toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Corbel, G.; Attfield, J.P.; Hadermann, J.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Antipov, E.V. pdf  doi
openurl 
  Title Anion rearrangements in fluorinated Nd2CuO3.5 Type A1 Journal article
  Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 15 Issue (up) Pages 189-195  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000180368000029 Publication Date 2003-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes Approved Most recent IF: 9.466; 2003 IF: 4.374  
  Call Number UA @ lucian @ c:irua:40348 Serial 123  
Permanent link to this record
 

 
Author Panin, R.V.; Shpanchenko, R.V.; Mironov, A.V.; Velikodny, Y.A.; Antipov, E.V.; Hadermann, J.; Tarnopolsky, V.A.; Yaroslavtsev, A.B.; Kaul, E.E.; Geibel, C. pdf  doi
openurl 
  Title Crystal structure, polymorphism, and properties of the new vanadyl phosphate Na4VO(PO4)2 Type A1 Journal article
  Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 16 Issue (up) Pages 1048-1055  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000220304100014 Publication Date 2004-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access  
  Notes Approved Most recent IF: 9.466; 2004 IF: 4.103  
  Call Number UA @ lucian @ c:irua:43873 Serial 577  
Permanent link to this record
 

 
Author Pelloquin, D.; Hadermann, J.; Giot, M.; Caignaert, V.; Michel, C.; Hervieu, M.; Raveau, B. pdf  doi
openurl 
  Title Novel, oxygen-deficient n=3 RP-member Sr3NdFe3O9-\delta and its topotactic derivatives Type A1 Journal article
  Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 16 Issue (up) Pages 1715-1724  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000221345000019 Publication Date 2004-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 24 Open Access  
  Notes Approved Most recent IF: 9.466; 2004 IF: 4.103  
  Call Number UA @ lucian @ c:irua:47318 Serial 2381  
Permanent link to this record
 

 
Author Abakumov, A.M.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.; Lobanov, M.V.; Greenblatt, M.; Croft, M.; Tsiper, E.V.; Llobet, A.; Lokshin, K.A.; Zhao, Y. pdf  doi
openurl 
  Title Synthesis, cation ordering, and magnetic properties of the (Sb1-xPbx)2(Mn1-ySby)O4 solid solutions with the Sb2MnO4-type structure Type A1 Journal article
  Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 17 Issue (up) Pages 1123-1134  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000227421300029 Publication Date 2005-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 16 Open Access  
  Notes Iap V-1 Approved Most recent IF: 9.466; 2005 IF: 4.818  
  Call Number UA @ lucian @ c:irua:51440 Serial 3446  
Permanent link to this record
 

 
Author Fröba, M.; Köhn, R.; Bouffaud, G.; Richard, O.; Van Tendeloo, G. pdf  doi
openurl 
  Title _Fe2O3 nanoparticles with mesoporous MCM-48 silica: in situ formation and characterisation Type A1 Journal article
  Year 1999 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 11 Issue (up) Pages 2858-2865  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000083261100032 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 202 Open Access  
  Notes Approved Most recent IF: 9.466; 1999 IF: 3.273  
  Call Number UA @ lucian @ c:irua:29721 Serial 3530  
Permanent link to this record
 

 
Author Shetty, S.; Sinha, S.K.; Ahmad, R.; Singh, A.K.; Van Tendeloo, G.; Ravishankar, N. url  doi
openurl 
  Title Existence of Ti2+States on the Surface of Heavily Reduced SrTiO3Nanocubes Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume Issue (up) Pages acs.chemmater.7b04113  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using advanced electron microscopy, we demonstrate the presence of Ti2+ on the 001 surfaces of heavily reduced strontium titanate nanocubes. While high-angle annular dark field images show a clear difference between the surfaces of the unreduced and reduced samples, electron energy loss spectroscopy detects the presence of Ti2+ on the surface of the reduced cubes. Conventional reduction only leads to the formation of Ti3+ and involves the use of high temperatures. In our case, reduction is achieved at relatively lower temperatures in the solid state using sodium borohydride as the reducing agent. Our findings provide insights into the optical properties of the samples and provide a convenient method to produce highly reduced surfaces that could demonstrate a range of exotic physical phenomena  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418206600005 Publication Date 2017-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 8 Open Access OpenAccess  
  Notes We thank Advanced Facility for Microscopy and Microanalysis (AFMM), IISc, Bangalore for providing the TEM facility. We also thank MNCF, CeNSE, IISc for providing the XPS and FT-IR facilities. We acknowledge the help from Prof. Anshu Pandey for providing the PL facility and Mr. Ashutosh Gupta for the help with measurements. SS and NR thank DST for providing the financial support. RA and AKS acknowledge Super Computing Education and Research Center (SERC) and Materials Research Center (MRC), at IISc for providing required computational facilities. RA acknowledges the financial support from INSPIRE fellowship, AORC.Science and Engineering Research Board; Federaal Wetenschapsbeleid; Department of Science and Technology, Ministry of Science and Technology; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @c:irua:147191 Serial 4767  
Permanent link to this record
 

 
Author Imran, M.; Ramade, J.; Di Stasio, F.; De Franco, M.; Buha, J.; Van Aert, S.; Goldoni, L.; Lauciello, S.; Prato, M.; Infante, I.; Bals, S.; Manna, L. url  doi
openurl 
  Title Alloy CsCdxPb1–xBr3Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 32 Issue (up) Pages acs.chemmater.0c03825  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Various strategies have been proposed to engineer the band gap of metal halide perovskite nanocrystals (NCs) while preserving their structure and composition and thus ensuring spectral stability of the emission color. An aspect that has only been marginally investigated is how the type of surface passivation influences the structural/color stability of AMX3 perovskite NCs composed of two different M2+ cations. Here, we report the synthesis of blue-emitting Cs-oleate capped CsCdxPb1–xBr3 NCs, which exhibit a cubic perovskite phase containing Cd-rich domains of Ruddlesden–Popper phases (RP phases). The RP domains spontaneously transform into pure orthorhombic perovskite ones upon NC aging, and the emission color of the NCs shifts from blue to green over days. On the other hand, postsynthesis ligand exchange with various Cs-carboxylate or ammonium bromide salts, right after NC synthesis, provides monocrystalline NCs with cubic phase, highlighting the metastability of RP domains. When NCs are treated with Cs-carboxylates (including Cs-oleate), most of the Cd2+ ions are expelled from NCs upon aging, and the NCs phase evolves from cubic to orthorhombic and their emission color changes from blue to green. Instead, when NCs are coated with ammonium bromides, the loss of Cd2+ ions is suppressed and the NCs tend to retain their blue emission (both in colloidal dispersions and in electroluminescent devices), as well as their cubic phase, over time. The improved compositional and structural stability in the latter cases is ascribed to the saturation of surface vacancies, which may act as channels for the expulsion of Cd2+ ions from NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603288800034 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 44 Open Access OpenAccess  
  Notes European Commission; Fonds Wetenschappelijk Onderzoek, G.0267.18N ; H2020 European Research Council, 770887 815128 851794 ; We acknowledge funding from the FLAG-ERA JTC2019 project PeroGas. S.B., and S.V.A. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants #815128REALNANO and #770887PICOMETRICS) and from the Research Foundation Flanders (FWO, Belgium) through project funding G.0267.18N. F.D.S. acknowledges the funding from ERC starting grant NANOLED (851794). The computational work was carried out on the Dutch National e-infrastructure with the support of the SURF Cooperative; sygma Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:174004 Serial 6659  
Permanent link to this record
 

 
Author van der Sluijs, M.M.; Salzmann, B.B.V.; Arenas Esteban, D.; Li, C.; Jannis, D.; Brafine, L.C.; Laning, T.D.; Reinders, J.W.C.; Hijmans, N.S.A.; Moes, J.R.; Verbeeck, J.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title Study of the Mechanism and Increasing Crystallinity in the Self-Templated Growth of Ultrathin PbS Nanosheets Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected. For the near-infrared region, PbS nanosheets (NSs) hold strong promise, but the photoluminescence quantum yield is low and many questions on the crystallinity, atomic structure, intriguing rectangular shape, and formation mechanism remain to be answered. Here, we report on a detailed investigation of the PbS NSs prepared with a lead thiocyanate single source precursor. Atomically resolved HAADF-STEM imaging reveals the presence of defects and small cubic domains in the deformed orthorhombic PbS crystal lattice. Moreover, variations in thickness are observed in the NSs, but only in steps of 2 PbS monolayers. To study the reaction mechanism, a synthesis at a lower temperature allowed for the study of reaction intermediates. Specifically, we studied the evolution of pseudo-crystalline templates towards mature, crystalline PbS NSs. We propose a self-induced templating mechanism based on an oleylamine-lead-thiocyanate (OLAM-Pb-SCN) complex with two Pb-SCN units as a building block; the interactions between the long-chain ligands regulate the crystal structure and possibly the lateral dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000959572100001 Publication Date 2023-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 2 Open Access OpenAccess  
  Notes H2020 Research Infrastructures, 731019 ; H2020 European Research Council, 692691 815128 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 715.016.002 ; Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number EMAT @ emat @c:irua:195894 Serial 7255  
Permanent link to this record
 

 
Author Sa, J.; Hu, N.; Heyvaert, W.; Van Gordon, K.; Li, H.; Wang, L.; Bals, S.; Liz-Marzán, L.M.; Ni, W. pdf  url
doi  openurl
  Title Spontaneous Chirality Evolved at the Au–Ag Interface in Plasmonic Nanorods Type A1 Journal Article
  Year 2023 Publication Chemistry of materials Abbreviated Journal Chem. Mater.  
  Volume Issue (up) Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chiral ligands are considered a required ingredient during the synthesis of dissymmetric plasmonic metal nanocrystals. The mechanism behind the generation of chiral structures involves the formation of high Miller index chiral facets, induced by the adsorption of such chiral ligands. We found however that, chirality can also evolve spontaneously, without the involvement of any chiral ligands, during the co-deposition of Au and Ag on Au nanorods. When using a specific Au/Ag ratio, phase segregation of the two metals leads to an interface within the obtained AuAg shell, which can be exposed by removing the Ag component via oxidative etching. Although a close-to-racemic mixture of chiral Au nanorods with right and left handedness is found in solution, electron tomography analysis evidences left- and righthanded helicities, both at the Au-Ag interface and at the exposed surface of Au NRs after Ag etching. The helicity profile of the NRs indicates dominating inclination angles in a range from 30° to 60°. Single-particle optical characterization also reveals random handedness in the plasmonic response of individual nanorods. We hypothesize that, the origin of chirality is related with symmetry breaking during the co-deposition of Au and Ag, through an initial perturbation in a small region on the Au-Ag interface that eventually leads to chiral segregation throughout the nanocrystal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001052093300001 Publication Date 2023-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access: Available from 22.02.2024  
  Notes The authors acknowledge the financial support from the National Natural Science Foundation of China (grant 22074102). LMLM acknowledges funding from 26 MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020- 117779RB-I00). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3.; Ministerio de Ciencia e Innovaci?n, PID2020-117779RB-I00 ; H2020 Research Infrastructures, 823717 ; European Social Fund, PID2020-117779RB-I00 ; National Natural Science Foundation of China, 22074102 ; Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number EMAT @ emat @c:irua:198151 Serial 8810  
Permanent link to this record
 

 
Author Filez, M.; Feng, J.-Y.; Minjauw, M.M.; Solano, E.; Poonkottil, N.; Van Daele, M.; Ramachandran, R.K.; Li, C.; Bals, S.; Poelman, H.; Detavernier, C.; Dendooven, J.; Filez, M.; Minjauw, M.; Solano, E.; Poonkottil, N.; Li, C.; Bals, S.; Dendooven, J. pdf  url
doi  openurl
  Title Shuffling atomic layer deposition gas sequences to modulate bimetallic thin films and nanoparticle properties Type A1 Journal article
  Year 2022 Publication Chemistry of materials Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) typically employs metal precursors and co-reactant pulses to deposit thin films in a layer-by-layer fashion. While conventional ABAB-type ALD sequences implement only two functionalities, namely, a metal source and ligand exchange agent, additional functionalities have emerged, including etching and reduction agents. Herein, we construct gas-phase sequences-coined as ALD+-with complex-ities reaching beyond the classic ABAB-type ALD by freely combining multiple functionalities within irregular pulse schemes, e.g., ABCADC. The possibilities of such combinations are explored as a smart strategy to tailor bimetallic thin films and nanoparticle (NP) properties. By doing so, we demonstrate that bimetallic thin films can be tailored with target thickness and through the full compositional range, while the morphology can be flexibly modulated from thin films to NPs by shuI 1ing the pulse sequence. These complex pulse schemes are expected to be broadly applicable but are here explored for Pd-Ru bimetallic thin films and NPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823205700001 Publication Date 2022-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes This research was funded by the Research Foundation, Flanders (FWO) , and the Special Research Fund BOF of Ghent University (GOA 01G01019) . M.F. and M.M.M. acknowledge the FWO for a postdoctoral research fellowship (1280621N) . N.P. acknowledges the European Union's Horizon 2020 research and innovation program under the Marie Skiodowska-Curie grant agreement no. 765378. For the GISAXS measurements, the author s received funding from the European Community's Transnational Access Program CALIPSOplus. E.S. acknowledges the Spanish project RTI2018-093996-B-C32 MICINN/FEDER funds. Air Liquide is acknowledged for supporting this research. The authors acknowledge SOLEIL for the provision of synchrotron radiation facilities and would like to thank Dr. Alessandro Coati for assistance in using beamline SiXS. The GIWAXS experiments were performed at NCD-SWEET beamline at ALBA Synchrotron with the collaboration of ALBA staff . Approved no  
  Call Number UA @ admin @ c:irua:189541 Serial 8928  
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J. url  doi
openurl 
  Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.  
  Volume Issue (up) Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos Publication Date 2024-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links  
  Impact Factor 8.6 Times cited Open Access  
  Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @ Serial 8997  
Permanent link to this record
 

 
Author Hamelet, S.; Casas-Cabanas, M.; Dupont, L.; Davoisne, C.; Tarascon, J.M.; Masquelier, C. doi  openurl
  Title Existence of superstructures due to large amounts of Fe vacancies in the LiFePO4-type framework Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue (up) 1 Pages 32-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LiFePO4 has been under intense scrutiny over the past decade because it stands as an attractive positive electrode material for the next generation of Li-ion batteries to power electric vehicles and hybrid electric vehicles, hence the importance of its thermal behavior. The reactivity of LiFePO4 with air at moderate temperatures is shown to be dependent on its particle size. For nanosized materials, a progressive displacement of Fe from the core structure leading to a composite made of nanosize Fe2O3 and highly defective, oxidized LixFeyPO4 compositions, among which the “ideal” formula LiFe2/3PO4. Herein we report, from both temperature-controlled X-ray diffraction and electronic diffraction microscopy, that these off-stoichiometry olivine-type compounds show a defect ordering resulting in the formation of a superstructure. Such a finding shows striking similarities with the temperature-driven oxidation of fayalite Fe2SiO4 (another olivine) to structurally defective laihunite, reported in the literature three decades ago.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000285726900007 Publication Date 2010-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 30 Open Access  
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:105605 Serial 1130  
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
  Year 2021 Publication Chemistry of materials Abbreviated Journal  
  Volume 33 Issue (up) 1 Pages 102-116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610984700009 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access OpenAccess  
  Notes C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176587 Serial 6732  
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A. pdf  doi
openurl 
  Title Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue (up) 10 Pages 1904-1909  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000304237500024 Publication Date 2012-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access  
  Notes A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175  
Permanent link to this record
 

 
Author Li, Y.; Yang, X.-Y.; Tian, G.; Vantomme, A.; Yu, J.; Van Tendeloo, G.; Su, B.-L. doi  openurl
  Title Chemistry of trimethyl aluminum: a spontaneous route to thermally stable 3D crystalline macroporous alumina foams with a hierarchy of pore sizes Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue (up) 10 Pages 3251-3258  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A simple and spontaneous one-pot self-formation procedure that is easy to scale up has been developed based on the chemistry of trimethylaluminum (TMA), leading to thermally stable macroporous crystalline alumina with a very unique and unprecedented three-dimensional (3D) hierarchical pore structure consisting of well-defined wormlike mesopores. TMA is the precursor of both product and porogene (viz, two working functions within the same molecule (2 in 1)). The materials obtained have been intensively characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), N2 adsorption−desorption, and mercury porosimetry. The open cagelike macrocavities are self-constructed by mesoporous nanorods (diameter of ca. 40−70 nm), which are themselves formed by a random assembly of fibrous nanoparticles 5−6 nm in size. Optical microscopy (OM) has been used in situ to follow the synthesis procedure, which led to the proposal of the formation mechanism. Methane molecules as porogens, which were instantaneously released because of the fast hydrolysis of the chemical precursor, were the key factor in producing these 3D structures with uniform co-continuous macropores that interconnected directly with the wormlike mesopores. The important characteristic of this procedure is the concurrent formation of a multiscaled porous network. The material exhibits great thermal stability. The hierarchically mesoporous−macroporous Al2O3 obtained is quite attractive for a myriad of applications, from catalysis to biomedicine. The present work illustrates that the one-pot self-formation concept, based on the chemistry of alkyl metals, is a versatile method to design industrially valuable hierarchically porous materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000277635000030 Publication Date 2010-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 38 Open Access  
  Notes Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:82760 Serial 356  
Permanent link to this record
 

 
Author Bune, R.O.; Lobanov, M.V.; Popov, G.; Greenblatt, M.; Botez, C.E.; Stephens, P.W.; Croft, M.; Hadermann, J.; Van Tendeloo, G. doi  openurl
  Title Crystal structure and properties of Ru-stoichiometric LaSrMnRuO6 Type A1 Journal article
  Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 18 Issue (up) 10 Pages 2611-2617  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000237593400022 Publication Date 2006-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 17 Open Access  
  Notes Approved Most recent IF: 9.466; 2006 IF: 5.104  
  Call Number UA @ lucian @ c:irua:59441 Serial 563  
Permanent link to this record
 

 
Author Morozov, V.A.; Lazoryak, B.I.; Shmurak, S.Z.; Kiselev, A.P.; Lebedev, O.I.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue (up) 10 Pages 3238-3248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Scheelite related compounds (A',A '')(n)[(B',B '')O-4](m) with B', B '' = W and/or Mo are promising new materials for red phosphors in pc-WLEDs (phosphor-converted white-light-emitting-diode) and solid-state lasers. Cation substitution in CaMoO4 of Ca2+ by the combination of Na+ and Eu3+, with the creation of A cation vacancies, has been investigated as a factor for controlling the scheelite-type structure and the luminescent properties. Na5Eu(MoO4)(4) and NaxEu(2-x)/33+square(2-x)/3MoO4 (0.138 <= x <= 0.5) phases with a scheelite-type structure were synthesized by the solid state method; their structural characteristics were investigated using transmission electron microscopy. Contrary to powder synchrotron X-ray diffraction before, the study by electron diffraction and high resolution transmission electron microscopy in this paper revealed that Na0.286Eu0.571MoO4 has a (3 + 2)D incommensurately modulated structure and that (3 + 2)D incommensurately modulated domains are present in Na0.200Eu0.600MoO4. It also confirmed the (3 + 1)D incommensurately modulated character of Na(0.138)Eu(0.621)Mo04. The luminescent properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of these phosphors show the strongest absorption at about 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The emission spectra indicate an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with local minima in the intensity at Na0.286Eu0.571MoO4 and Na0.200Eu0.600MoO4 for similar to 613 nm and similar to 616 nm bands. The phosphor Na5Eu(MoO4)(4) shows the brightest red light emission among the phosphors in the Na2MoO4-Eu2/3MoO4 system and the maximum luminescence intensity of Na5Eu(MoO4)(4) (lambda(ex) = 395 nm) in the D-5(0) -> F-7(2) transition region is close to that of the commercially used red phosphor YVO4:Eu3+ (lambda(ex) = 326 nm). Electron energy loss spectroscopy measurements revealed the influence of the structure and Na/Eu cation distribution on the number and positions of bands in the UV-optical-infrared regions of the EELS spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336637000028 Publication Date 2014-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 53 Open Access  
  Notes Fwo G039211n; Fwo G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:117765UA @ admin @ c:irua:117765 Serial 1652  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A. doi  openurl
  Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue (up) 10 Pages 3306-3315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336637000036 Publication Date 2014-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 35 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:117766 Serial 2232  
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M. pdf  url
doi  openurl
  Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue (up) 10 Pages 3285-3293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000433403800014 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:152048 Serial 4996  
Permanent link to this record
 

 
Author Shevchenko, V.A.; Glazkova, I.S.; Novichkov, D.A.; Skvortsova, I.; V. Sobolev, A.; Abakumov, A.M.; Presniakov, I.A.; Drozhzhin, O.A.; V. Antipov, E. pdf  doi
openurl 
  Title Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for Na-ion batteries Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue (up) 10 Pages 4015-4025  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries are attracting great attention due to their low cost and abundance of sodium. The O3-type NaNi1/3Fe1/3Mn1/3O2 layered oxide material is a promising candidate for positive electrodes (cathodes) in Na-ion batteries. However, its stable electrochemical performance is restricted by the upper voltage limit of 4.0 V (vs Na/Na+), which allows for reversibly removing 0.5-0.55 Na+ per formula unit, corresponding to the capacity of 120-130 mAh.g(-1). Further reduction of sodium content inevitably accelerates capacity degradation, and this issue calls for a detailed study of the redox reactions that accompany the electrochemical (de)intercalation of a large amount of sodium. Here, we present operando and ex situ studies using powder X-ray diffraction and X-ray absorption spectroscopy combined with Fe-57 Mossbauer spectroscopy. Our approach reveals the sequence of the redox transitions that occur during the charge and discharge of O3-NaNi1/3Fe1/3Mn1/3O2. Our data show that in addition to nickel and iron cations oxidizing to M+4, a part of iron transforms into the “3 + delta” state owing to the fast electron exchange Fe3+ + Fe4+ <-> Fe4+ + Fe3+. This process freezes upon cooling the material to 35 K, producing Fe4+ cations, some of which occupy tetrahedral positions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985970200001 Publication Date 2023-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:197352 Serial 9013  
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C. doi  openurl
  Title Self-limiting oxidation in small-diameter Si nanowires Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue (up) 11 Pages 2141-2147  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core I ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiOx (x <= 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600021 Publication Date 2012-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 45 Open Access  
  Notes Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99079 Serial 2976  
Permanent link to this record
 

 
Author Govorov, V.A.; Abakumov, A.M.; Rozova, M.G.; Borzenko, A.G.; Vassiliev, S.Y.; Mazin, V.M.; Afanasov, M.I.; Fabritchnyi, P.B.; Tsirlina, G.A.; Antipov, E.V.; Morozova, E.N.; Gippius, A.A.; Ivanov, V.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Sn2-2xSbxFexO4 solid solutions as possible inert anode materials in aluminum electrolysis Type A1 Journal article
  Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 17 Issue (up) 11 Pages 3004-3011  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000229656000030 Publication Date 2005-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access  
  Notes Approved Most recent IF: 9.466; 2005 IF: 4.818  
  Call Number UA @ lucian @ c:irua:59053 Serial 3554  
Permanent link to this record
 

 
Author Dendooven, J.; Goris, B.; Devloo-Casier, K.; Levrau, E.; Biermans, E.; Baklanov, M.R.; Ludwig, K.F.; van der Voort, P.; Bals, S.; Detavernier, C. pdf  doi
openurl 
  Title Tuning the pore size of ink-bottle mesopores by atomic layer deposition Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue (up) 11 Pages 1992-1994  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600002 Publication Date 2012-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 52 Open Access  
  Notes Fwo Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99078 Serial 3760  
Permanent link to this record
 

 
Author Grimaud, A.; Iadecola, A.; Batuk, D.; Saubanere, M.; Abakumov, A.M.; Freeland, J.W.; Cabana, J.; Li, H.; Doublet, M.-L.; Rousse, G.; Tarascon, J.-M. pdf  doi
openurl 
  Title Chemical activity of the peroxide/oxide redox couple : case study of Ba5Ru2O11 in aqueous and organic solvents Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue (up) 11 Pages 3882-3893  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The finding that triggering the redox activity of oxygen ions within the lattice of transition metal oxides can boost the performances of materials used in energy storage and conversion devices such as Li-ion batteries or oxygen evolution electrocatalysts has recently spurred intensive and innovative research in the field of energy. While experimental and theoretical efforts have been critical in understanding the role of oxygen nonbonding states in the redox activity of oxygen ions, a clear picture of the redox chemistry of the oxygen species formed upon this oxidation process is still missing. This can be, in part, explained by the complexity in stabilizing and studying these species once electrochemically formed. In this work, we alleviate this difficulty by studying the phase Ba5Ru2O11, which contains peroxide O-2(2-) groups, as oxygen evolution reaction electrocatalyst and Li-ion battery material. Combining physical characterization and electrochemical measurements, we demonstrate that peroxide groups can easily be oxidized at relatively low potential, leading to the formation of gaseous dioxygen and to the instability of the oxide. Furthermore, we demonstrate that, owing to the stabilization at high energy of peroxide, the high-lying energy of the empty sigma* antibonding O-O states limits the reversibility of the electrochemical reactions when the O-2(2-)/O2- redox couple is used as redox center for Li-ion battery materials or as OER redox active sites. Overall, this work suggests that the formation of true peroxide O-2(2-) states are detrimental for transition metal oxides used as OER catalysts and Li-ion battery materials. Rather, oxygen species with O-O bond order lower than 1 would be preferred for these applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000435416600038 Publication Date 2018-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access  
  Notes ; We thank S. Belin of the ROCK beamline (financed by the French National Research Agency (ANR) as a part of the “Investissements d'Avenir” program, reference: ANR-10-EQPX-45; proposal no. 20160095) of synchrotron SOLEIL for her assistance during XAS measurements. Authors would also like to thank V. Nassif for her assistance on the D1B beamline. A.G, G.R, and J.-M.T. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant Project 670116-ARPEMA. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:151980 Serial 5016  
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M. pdf  url
doi  openurl
  Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue (up) 11 Pages 4188-4195  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000661521800032 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:179679 Serial 6854  
Permanent link to this record
 

 
Author Lisiecki, I.; Turner, S.; Bals, S.; Pileni, M.P.; Van Tendeloo, G. pdf  doi
openurl 
  Title The remarkable and intriguing resistance to oxidation of 2D ordered hcp Co nanocrystals: a new intrinsic property Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue (up) 12 Pages 2335-2338  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000267049200001 Publication Date 2009-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 28 Open Access  
  Notes Iap-Vi; Esteem 026019 Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:77887 Serial 2867  
Permanent link to this record
 

 
Author Jacquet, Q.; Perez, A.; Batuk, D.; Van Tendeloo, G.; Rousse, G.; Tarascon, J.-M. url  doi
openurl 
  Title The Li3RuyNb1-yO4 (0 ≤y≤ 1) System: Structural Diversity and Li Insertion and Extraction Capabilities Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue (up) 12 Pages 5331-5343  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Searching for novel high-capacity electrode materials combining cationic and anionic redox processes is an ever-growing activity within the field of Li-ion batteries. In this respect, we report on the exploration of the Li3RuyNb1-yO4 (O <= y <= 1) system with an O/M ratio of 4 to maximize the number of oxygen lone pairs, responsible for the anionic redox. We show that this system presents a very rich crystal chemistry with the existence of four structural types, which derive from the rocksalt structure but differ in their cationic arrangement, creating either zigzag, helical, jagged chains or clusters. From an electrochemical standpoint, these compounds are active on reduction via a classical cationic insertion process. The oxidation process is more complex, because of the instability of the delithiated phase. Our results promote the use of the rich Li3MO4 family as a viable platform for a better understanding of the relationships between structure and anionic redox activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404493100036 Publication Date 2017-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 17 Open Access Not_Open_Access  
  Notes The authors thank Paul Pearce, Alexis Grimaud, Matthieu Saubanere, and Marie-Liesse Doublet for fruitful discussions, Vivian Nassif for her help in neutron diffraction experiment at the D1B diffractometer at ILL, and Dominique Foix for XPS analysis. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Q.J. thanks the ANR “Deli-Redox” for Ph.D. funding. J.-M.T. and D.B. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant -Project 670116-ARPEMA. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:147506 Serial 4776  
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.; Rossell, M.D.; Batuk, D.; Nénert, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites Type A1 Journal article
  Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 25 Issue (up) 13 Pages 2670-2683  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite-structured titanates with layered A-site ordering form remarkably complex superstructures. Using transmission electron microscopy, synchrotron X-ray and neutron powder diffraction, and ab initio structure relaxation, we present the structural solution of the incommensurately modulated Li3xNd2/3xTiO3 perovskites (x = 0.05, superspace group Pmmm(α1,1/2,0)000(1/2,β2 0)000, a = 3.831048(5) Å, b = 3.827977(4) Å, c = 7.724356(8) Å, q1 = 0.45131(8)a* + 1/2b*, q2 = 1/2a* + 0.41923(4)b*). In contrast to earlier conjectures on the nanoscale compositional phase separation in these materials, all peculiarities of the superstructure can be understood in terms of displacive modulations related to an intricate octahedral tilting pattern. It involves fragmenting the pattern of the out-of-phase tilted TiO6 octahedra around the a- and b-axes into antiphase domains, superimposed on the pattern of domains with either pronounced or suppressed in-phase tilt component around the c-axis. The octahedral tilting competes with the second order JahnTeller distortion of the TiO6 octahedra. This competition is considered as the primary driving force for the modulated structure. The A cations are suspected to play a role in this modulation affecting it mainly through the tolerance factor and the size variance. The reported crystal structure calls for a revision of the structure models proposed for the family of layered A-site ordered perovskites exhibiting a similar type of modulated structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000321809700015 Publication Date 2013-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 23 Open Access  
  Notes Countatoms Approved Most recent IF: 9.466; 2013 IF: 8.535  
  Call Number UA @ lucian @ c:irua:109216 Serial 1292  
Permanent link to this record
 

 
Author Abakumov, A.M.; Rossell, M.D.; Gutnikova, O.Y.; Drozhzhin, O.A.; Leonova, L.S.; Dobrovolsky, Y.A.; Istomin, S.Y.; Van Tendeloo, G.; Antipov, E.V. pdf  doi
openurl 
  Title Superspace description, crystal structures, and electric conductiof the Ba4In6-xMgxO13-x/2 solid solutions Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue (up) 13 Pages 4457-4467  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000257279200041 Publication Date 2008-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 15 Open Access  
  Notes Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:70141 Serial 3383  
Permanent link to this record
 

 
Author Zankowski, S.P.; Van Hoecke, L.; Mattelaer, F.; de Raedt, M.; Richard, O.; Detavernier, C.; Vereecken, P.M. doi  openurl
  Title Redox layer deposition of thin films of MnO2 on nanostructured substrates from aqueous solutions Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal  
  Volume 31 Issue (up) 13 Pages 4805-4816  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, we report a new method for depositing thin films of MnO2 on planar and complex nanostructured surfaces, with high precision and conformality. The method is based on repeating cycles of adsorption of an unsaturated alcohol on a surface, followed by its oxidation with aqueous KMnO4 and formation of thin, solid MnO2. The amount of manganese oxide formed in each cycle is limited by the quantity of the adsorbed alcohol; thus, the growth exhibits the self-limiting characteristics of atomic layer deposition (ALD). Contrary to the typical ALD, however, the new redox layer deposition is performed in air, at room temperature, using common chemicals and simple laboratory glassware, which greatly reduces its cost and complexity. We also demonstrate application of the method for the fabrication of a nanostructured MnO2/Ni electrode, which was not possible with thermal ALD because of the rapid decomposition of the gaseous precursor on the high surface-area substrate. Thanks to its simplicity, the conformal deposition of MnO2 can be easily upscaled and thus exploited for its numerous (electro)chemical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000475408400021 Publication Date 2019-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161225 Serial 8465  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: