography Type A1 Journal article
  Year (down) 2010 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 10 Issue 12 Pages 5014-5019  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Quantitative electron tomography is proposed to characterize porous materials at a nanoscale. To achieve reliable three-dimensional (3D) quantitative information, the influence of missing wedge artifacts and segmentation methods is investigated. We are presenting the Discrete Algebraic Reconstruction Algorithm as the most adequate tomography method to measure porosity at the nanoscale. It provides accurate 3D quantitative information, regardless the presence of a missing wedge. As an example, we applied our approach to nanovoids in La2Zr2O7 thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000284990900040 Publication Date 2010-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 79 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 12.712; 2010 IF: 12.219  
  Call Number UA @ lucian @ c:irua:87658 Serial 1967  
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Rakhimov, K.Y.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Wave-packet dynamics and valley filter in strained graphene Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 20 Pages 205430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time evolution of a wave packet in strained graphene is studied within the tight-binding model and continuum model. The effect of an external magnetic field, as well as a strain-induced pseudomagnetic field, on the wave-packet trajectories and zitterbewegung are analyzed. Combining the effects of strain with those of an external magnetic field produces an effective magnetic field which is large in one of the Dirac cones, but can be practically zero in the other. We construct an efficient valley filter, where for a propagating incoming wave packet consisting of momenta around the K and K' Dirac points, the outgoing wave packet exhibits momenta in only one of these Dirac points while the components of the packet that belong to the other Dirac point are reflected due to the Lorentz force. We also found that the zitterbewegung is permanent in time in the presence of either external or strain-induced magnetic fields, but when both the external and strain-induced magnetic fields are present, the zitterbewegung is transient in one of the Dirac cones, whereas in the other cone the wave packet exhibits permanent spatial oscillations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284401600007 Publication Date 2010-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 95 Open Access  
  Notes ; This work was financially supported by CNPq under NanoBioEstruturas Contract No. 555183/2005-0, PRONEX/CNPq/FUNCAP, CAPES, the Bilateral program between Flanders and Brazil, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1) ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:95542 Serial 3905  
Permanent link to this record
 

 
Author Yang, C.H.; Peeters, F.M.; Xu, W. url  doi
openurl 
  Title Density of states and magneto-optical conductivity of graphene in a perpendicular magnetic field Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 20 Pages 205428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The density of states (DOS) and the optical conductivity of graphene is calculated in the presence of a perpendicular magnetic field and where scattering on charged and short-range impurities is included. The standard Kubo formula is employed where the self-energy induced by impurity scattering and the Green's function are calculated self-consistently including inter-Landau level (LL) coupling and screening effects. It is found that the scattering from those two types of impurities results in a symmetric LL broadening and asymmetric inter-LL coupling renormalizes the LL positions to lower energy. The peak position and intensity of the magneto-optical conductivity depends on the filling factor and the broadened DOS. Good agreement is found with recent cyclotron resonance measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284400700003 Publication Date 2010-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. 10804053, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the Chinese Academy of Sciences and Department of Science and Technology of Yunnan Province. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:95543 Serial 641  
Permanent link to this record
 

 
Author Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title First-principles investigation of graphene fluoride and graphane Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 19 Pages 195436,1-195436,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Different stoichiometric configurations of graphane and graphene fluoride are investigated within density-functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284399200004 Publication Date 2010-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 367 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the NOI-BOF of the University of Antwerp, the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Grant No. FW/08/01). A.D.H. also acknowledges support from ANPCyT (Grant No. PICT 2008-2236). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:86916 Serial 1212  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Vinchurkar, S.C.; Claes, R.; Drollmann, A.; Wulfrank, D.; Parizel, P.M.; Germonpré, P.; de Backer, W. pdf  doi
openurl 
  Title Validation of computational fluid dynamics in CT-based airway models with SPECT/CT1 Type A1 Journal article
  Year (down) 2010 Publication Radiology Abbreviated Journal Radiology  
  Volume 257 Issue 3 Pages 854-862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Vision lab; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Purpose: To compare the results obtained by using numerical flow simulations with the results of combined single photon emission computed tomography (SPECT) and computed tomography (CT) and to demonstrate the importance of correct boundary conditions for the numerical methods to account for the large amount of interpatient variability in airway geometry. Materials and Methods: This study was approved by all relevant institutional review boards. All patients gave their signed informed consent. In this study, six patients with mild asthma (three men; three women; overall mean age, 46 years ± 17 [standard deviation]) underwent CT at functional residual capacity and total lung capacity, as well as SPECT/CT. CT data were used for segmentation and computational fluid dynamics (CFD) simulations. A comparison was made between airflow distribution, as derived with (a) SPECT/CT through tracer concentration analysis, (b) CT through lobar expansion measurement, and (c) CFD through flow computer simulation. Also, the heterogeneity of the ventilation was examined. Results: Good agreement was found between SPECT/CT, CT, and CFD in terms of airflow distribution and hot spot detection. The average difference for the internal airflow distribution was less than 3% for CFD and CT versus SPECT/CT. Heterogeneity in ventilation patterns could be detected with SPECT/CT and CFD. Conclusion: This results of this study show that patient-specific computer simulations with appropriate boundary conditions yield information that is similar to that obtained with functional imaging tools, such as SPECT/CT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000284469300031 Publication Date 2010-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8419;1527-1315; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.296 Times cited 100 Open Access  
  Notes ; Supported by Novartis. ; Approved Most recent IF: 7.296; 2010 IF: 6.069  
  Call Number UA @ lucian @ c:irua:85379 Serial 3831  
Permanent link to this record
 

 
Author Rubino, S.; Schattschneider, P.; Rusz, J.; Verbeeck, J.; Leifer, K. pdf  doi
openurl 
  Title Simulation of magnetic circular dichroism in the electron microscope Type A1 Journal article
  Year (down) 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 43 Issue 47 Pages 474005,1-474005,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract As electron energy-loss spectroscopy (EELS) and x-ray absorption spectroscopy (XAS) probe the same transitions from coreshell states to unoccupied states above the Fermi energy, it should always be possible to apply the two techniques to the same physical phenomena, such as magnetic dichroism, and obtain the same information. Indeed, the similarity in the expression of the electron and x-ray cross-sections had been already exploited to prove the equivalence of x-ray magnetic linear dichroism and anisotropy in EELS, by noting that the polarization vector of a photon plays the same role as the momentum transfer in electron scattering. Recently, the same was proven true for x-ray magnetic circular dichroism (XMCD) by establishing a new TEM technique called EMCD (electron energy-loss magnetic chiral dichroism) (Schattschneider P et al 2006 Nature 441 4868), which makes use of special electron scattering conditions to force the absorption of a circularly polarized virtual photon. The intrinsic advantage of EMCD over XMCD is the high spatial resolution of electron microscopes, which are readily available. Among the particular obstacles in EMCD that do not exist for synchrotron radiation, is the notoriously low signal and the very particular scattering conditions necessary to observe a chiral dichroic signal. In spite of that, impressive progress has been made in recent years. The signal strength could be considerably increased, and some innovations such as using a convergent beam have been introduced. EMCD has evolved into several techniques, which make full use of the versatility of the TEM and energy filtering, spectroscopy or STEM conditions (Rubino S 2007 Magnetic circular dichroism in the transmission electron microscope PhD Thesis Vienna University of Technology, Vienna, Austria).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000284099700006 Publication Date 2010-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.588; 2010 IF: 2.109  
  Call Number UA @ lucian @ c:irua:85808UA @ admin @ c:irua:85808 Serial 3012  
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized Zeolite Imidazolate Frameworks, ZIFs Type A1 Journal article
  Year (down) 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 23 Pages 6393-6401  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The selective formation and stabilization of very small, naked metal particles inside the cavities of metal organic frameworks (MOFs) and the simultaneous realization of an even distribution of the particles throughout the crystalline MOF host matrix over a wide range of metal loading are challenging goals. MOFs reveal high specific surface areas, tunable pore sizes, and organic linkers, which are able to interact with guests. The chemically very robust zeolite imidazolate frameworks (ZIFs) are a subclass of MOFs. We chose the microporous sodalite-like ZIF-8 (Zn(MelM)(2); IM = imidazolate) and ZIF-90 (Zn(ICA)(2); ICA = imidazolate-2-carboxyaldehyde) as host matrices to influence the dispersion of imbedded gold nanoparticles (Au NPs). The metal loading was achieved via gas phase infiltration of [Au(CO)Cl] followed by a thermal hydrogenation step to form the Au NPs. Low-dose high-resolution transmission electron microscopy ((HR)TEM) and electron tomography reveal a homogeneous distribution of Au NPs throughout the ZIF matrix. The functional groups of ZIF-90 direct the anchoring of intermediate Au species and stabilize drastically smaller and quite monodisperse Au NPs in contrast to the parent not functionalized ZIF-8. The particles can be very small, match the cavity size and approach defined molecular clusters of magic numbers, i.e., Au(55), independently from the level of loading. Post-synthetic oxidation of the aldehyde groups to yield alkyl esters by the adjacent, catalytically active metal NPs is presented as a new concept of encapsulating nanoparticles inside MOFs and allows multiple steps of metal loadings without decomposition of the MOF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000284975100025 Publication Date 2010-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 194 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:95530 Serial 208  
Permanent link to this record
 

 
Author Misko, V.R.; Bothner, D.; Kemmler, M.; Kleiner, R.; Koelle, D.; Peeters, F.M.; Nori, F. url  doi
openurl 
  Title Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 18 Pages 184512-184512,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quasiperiodic pinning arrays, as recently demonstrated theoretically and experimentally using a fivefold Penrose tiling, can lead to a significant enhancement of the critical current Ic as compared to traditional regular pinning arrays. However, while regular arrays showed only a sharp peak in Ic(Φ) at the matching flux Φ1 and quasiperiodic arrays provided a much broader maximum at Φ<Φ1, both types of pinning arrays turned out to be inefficient for fluxes larger than Φ1. We demonstrate theoretically and experimentally the enhancement of Ic(Φ) for Φ>Φ1 by using non-Penrose quasiperiodic pinning arrays. This result is based on a qualitatively different mechanism of flux pinning by quasiperiodic pinning arrays and could be potentially useful for applications in superconducting microelectronic devices operating in a broad range of magnetic fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000283923400006 Publication Date 2010-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, the FWO-Vl, and by the DFG via SFB/TRR21. V. R. M. is grateful to the FWO-Vl for the support of the research stay at the DML (ASI, RIKEN), and to F. N. for hospitality. M. K. gratefully acknowledges support from the Carl-Zeiss-Stiftung, and D. B. from the Evangelisches Studienwerk e.V. Villigst. F. N. acknowledges partial support from the Laboratory of Physical Sciences, National Security Agency, Army Research Office, DARPA, AFOSR, National Science Foundation under Grant No. 0726909, JSPS-RFBR under Contract No. 09-02-92114, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and Funding Program for Innovative R&D on S&T (FIRST). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85800 Serial 1066  
Permanent link to this record
 

 
Author Bousige, C.; Rols, S.; Cambedouzou, J.; Verberck, B.; Pekker, S.; Kováts, É.; Durkó, G.; Jalsovsky, I.; Pellegrini, É.; Launois, P. url  doi
openurl 
  Title Lattice dynamics of a rotor-stator molecular crystal: Fullerene-cubane C60\centerdot C8H8 Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 19 Pages 195413-195413,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The dynamics of fullerene-cubane (C60⋅C8H8) cocrystal is studied combining experimental [x-ray diffuse scattering, quasielastic and inelastic neutron scattering (INS)] and simulation (molecular dynamics) investigations. Neutron scattering gives direct evidence of the free rotation of fullerenes and of the libration of cubanes in the high-temperature phase, validating the rotor-stator description of this molecular system. X-ray diffuse scattering shows that orientational disorder survives the order/disorder transition in the low-temperature phase, although the loss of fullerene isotropic rotational diffusion is featured by the appearance of a 2.2 meV mode in the INS spectra. The coupling between INS and simulations allows identifying a degeneracy lift of the cubane librations in the low temperature phase, which is used as a tool for probing the environment of cubane in this phase and for getting further insights into the phase transition mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000283923500004 Publication Date 2010-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; The authors acknowledge P.-A. Albouy and S. Rouziere (LPS, Orsay) for fruitful discussions and for their support during diffuse scattering experiments. Work in Hungary was supported by the Hungarian Research Fund, OTKA under Grant No. K72954. The CS group at the ILL is acknowledged for their support during the MD simulations. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85801 Serial 1802  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. pdf  doi
openurl 
  Title Kronig-Penney model of scalar and vector potentials in graphene Type A1 Journal article
  Year (down) 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue 46 Pages 465302,1-465302,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider a one-dimensional (1D) superlattice (SL) on graphene consisting of very high and very thin (δ-function) magnetic and potential barriers with zero average potential and zero magnetic field. We calculate the energy spectrum analytically, study it in different limiting cases, and determine the condition under which an electron beam incident on an SL is highly collimated along its direction. In the absence of the magnetic SL the collimation is very sensitive to the value of W/Ws and is optimal for W/Ws = 1, where W is the distance between the positive and negative barriers and L = W + Ws is the size of the unit cell. In the presence of only the magnetic SL the collimation decreases and the symmetry of the spectrum around ky is broken for W/Ws\neq 1 . In addition, a gap opens which depends on the strength of the magnetic field. We also investigate the effect of spatially separated potential and magnetic δ-function barriers and predict a better collimation in specific cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000283838800004 Publication Date 2010-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 41 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number UA @ lucian @ c:irua:85807 Serial 1767  
Permanent link to this record
 

 
Author Tkachenko, D.V.; Misko, V.R.; Peeters, F.M. doi  openurl
  Title Effect of correlated noise on quasi-one-dimensional diffusion Type A1 Journal article
  Year (down) 2010 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 82 Issue 5 Pages 051102-051102,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Single-file diffusion (SFD) of an infinite one-dimensional chain of interacting particles has a long-time mean-square displacement ∝t1/2, independent of the type of interparticle repulsive interaction. This behavior is also observed in finite-size chains, although only for certain intervals of time t depending on the chain length L, followed by the ∝t for t→∞, as we demonstrate for a closed circular chain of diffusing interacting particles. Here, we show that spatial correlation of noise slows down SFD and can result, depending on the amount of correlated noise, in either subdiffusive behavior ∝tα, where 0<α<1/2, or even in a total suppression of diffusion (in the limit N→∞). Spatial correlation can explain the subdiffusive behavior in recent SFD experiments in circular channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000283710100001 Publication Date 2010-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 11 Open Access  
  Notes ; We acknowledge discussions with M. Saint-Jean. This work was supported by the “Odysseus” program of the Flemish Government and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 2.366; 2010 IF: 2.352  
  Call Number UA @ lucian @ c:irua:85799 Serial 806  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. pdf  doi
openurl 
  Title Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines Type A1 Journal article
  Year (down) 2010 Publication Philosophical transactions of the Royal Society : mathematical, physical and engineering sciences Abbreviated Journal Philos T R Soc A  
  Volume 368 Issue 1932 Pages 5499-5524  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical expressions for the location of new Dirac points in the spectrum and for the renormalization of the electron velocities. The influence of these extra Dirac points on the conductivity is investigated. In the limit of δ-function barriers, the transmission T through and conductance G of a finite number of barriers as well as the energy spectra of SLs are periodic functions of the dimensionless strength P of the barriers, Graphic, with vF the Fermi velocity. For a KronigPenney SL with alternating sign of the height of the barriers, the Dirac point becomes a Dirac line for P = π/2+nπ with n an integer. In bilayer graphene, with an appropriate bias applied to the barriers and wells, we show that several new types of SLs are produced and two of them are similar to type I and type II semiconductor SLs. Similar to single-layer graphene SLs, extra Dirac points are found in bilayer graphene SLs. Non-ballistic transport is also considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000283660000011 Publication Date 2010-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-503X;1471-2962; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.97 Times cited 64 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Canadian NSERC through grant no. OGP0121756. ; Approved Most recent IF: 2.97; 2010 IF: 2.459  
  Call Number UA @ lucian @ c:irua:85597 Serial 3023  
Permanent link to this record
 

 
Author Doria, M.M.; de Romaguera, A.R.C.; Peeters, F.M. doi  openurl
  Title The ground states of the two-component order parameter superconductor Type A1 Journal article
  Year (down) 2010 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 92 Issue 1 Pages 17004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show that in presence of an applied external field the two-component order parameter superconductor falls in two categories of ground states, namely, in the traditional Abrikosov ground state or in a new ground state fitted to describe a superconducting layer with texture, that is, patched regions separated by a phase difference of pi. The existence of these two kinds of ground states follows from the sole assumption that the total supercurrent is the sum of the two individual supercurrents and is independent of any consideration about the free energy expansion. Uniquely defined relations between the current density and the superfluid density hold for these two ground states, which also determine the magnetization in terms of average values of the order parameters. Because these ground-state conditions are also Bogomolny equations we construct the free energy for the two-component superconductor which admits the Bogomolny solution at a special coupling value. Copyright (C) EPLA, 2010  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000284469900027 Publication Date 2010-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 1.957; 2010 IF: 2.753  
  Call Number UA @ lucian @ c:irua:95558 Serial 3584  
Permanent link to this record
 

 
Author Kalyuzhnaya, A.S.; Abakumov, A.M.; Rozova, M.G.; d' Hondt, H.; Hadermann, J.; Antipov, E.V. doi  openurl
  Title Synthesis and crystal structure of the new complex oxide Ca7Mn2.14Ga5.86O17.93 Type A1 Journal article
  Year (down) 2010 Publication Russian chemical bulletin Abbreviated Journal Russ Chem B+  
  Volume 59 Issue 4 Pages 706-711  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The complex oxide Ca7Mn2.14Ga5.86O17.93 was synthesized by the solid-state reaction in a sealed evacuated quartz tube at 1000 °C. Its crystal structure was determined by electron diffraction and X-ray powder diffraction. The structure can be represented as a tetrahedral framework, viz., the polyanion [(Mn0.285Ga0.715)15O29.86]19- stabilized by the incorporated cation [Ca14GaO6]19+. The polycation consists of the GaO6 octahedra surrounded by the Ca atoms, which are arranged to form a cube capped at all places. The tetrahedral framework is partially disordered due to the presence of tetrahedra with two possible orientations in the positions (0, 0, 0) and (x, x, x) with x ≈ 0.15 and 0.17. The relationship between the Ca7Mn2.14Ga5.86O17.93 structures and related ordered phases with the symmetry F23, as well as the influence of the oxygen content on the ordering in the tetrahedral framework, are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000283302000006 Publication Date 2010-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.529 Times cited 1 Open Access  
  Notes Approved Most recent IF: 0.529; 2010 IF: 0.629  
  Call Number UA @ lucian @ c:irua:85675 Serial 3427  
Permanent link to this record
 

 
Author Wendelen, W.; Autrique, D.; Bogaerts, A. url  doi
openurl 
  Title Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation Type A1 Journal article
  Year (down) 2010 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1278 Issue Pages 407-415  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this theoretical study, the electron emission from a copper surface under ultrashort pulsed laser irradiation is investigated using a one dimensional particle in cell model. Thermionic emission as well as multi-photon photoelectron emission were taken into account. The emitted electrons create a negative space charge above the target, consequently the generated electric field reduces the electron emission by several orders of magnitude. The simulations indicate that the space charge effect should be considered when investigating electron emission related phenomena in materials under ultrashort pulsed laser irradiation of metals.the word abstract, but do replace the rest of this text. ©2010 American Institute of Physics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000287183900042 Publication Date 2010-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88899 Serial 3058  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Defected graphene nanoribbons under axial compression Type A1 Journal article
  Year (down) 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 15 Pages 153118,1-153118,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The buckling of defected rectangular graphene nanoribbons when subjected to axial stress with supported boundary conditions is investigated using atomistic simulations. The buckling strain and mechanical stiffness of monolayer graphene decrease with the percentage of randomly distributed vacancies. The elasticity to plasticity transition in the stress-strain curve, at low percentage of vacancies, are found to be almost equal to the buckling strain thresholds and they decrease with increasing percentage of vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000283216900069 Publication Date 2010-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 43 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (WO-Vl) and the Belgian Science Policy (IAP) ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:85789 Serial 624  
Permanent link to this record
 

 
Author Efimov, K.; Xu, Q.; Feldhoff, A. pdf  doi
openurl 
  Title Transmission electron microscopy study of BA0.5Sr0.5CO0.8Fe0.2O3-\delta Perovskite decomposition at intermediate temperatures Type A1 Journal article
  Year (down) 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 21 Pages 5866-5875  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The cubic perovskite Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (denoted BSCF) is the state-of-the-art ceramic membrane material used for oxygen separation technologies above 1150 K. BSCF is a mixed oxygen-ion and electron conductor (MIEC) and exhibits one of the highest oxygen permeabilities reported so far for dense oxides. Additionally, it has excellent phase stability above 1150 K. In the intermediate temperature range (750-1100 K), however, BSCF suffers from a slow decomposition of the cubic perovskite into variants with hexagonal stacking that are barriers to oxygen transport. To elucidate details of the decomposition process, both sintered BSCF ceramic and powder were annealed for 180-240 h in ambient air at temperatures below 1123 K and analyzed by different transmission electron microscopy techniques. Aside from hexagonal perovskite Ba(0.5)Sr(0.5)CoO(3-delta) , the formation of lamellar noncubic phases was observed in the quenched samples. The structure of the lamellae with the previously unknown composition Ba(1-x)Sr(x)Co(2-y)Fe(y)O(5-delta) was found to be related to the 15R hexagonal perovskite polytype. The valence and spin-state transition of cobalt leading to a considerable diminution of its ionic radius can be considered a reason for BSCF's inherent phase instability at intermediate temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000283623700010 Publication Date 2010-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 117 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:95546 Serial 3720  
Permanent link to this record
 

 
Author Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M. pdf  doi
openurl 
  Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
  Year (down) 2010 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 1 Issue 6 Pages 751-762  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000283939200013 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 12 Open Access  
  Notes Approved Most recent IF: 8.668; 2010 IF: NA  
  Call Number UA @ lucian @ c:irua:85823 Serial 3517  
Permanent link to this record
 

 
Author Neyts, E.C.; Shibuta, Y.; van Duin, A.C.T.; Bogaerts, A. doi  openurl
  Title Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics-force biased Monte Carlo simulations Type A1 Journal article
  Year (down) 2010 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 4 Issue 11 Pages 6665-6672  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Metal-catalyzed growth mechanisms of carbon nanotubes (CNTs) were studied by hybrid molecular dynamics−Monte Carlo simulations using a recently developed ReaxFF reactive force field. Using this novel approach, including relaxation effects, a CNT with definable chirality is obtained, and a step-by-step atomistic description of the nucleation process is presented. Both root and tip growth mechanisms are observed. The importance of the relaxation of the network is highlighted by the observed healing of defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284438000043 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 129 Open Access  
  Notes Approved Most recent IF: 13.942; 2010 IF: 9.865  
  Call Number UA @ lucian @ c:irua:84759 Serial 294  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: