toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M. doi  openurl
  Title Cation-controlled permeation of charged polymers through nanocapillaries Type A1 Journal article
  Year (down) 2023 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 107 Issue 3 Pages 034501-34510  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are used to study the effects of different cations on the permeation of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that, despite being monovalent, Li+ , Na+ , and K+ cations have different effects on polymer permeation, which consequently affects their transmission speed throughout those capillaries. We attribute this phenomenon to the interplay of the cations' hydration free energies and the hydrodynamic drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different surface versus bulk preferences in small clusters of water under the influence of an external electric field. This paper presents a tool to control the speed of charged polymers in confined spaces using cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000955986000006 Publication Date 2023-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.4; 2023 IF: 2.366  
  Call Number UA @ admin @ c:irua:196089 Serial 7586  
Permanent link to this record
 

 
Author Wang, Q.; Lin, S.; Liu, X.; Xu, W.; Xiao, Y.; Liang, C.; Ding, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Photoluminescence and electronic transition behaviors of single-stranded DNA Type A1 Journal article
  Year (down) 2021 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 104 Issue 3 Pages 034412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Due to the potential application of DNA for biophysics and optoelectronics, the electronic energy states and transitions of this genetic material have attracted a great deal of attention recently. However, the fluorescence and corresponding physical process of DNA under optical excitation with photon energies below ultraviolet are still not fully clear. In this work, we experimentally investigate the photoluminescence (PL) properties of single-stranded DNA (ssDNA) samples under near-ultraviolet (NUV) and visible excitations (270 similar to 440 nm). Based on the dependence of the PL peak wavelength (lem) upon the excitation wavelength (lex), the PL behaviors of ssDNA can be approximately classified into two categories. In the relatively short excitation wavelength regime, lem is nearly constant due to exciton-like transitions associated with delocalized excitonic states and excimer states. In the relatively long excitation wavelength range, a linear relation of lem = Alex + B with A 0 or A < 0 can be observed, which comes from electronic transitions related to coupled vibrational-electronic levels. Moreover, the transition channels in different excitation wavelength regimes and the effects of strand length and base type can be analyzed on the basis of these results. These important findings not only can give a general description of the electronic energy states and transitional behaviors of ssDNA samples under NUV and visible excitations, but also can be the basis for the application of DNA in nanoelectronics and optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703562300002 Publication Date 2021-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.366 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.366  
  Call Number UA @ admin @ c:irua:182517 Serial 7009  
Permanent link to this record
 

 
Author Jalali, H.; Ghorbanfekr, H.; Hamid, I.; Neek-Amal, M.; Rashidi, R.; Peeters, F.M. url  doi
openurl 
  Title Out-of-plane permittivity of confined water Type A1 Journal article
  Year (down) 2020 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 102 Issue 2 Pages 022803  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The dielectric properties of confined water is of fundamental interest and is still controversial. For water confined in channels with height smaller than h = 8 angstrom, we found a commensurability effect and an extraordinary decrease in the out-of-plane dielectric constant down to the limit of the dielectric constant of optical water. Spatial resolved polarization density data obtained from molecular dynamics simulations are found to be antisymmetric across the channel and are used as input in a mean-field model for the dielectric constant as a function of the height of the channel for h > 15 angstrom. Our results are in excellent agreement with a recent experiment [L. Fumagalli et al., Science 360, 1339 (2018)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000560660400004 Publication Date 2020-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755; 1550-2376 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 25 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171157 Serial 6574  
Permanent link to this record
 

 
Author McNaughton, B.; Milošević, M.V.; Perali, A.; Pilati, S. url  doi
openurl 
  Title Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks Type A1 Journal article
  Year (down) 2020 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 101 Issue 5 Pages 053312  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The autoregressive neural networks are emerging as a powerful computational tool to solve relevant problems in classical and quantum mechanics. One of their appealing functionalities is that, after they have learned a probability distribution from a dataset, they allow exact and efficient sampling of typical system configurations. Here we employ a neural autoregressive distribution estimator (NADE) to boost Markov chain Monte Carlo (MCMC) simulations of a paradigmatic classical model of spin-glass theory, namely, the two-dimensional Edwards-Anderson Hamiltonian. We show that a NADE can be trained to accurately mimic the Boltzmann distribution using unsupervised learning from system configurations generated using standard MCMC algorithms. The trained NADE is then employed as smart proposal distribution for the Metropolis-Hastings algorithm. This allows us to perform efficient MCMC simulations, which provide unbiased results even if the expectation value corresponding to the probability distribution learned by the NADE is not exact. Notably, we implement a sequential tempering procedure, whereby a NADE trained at a higher temperature is iteratively employed as proposal distribution in a MCMC simulation run at a slightly lower temperature. This allows one to efficiently simulate the spin-glass model even in the low-temperature regime, avoiding the divergent correlation times that plague MCMC simulations driven by local-update algorithms. Furthermore, we show that the NADE-driven simulations quickly sample ground-state configurations, paving the way to their future utilization to tackle binary optimization problems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535862000014 Publication Date 2020-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755; 1550-2376 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 15 Open Access  
  Notes ; The authors thank I. Murray, G. Carleo, and F. RicciTersenghi for useful discussions. Financial support from the FAR2018 project titled “Supervised machine learning for quantum matter and computational docking” of the University of Camerino and from the Italian MIUR under Project No. PRIN2017 CEnTraL 20172H2SC4 is gratefully acknowledged. S.P. also acknowledges the CINECA award under the ISCRA initiative, for the availability of high performance computing resources and support. M.V.M. gratefully acknowledges the Visiting Professorship program at the University of Camerino that facilitated the collaboration in this work. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:170244 Serial 6463  
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P. pdf  doi
openurl 
  Title Self-assembly of rigid magnetic rods consisting of single dipolar beads in two dimensions Type A1 Journal article
  Year (down) 2017 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 96 Issue 1 Pages 012603  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Molecular dynamics simulations are used to investigate the structural properties of a two-dimensional ensemble of magnetic rods, which are modeled as aligned single dipolar beads. The obtained self-assembled configurations can be characterized as (1) clusters, (2) percolated, and (3) ordered structures, and their structural properties are investigated in detail. By increasing the aspect ratio of the magnetic rods, we show that the percolation transition is suppressed due to the reduced mobility of the rods in two dimensions. Such a behavior is opposite to the one observed in three dimensions. A magnetic bulk phase is found with local ferromagnetic order and an unusual nonmonotonic behavior of the nematic order is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405713900014 Publication Date 2017-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 8 Open Access  
  Notes ; This work was supported by the Brazilian agencies FUNCAP, CAPES, program Science without borders, and CNPq (Project No. 400748/2013-4), the joint CNPq-FWO bilateral project, and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:145210 Serial 4723  
Permanent link to this record
 

 
Author de Araujo, J.L.B.; Munarin, F.F.; Farias, G.A.; Peeters, F.M.; Ferreira, W.P. url  doi
openurl 
  Title Structure and reentrant percolation in an inverse patchy colloidal system Type A1 Journal article
  Year (down) 2017 Publication Physical Review E Abbreviated Journal  
  Volume 95 Issue 6 Pages 062606  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional systems of inverse patchy colloids modeled as disks with a central charge and having their surface decorated with oppositely pointlike charged patches are investigated using molecular dynamics simulations. The self-assembly of the patchy colloids leads to diverse ground state configurations ranging from crystalline arrangements of monomers to linear clusters, ramified linear clusters and to percolated configurations. Two structural phase diagrams are constructed: (1) as a function of the net charge and area fraction, and (2) as a function of the net charge and the range of the pair interaction potential. An interesting reentrant percolation transition is obtained as a function of the net charge of the colloids. We identify distinct mechanisms that lead to the percolation transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404545700005 Publication Date 2017-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152628 Serial 8587  
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Tempère, J.; Kong, M.; Peeters, F.M. url  doi
openurl 
  Title Artificial living crystals in confined environment Type A1 Journal article
  Year (down) 2017 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 95 Issue 6 Pages 062602  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Similar to the spontaneous formation of colonies of bacteria, flocks of birds, or schools of fish, “living crystals” can be formed by artificial self-propelled particles such as Janus colloids. Unlike usual solids, these “crystals” are far from thermodynamic equilibrium. They fluctuate in time forming a crystalline structure, breaking apart and re-forming again. We propose a method to stabilize living crystals by applying a weak confinement potential that does not suppress the ability of the particles to perform self-propelled motion, but it stabilizes the structure and shape of the dynamical clusters. This gives rise to such configurations of living crystals as “living shells” formed by Janus colloids. Moreover, the shape of the stable living clusters can be controlled by tuning the potential strength. Our proposal can be verified experimentally with either artificial microswimmers such as Janus colloids, or with living active matter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402667600006 Publication Date 2017-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 10 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Research Foundation (FWO-Vl) (Belgium), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), and the Research Fund of the University of Antwerp. W.Y. acknowledges the support from the National Natural Science Foundation of China under Grants No. 11204199 and No. 51135007, the China Scholarship Council, the 131 project and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and a project under Grant No. 2016-096 by Shanxi Scholarship Council of China. ; Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:144205 Serial 4641  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C. url  doi
openurl 
  Title Comment on “Generalized exclusion processes : transport coefficients” Type A1 Journal article
  Year (down) 2016 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 93 Issue 93 Pages 046101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment,we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374962100019 Publication Date 2016-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:141060 Serial 4591  
Permanent link to this record
 

 
Author Yang, W.; Kong, M.; Milošević, M.V.; Zeng, Z.; Peeters, F.M. url  doi
openurl 
  Title Two-dimensional binary clusters in a hard-wall trap: structural and spectral properties Type A1 Journal article
  Year (down) 2007 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 76 Issue 4 Pages art.041404:part 1  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000250621900066 Publication Date 2007-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.366; 2007 IF: 2.483  
  Call Number UA @ lucian @ c:irua:67325 Serial 3772  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: