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Second-order multiple-quanta flux entry into a perforated spherical mesoscopic superconductor
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Flux entry in type-II superconductors without prominent symmetry is a first-order phase transition, where
flux enters conventionally gradual in units of a flux quantum. Here we show that neither is necessarily the case

in a mesoscopic superconducting sphere with a perforation. In axially applied magnetic field, vortices initially
occupy the hole, and can oppose further flux entry in the sample. As a result, multiple-quanta flux entry is
found at significantly higher field, and it can manifest as a second-order transition due to suppressed geometric
barrier at the equatorial belt of the sample. At high fields a new state is found, with gradually destroyed
condensate from the equator inwards, the exact opposite of surface superconductivity.

DOI: 10.1103/PhysRevB.82.214501

I. INTRODUCTION

Being nanoscale and fully three-dimensional (3D) objects,
susceptible to magnetic interactions'~* but also driven by
electric current,’ having magnetic-field and temperature-
dependent properties,® and hosting both Cooper pairs and
normal electrons,’ vortices in superconductors are one of the
most prominent study objects of the last decade. The rising
interest in vortices came along the interest in mesoscopic
superconductivity,®~! as scientists realized that many prop-
erties of superconducting samples, including vortex matter,
can be tailored by the sample size and shape.

Vortex entry in superconductors is generally a first-order
phase transition. In increasing magnetic field, strong Meiss-
ner currents develop in the sample to screen out the applied
field. They are largest at the sample edges, where conse-
quently the superconducting order parameter is weakest. Af-
ter the critical velocity of the superconducting condensate is
reached,'® the Cooper pairs break, and weak points for vor-
tex entry are created at the sample edges. The energy asso-
ciated with vortex crossing the screening currents in the
sample, together with the experienced repulsion from the
pre-existing vortices (if any), form together a Bean-
Livingston (BL) barrier, i.e., the energy barrier for vortex
nucleation in the sample.!” Its presence ensures the existence
of hysteresis of flux entry and exit in mesoscopic supercon-
ductors as a function of the applied magnetic field.

Thus the vortex enters the sample through a weak point,
i.e., the surface area that can be as small as a single point in
which the critical conditions are met. This is where the three
dimensionality of the vortex line becomes important since it
has to overcome the entire edge of the sample parallel to the
magnetic field. As a consequence, the vortex enters the
sample gradually, as a function of critical conditions chang-
ing in the neighborhood with, e.g., further increasing field,
and depending on its own elasticity. Finally, the entire vortex
enters the sample, but it exceeds its minimal needed length
(the sample thickness), and this is energetically costly. This
additional contribution to the energy barrier is named the
geometric barrier, as it stems from the sample shape.

Such a geometrical barrier can be therefore successfully
suppressed in samples with oblate edges, i.e., with spherical
or toroidal shape. Nevertheless, vortex entry remains a first-
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order transition, unless the action of the Meissner currents
driving the entering vortex toward the center of the sample is
fully counteracted by another opposing force, so that the
Bean-Livingston barrier vanishes. In what follows, we will
show that this is possible in a spherical superconductor with
a central perforation. The force opposing the vortex entry
will be the repulsion by the previously trapped vortices in the
hole. The balance of the competing forces will therefore de-
pend on the applied magnetic field, the size of the sample,
the size of the hole, and the vorticity but also the number of
newly entering vortices. As a consequence, some unconven-
tional vortex transitions for mesoscopic superconductors can
be expected.

Our sample is a sphere of radius R, with axial and cylin-
drical perforation with radius Rj,. In the past, a number of
works dealt with the properties of a superconducting disk
with a hole and rings in general,'®!° as well as hollow
cylinders.?’ The common conclusion was that vortices favor-
ably reside inside the hole, and that such vortex trapping
leads to an increased upper critical field of the sample. How-
ever, the number of vortices that fit inside a hole depends on
the hole itself (its shape and size)?' but also on the sample
geometry, i.e., the proximity of another hole*? or the prox-
imity of the sample edges. In Fig. 1, we show the obtained
maximal number of vortices in a hole (saturation vorticity ;)
as a function of the hole radius and the sample radius, and
that for a cylinder and a sphere of equal volume. The differ-
ence between results for two geometries is astounding, and
this is the core objective of this study.

II. THEORETICAL FORMALISM
The results are obtained and checked using two variants
of the Ginzburg-Landau (GL) formalism, for an extreme

type-1I superconductor. In one approach, we solve numeri-
cally the nonlinear GL equation for the order parameter i,

(=iV=A)2y=(1 -y, (1)

in applied vector potential A=(Hy/2,—Hx/2,0) from a mag-
netic field H applied axially to the sample, and with
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FIG. 1. (Color online) The saturation vorticity of the hole with
radius Ry, in (a) a cylinder and (b) a sphere of radius R (and of same
volume as the cylinder). (c¢) The maximal possible vorticity of the
sample in (b).

Neumann boundary conditions applied at the sample sur-
faces. Solution of Eq. (1) minimizes the free energy of a
sample with volume V: F/Fo=+[|¥|*dV, where F, is the
condensation energy H§/477. In above equations, all dis-
tances are expressed in units of the coherence length &(7),
the vector potential in ¢y/27E,, and the order parameter in
V—a/ B with a, B being the GL coefficients. For details of the
approach, we refer to Ref. 6.

The second approach is based on the expansion of the
order parameter,”> W=3N Cu in the orthonormal
eigenfunctions of the 3D kinetic-energy operator
(ihtVip—e*A/c) ¢/ 2m* = €. In cylindrically symmetric
structures,  these  eigenfunctions have the form
i=r.ny=exp(iL$)f,(r,0), where L is the angular momen-
tum, ¢ is the azimuthal angle around the sample axis, and the
index n counts different states with the same L starting from
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the lowest-energy one. The eigenfunctions f, are real and
their corresponding eigenvalues are obtained numerically for
each L, with Neumann boundary condition applied. The typi-
cal number of considered eigenfunctions is N=10-50, with
Le(0,10) and n € (1,2). Finally, the energy minimization
with respect to the complex variables C; leads to the order-
parameter profile of the stable vortex states.

III. NOVEL VORTEX TRANSITIONS

Returning to the results, the data shown in Fig. 1(a) dem-
onstrate classic mesoscopic vortex behavior. In a cylinder
with small radius, the vortices are compressed laterally into a
giant vortex,>*~2° and the maximal vorticity increases one by
one as the sample is made larger. Small perforation placed in
the center of the cylinder has very little effect, as confine-
ment dominates and a giant vortex is formed in the center of
the sample regardless of the size of the hole. However, start-
ing from the hole size of approximately R,=1¢, the perfora-
tion is able to trap vortices, with the maximal occupation
number (saturation number) of the hole proportional to the
hole size. The hole also starts to affect the upper critical field
of the sample, which leads to an increase in the maximal
vorticity of the sample, as shown in Fig. 1(a). There the
vortex saturation number of the hole ng cannot be distin-
guished from the maximal vorticity, since the vortex state at
high applied field is always a giant vortex, with the vortex
core always located in the center of the sample, i.e., inside
the hole.

Similar behavior can be found in perforated spheres, how-
ever only when the perforation is very small. Beyond
R,=0.175R, the saturation vortex number of the hole be-
comes independent of the maximal possible vorticity in the
sample. It still increases as the hole is made larger but also
has a very strong effect on the final vortex state at the upper
critical field. This is illustrated in Fig. 1(c), where we show
that for geometrical parameters of the cylinder that could
host up to 11 vortices (R=4.1£, R,=1§), the corresponding
sphere has a maximal possible vorticity of just 8 and that is
reached at an intermediate magnetic field. Close to the criti-
cal field, the vorticity actually drops to just 2, with both
vortices trapped inside the hole.

To understand the above astonishing differences in flux
entry in samples of different 3D geometry, we show in Fig. 2
the calculated free-energy landscape for a perforated (a) cyl-
inder and (b) sphere, as a function of the applied magnetic
field. Both samples are of equal radius R=4.0¢ and with the
same radius of the hole R,=1.4¢. As expected, vortices pen-
etrate sequentially in the cylindrical sample in increasing
magnetic field, and the maximal vorticity is 12. On the other
hand, the vorticity L of the spherical sample increases gradu-
ally up to L=3 in an applied field of H=0.75H,. Surpris-
ingly, no new energy levels are found in a large range of
magnetic field, and the L=3 energy curve stretches up to a
high magnetic field of H=1.95H,.,. However, the supercon-
ducting state does change along this energy line—the vortic-
ity actually changes through a second-order transition from
L=3 to L=7, before the final first-order transition to the
L=4 state as the field is increased. Thus in the ground-state
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FIG. 2. (Color online) The free-energy landscape and stable vor-
tex states as a function of the axially applied magnetic field, in (a)
a perforated cylinder, compared to (b) a superconducting sphere
with a hole. In (b), the dashed curves show the higher energy of
L=5 and L=6 states, which were not found stable but were artifi-
cially constructed by the expansion method.

three fluxes are expelled with increasing magnetic field.
Characteristic states, labeled A, B, and C in Fig. 2, are shown
in Fig. 3(a) as the Cooper-pair density contourplots and the
contourplots of the phase of the order parameter in the equa-
torial plane of the sample. States A and B show the gradual
and simultaneous entry of four vortices in the sample in the
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FIG. 3. (Color online) (a) The Cooper-pair density and phase
contourplots of the L=3, L=7, and L=4 states, labeled as A, B, and
C, respectively in Fig. 2. (b) The radial Cooper-pair density profile
prior to destruction of superconductivity in two spheres with radius
4.0¢ but with different radii of the holes (cf. Fig. 1).
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L=3 state, forming the L=7 state, and state C is the last
surviving superconducting state in increased magnetic field
for this geometry. There we note the particularly weak order
parameter at the sample edges in the central plane. In Fig.
3(b), the radial Cooper-pair density profile prior to destruc-
tion of superconductivity is plotted for two spheres with the
same radius R=4.0¢ but with different radius of the hole,
R,=0.2R and R,=0.35R. The former corresponds to the
giant-vortex formation in the sample, with maximal vorticity
equal 8. On the other hand, the latter is the case of Fig. 2,
where four vortices are trapped by the hole and no other
vortex exist in the sample. Instead, superconductivity is ut-
terly destroyed on the equatorial belt, where the stray mag-
netic field is largest. The existence of this equatorial normal-
state belt is phenomenologically exactly opposite to the case
of surface superconductivity, and yet unreported in the field
of mesoscopic superconductivity. Beside this, the found
second-order multiple-quanta L=3 — 7 transition is also sur-
prising and unique. In what follows, we analyze these phe-
nomena in greater detail.

The key in the analysis of the above phenomena is the
geometry of the sample. Namely, in a spherical sample the
geometric barrier is virtually absent, and vortices can nucle-
ate as points on the equator, and grow in length as they
approach the center of the sample in increasing magnetic
field. However, further vortex entry becomes nontrivial since
the preexisting vortices repel the new ones. This is still not
sufficient for the found surprising phenomena since vortices
can still rearrange to an energetic consensus.?’-?® In the
present case however, the central perforation pins the first
entering vortices, and their rearrangement upon further flux
entry is not possible. This enlarges the BL barrier for the
entry of new vortices. This barrier is very firm since the
geometric barrier for pinned vortices to leave the hole is very
large. For this reason, vortices are unable to enter the sample
beyond the L=3 state in Fig. 2, up to the applied field suffi-
ciently large to overcome the BL barrier, at which point new
vortices enter the sample through a second-order transition
since the BL barrier is exactly matched by the magnetic
“pressure” from outside the sample. In this particular case,
this threshold applied field is also sufficient for four addi-
tional flux quanta to enter the sample, and we find the tran-
sition to the L=7 state. Further increase in the applied field
compresses vortices toward the sample interior, and results
finally in the entry of one more vortex into the hole, which is
a first-order process. To counteract the repulsion of four vor-
tices trapped in the hole and add more vortices to the system,
the field should be increased further, however such a large
field induces large equatorial screening current in the sample
and the superfluid velocity exceeds the depairing one. As a
result, the normal-state belt is formed, being more energeti-
cally favorable than the appearance of new localized vortices
in the sample.

IV. ENERGY BARRIERS AND THERMAL EXCITATIONS

The understand the relation between the state with a zero-
order-parameter (normal) equatorial belt and the usual giant
vortex state, we examine the saddle point between them,
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FIG. 4. (Color online) The free energy of the L=3 and L=4
states and the saddle state between them (cf. Fig. 2). In inset, the
sequence of saddle points is shown through the Cooper-pair density
plots at the equatorial belt of the sample, at different magnetic
fields. This sequence shows the penetration of one vortex into the
superconductor from outer boundary, finally residing inside the
perforation.

using the expansion method from Ref. 23, as already out-
lined in the theoretical formalism. In Fig. 4, we show the
calculated free energy, and the saddle state as transition from
the normal belt with L=3 state to the L=4 state. As shown in
inset of Fig. 4, one vortex forms at the normal belt (inset A),
gradually moves inwards (interacting with the currents sur-
rounding the perforation, see insets B and C), and finally
merges with the three vortices trapped inside the hole to form
the giant vortex state of L=4. The very existence of the
saddle state directly proves the first order transition between
L=3 and L=4 states at high field while at the same time no
saddle points can be found for the second-order transition
between L=3 and L=7 states at lower fields, where L=3
state with the normal belt is formed from L=7 state by in-
creasing magnetic field.

Using the same approach, we can now calculate the en-
ergy barrier AF between different vortex states and saddle
points between them. This is essentially done by subtracting
the energy of the metastable (higher energy) states from that
of the saddle points. This is very important in the context of
thermal fluctuations, which may drive the system from one
equilibrium to another close to T, exactly where the GL
theory is valid. To give a correct feel of the importance of the
thermal fluctuations in the present study, we take the tem-
perature in the calculation of 7=0.9T,, for 7,=9 K. In that
case, we can rescale the results of Fig. 2 to a sample at
T=0.9T, with size R=12.6£(0) and R;,=4.42£(0). We take
&0)=10 nm and for «=20, which roughly corresponds to
Nb as superconducting material. The shape of the energy
barriers between L=1, 2, and 3 states, shown in Fig. 5(a), is
generally the same as the ones described earlier in Ref. 23,
being the highest at the magnetic field where two states in-
terchange as the ground state of the system. However, the
most interesting physics in the present system lies beyond
the L=3 state, where with increasing magnetic field first the
L=7 state is formed, and is then reduced back to the L=3
state with the normal belt at the equator of the sample. In this
case, as shown in Fig. 5(b), the energy barrier changes with
magnetic field in a somewhat different fashion, with a clear
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FIG. 5. (Color online) (a) The energy barriers between different
vortex states from Fig. 2 (with vorticity L=3), corresponding to a
Nb sample with R=126 nm and R,=44.2 nm at 7=8.1 K, scaled
to thermal energy kg7T. (b) The energy barrier at high fields, be-
tween the vortex state with L=4 and the one with L=3 and a nor-
mal equatorial belt.

change in AF(H) slope at the L=3-7 transition. Upon tran-
sition to the L=4 state in the ground state of the system, the
energy barrier decreases very similarly to the states shown in
Fig. 5(a). More importantly, in all curves in Fig. 5 the energy
barrier is found to be much larger than the thermal energy
kgT. Note however that the barriers become comparable to
the thermal energy at high magnetic fields [cf. Fig. 5(b)] so
that thermal fluctuations cannot be entirely neglected. It is
exactly those magnetic fields where the multiple-flux quanta
entry in the system can be triggered, and thus thermal fluc-
tuations may hide this phenomenon in experiment. Neverthe-
less, the latter will take place only in sufficiently large
samples where the energy barriers are very low, and not in
the truly mesoscopic samples where influence of the sample
boundaries is extremely prominent and barriers are high.
Note however that in high-7, samples thermal-driven transi-
tions may take place, since there « is large which lowers the
energy barriers, while 7. is large and increases the thermal
energy.

V. SUPERCURRENTS AT SAMPLE BOUNDARIES

Arguably, the strength of the barriers in a 3D supercon-
ducting geometry can be analyzed through the strength of the
supercurrents, typically maximal at the outer boundaries. We
therefore calculated the current in the sample using

214501-4



SECOND-ORDER MULTIPLE-QUANTA FLUX ENTRY INTO...

0.6 -

(@) 1

05+
04+
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inner and (b) outer boundaries of a perforated cylinder, plotted as a
function of the applied magnetic field (corresponding to Fig. 2).
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and we paid special attention to the current amplitude as a
function of applied field at both inner and outer edges of the
samples. In Fig. 6, we show the results for a perforated cyl-
inder (same as in Fig. 2), where the current at the boundary
(conventionally) oscillates with each vortex entry. On the
other hand, upon vorticity 4, the pinned giant-vortex out-
grows the hole and the inner-edge current (and barrier) van-
ishes. For comparison, in Fig. 7 we show the corresponding
plots for a sphere with a hole. In accordance with our find-
ings earlier in this paper, the behavior of the currents/barriers
is seemingly similar, but actually opposite. Namely, beyond
L=3 the current and barrier at the equatorial plane diminish
while remaining nonzero at the inner boundary of the
sample.

VI. TUNING THE GEOMETRY AND THE INTERACTIONS

The interaction between the inner geometric barrier of the
hole and the outer BL boundary formed by trapped vortices
in the hole quite obviously depends on the distance between
the inner and outer surfaces of the sample, in other words on
the R,/ R ratio. We demonstrate this in Fig. 8, where we fixed
the radius of the hole at R,=1.0¢ and varied the radius of the
sample from R=3.6¢ to R=3.9¢. As can be seen in Fig. 1(b),
the saturation vorticity ng of the hole equals two for all the
cases considered, and the maximal vorticity is always five.
Nevertheless, the sequence of vortex phases and transitions
between them in increased applied field are strongly affected
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FIG. 7. (Color online) Same as Fig. 6 but for a perforated
sphere. Dashed line denotes the field where the second-order tran-
sition between L=3 and L=7 sets in.

by the changing R,/R ratio. The equatorial contourplots of
the phase of the order parameter in three samples are shown
as columns in Fig. 8, with images arranged top to bottom in
correspondence with increasing applied magnetic field. Both
first- and second-order transitions between successive vortex
states are found, indicated in Fig. 8 by open and colored
arrows, respectively. In the sample with R=3.6¢, the interac-
tion of the two vortices trapped in the hole and the outer
magnetic field is strong, and we find a second-order transi-
tion and multiple-fluxon entry of three vortices simulta-
neously, which qualitatively corresponds to the L=3 to
L=7 transition in Fig. 2. However, even in a slightly larger
sample, e.g., R=3.8¢, the BL barrier is lowered at the sample
edge and is no longer balanced by the repulsion from the
pinned vortices. As a result, one vortex can enter the sample,
which appears as a first-order transition as soon as the vortex
crosses the Meissner currents at the sample edge. However,
by allowing this flux entry, the system restores the balance of
forces, and further flux entry from L=3 to L=5 is again of
second order. Making the sample just a fraction larger, to a
size of R=3.9¢, leads to first-order L=2 to L=3 and further
to L=4 transitions, and the second-order transition is shifted
to the last stage—the single vortex entry toward the L=5
state. In summary, by changing the size of the hole and the
sample, one manipulates the interaction between inner and
outer boundaries and energy barriers, and one can change
any of the phase transitions between successive vortex states
from first to second order, and from individual to multiple-
flux quanta events.

The free-energy curves in Fig. 2 clearly show the
strengthening effect that the pinned vortices have on the
Bean-Livingston barrier, as the vortex entry between
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FIG. 8. (Color online) A sequence of vortex-state transitions in
the ground state, with indication of the order of the phase transitions
(open/colored arrows—first/second order), for different radii of the
sample and fixed size of the central hole R,=1.0&. The images are
arranged top to bottom in increasing applied magnetic field.

L=0-3 states is shifted to higher fields in samples with a
weak geometric barrier. Here we discuss one more effect that
the competition of the barriers has on threshold magnetic
fields, in this case the upper critical field H,, (at which the
superconductivity is destroyed). Our results are summoned
in Fig. 9, for spherical samples with radii R=3.25¢, 3.75¢,
and 4.25¢, as a function of the size of the hole. Each curve
exhibits a rather flat stage when the perforation is small,
which corresponds to the states of weak inner geometric bar-
rier, and the formation of giant-vortex states in the sample,
up to high vorticity [such as the L=8 state shown in Fig.
3(b)]. This main contribution to demagnetization comes from
the screening current near the outer edges, which is practi-
cally unaffected by the hole. However, a sufficiently large
hole can trap a number of vortices, and in doing so effec-
tively preserve the superconducting condensate near the in-
ner surface of the sample while rejecting the penetration of
new vortices from the outer boundary. As discussed above,
this eventually leads to a gradual suppression of supercon-
ductivity from equator inwards and enhances the critical field
H,, in a steplike manner as a function of the size of the hole.
A step increase in H,, is found for every R;,/R ratio for
which the interplay of barriers allows one more vortex to
enter the hole, and this increases the barrier for further flux
entry, and therefore increases the upper critical field. These
steps are clearly visible in Fig. 9(a) and are commonly found
for all considered samples for R,=0.28R, 0.35R, and 0.40R.
Furthermore, in the same range of R,/R ratios, the upper
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FIG. 9. (Color online) (a) The evolution of the upper critical
field H,., of a spherical sample of radius R as a function of the size
of the central hole R;, for samples of three different outer radii. (b)
Idem. for a cylindrical sample of the same volume.

critical field of the sample is enhanced beyond that of a cor-
responding cylinder with a hole, as shown in Fig. 9(b).

VII. CONCLUSIONS

In summary, we discussed the effect of the interplay of the
geometric barrier and the Bean-Livingston barrier on vortex
states and transitions between them in extreme type-II super-
conductors. The subtle interplay of the energy barriers can be
achieved by adjusting the shape and distances between dif-
ferent boundaries in the system, as we demonstrate on an
example of a spherical sample with a central cylindrical hole.
In this case, the curvature of the outer boundary minimizes
the strength of the geometric barrier for vortex entry while
the cylindrical shape of the hole strongly pins the existing
vortices of the sample in an axially applied magnetic field.
These pinned vortices affect in turn the Bean-Livingston bar-
rier at the outer surface of the sample, and postpone further
flux entry in the sample. As a consequence, a series of se-
quential first- and second-order vortex phase transitions is
realized, some of which can comprise several flux quanta
entering the sample simultaneously, which is all very differ-
ent from conventional behavior of mesoscopic superconduct-
ors, e.g., cylinders (as shown for comparison). Finally, the
lack of the outer geometrical barrier in these samples can
lead to the formation of a unique state at high magnetic
fields, where nucleation of vortices is no longer favorable
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and superconductivity is gradually suppressed from the equa-
torial belt of the sample inwards, i.e., the exact opposite
scenario to surface superconductivity. Based on this, even
more complex behavior of the superconducting condensate is
envisaged in samples with more complicated geometries,
such as the 3D mesoscopic crystals recently made by
electrochemistry.?
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