toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Singh, A.; Yuan, B.; Rahman, M.H.; Yang, H.; De, A.; Park, J.Y.; Zhang, S.; Huang, L.; Mannodi-Kanakkithodi, A.; Pennycook, T.J.; Dou, L. pdf  doi
openurl 
  Title Two-dimensional halide Pb-perovskite-double perovskite epitaxial heterostructures Type A1 Journal article
  Year (down) 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 36 Pages 19885-19893  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial heterostructures of two-dimensional (2D) halide perovskites offer a new platform for studying intriguing structural, optical, and electronic properties. However, difficulties with the stability of Pb- and Sn-based heterostructures have repeatedly slowed the progress. Recently, Pb-free halide double perovskites are gaining a lot of attention due to their superior stability and greater chemical diversity, but they have not been successfully incorporated into epitaxial heterostructures for further investigation. Here, we report epitaxial core-shell heterostructures via growing Pb-free double perovskites (involving combinations of Ag(I)-Bi(III), Ag-Sb, Ag-In, Na-Bi, Na-Sb, and Na-In) around Pb perovskite 2D crystals. Distinct from Pb-Pb and Pb-Sn perovskite heterostructures, growths of the Pb-free shell at 45 degrees on the (100) surface of the lead perovskite core are observed in all Pb-free cases. The in-depth structural analysis carried out with electron diffraction unequivocally demonstrates the growth of the Pb-free shell along the [110] direction of the Pb perovskite, which is likely due to the relatively lower surface energy of the (110) surface. Furthermore, an investigation of anionic interdiffusion across heterostructure interfaces under the influence of heat was carried out. Interestingly, halide anion diffusion in the Pb-free 2D perovskites is found to be significantly suppressed as compared to Pb-based 2D perovskites. The great structural tunability and excellent stability of Pb-free perovskite heterostructures may find uses in electronic and optoelectronic devices in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001060980300001 Publication Date 2023-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200342 Serial 9111  
Permanent link to this record
 

 
Author Ren, P.; Zhang, T.; Jain, N.; Ching, H.Y.V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L.; Rokicinska, A.; Debroye, E.; Kustrowski, P.; Van Doorslaer, S.; Van Aert, S.; Bals, S.; Das, S. pdf  doi
openurl 
  Title An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the Water Oxidation Reaction (WOR) Type A1 Journal article
  Year (down) 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 30 Pages 16584-16596  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Organic synthesis (ORSY); Theory and Spectroscopy of Molecules and Materials (TSM²)  
  Abstract In this work, we have fabricatedan aryl amino-substitutedgraphiticcarbon nitride (g-C3N4) catalyst with atomicallydispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibitedexcellent reactivity, obtaining up to 2230 & mu;M H2O2 in 7 h from alkaline water and up to 1800 & mu;Mfrom seawater under identical conditions. More importantly, the catalystwas quickly recovered for subsequent reuse without appreciable lossin performance. Interestingly, unlike the usual two-electron oxygenreduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction(WOR) process in which both the direct and indirect WOR processesoccurred; namely, photoinduced h(+) directly oxidized H2O to H2O2 via a one-step 2e(-) WOR, and photoinduced h(+) first oxidized a hydroxide (OH-) ion to generate a hydroxy radical ((OH)-O-& BULL;), and H2O2 was formed indirectly by thecombination of two (OH)-O-& BULL;. We have characterized thematerial, at the catalytic sites, at the atomic level using electronparamagnetic resonance, X-ray absorption near edge structure, extendedX-ray absorption fine structure, high-resolution transmission electronmicroscopy, X-ray photoelectron spectroscopy, magic-angle spinningsolid-state NMR spectroscopy, and multiscale molecular modeling, combiningclassical reactive molecular dynamics simulations and quantum chemistrycalculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034983300001 Publication Date 2023-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 21 Open Access Not_Open_Access  
  Notes S.D. thanks the IOF grant and Francqui start up grant from the University of Antwerp, Belgium, for the financial support. P.R. thanks CSC and T.Z. thanks FWO for their financial assistance to finish this work. E.D. would like to thank the KU Leuven Research Fund for financial support through STG/21/010. J.S.A. acknowledges financial support from MCIN/AEI/10.13039/501100011033 and EU NextGeneration/PRTR (Project PCI2020-111968/3D-Photocat) and Diamond Synchrotron (rapid access proposal SP32609). This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). S.B. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium, project G.0346.21 N). We also thank Mr. Jian Zhu and Mr. Shahid Ullah Khan from the University of Antwerp, Belgium, for helpful discussions. Approved Most recent IF: 15; 2023 IF: 13.858  
  Call Number UA @ admin @ c:irua:198426 Serial 8831  
Permanent link to this record
 

 
Author Broers, F.T.H.; Janssens, K.; Weker, J.N.; Webb, S.M.; Mehta, A.; Meirer, F.; Keune, K. url  doi
openurl 
  Title Two pathways for the degradation of orpiment pigment (As₂S₃) found in paintings Type A1 Journal article
  Year (down) 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 16 Pages 8847-8859  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Paintings are complex objects containing many different chemical compounds that can react over time. The degradation of arsenic sulfide pigments causes optical changes in paintings. The main degradation product was thought to be white arsenolite (As2O3), but previous research also showed the abundant presence of As(V) species. In this study, we investigate the influence of the presence of a medium on the degradation mechanism of orpiment (As2S3) using synchrotron radiation (SR)-based tomographic transmission X-ray microscopy, SR-based micro-X-ray fluorescence, and Xray absorption near edge structure spectroscopy. Upon direct illumination of dry orpiment powder using UV-visible light, only the formation of As2O3 was observed. When As2S3 was surrounded by a medium and illuminated, As2O3 was only observed in the area directly exposed to light, while As(V) degradation species were found elsewhere in the medium. Without accelerated artificial light aging, As(V)(aq) species are formed and migrate throughout the medium within weeks after preparation. In both scenarios, the As(V) species form via intermediate As(III)(aq) species and the presence of a medium is necessary. As(V)(aq) species can react with available cations to form insoluble metal arsenates, which induces stress within the paint layers (leading to, e.g., cracks and delamination) or can lead to a visual change of the image of the painting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000974346900001 Publication Date 2023-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15; 2023 IF: 13.858  
  Call Number UA @ admin @ c:irua:196762 Serial 8948  
Permanent link to this record
 

 
Author Dinger, J.; Friedrich, T.; Reimann, T.; Toepfer, J. url  doi
openurl 
  Title NiMn₂O₄ revisited : temperature-dependent cation distribution from in situ neutron diffraction and thermopower studies Type A1 Journal article
  Year (down) 2023 Publication Journal of the American Ceramic Society Abbreviated Journal  
  Volume 106 Issue 3 Pages 1834-1847  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The cation distribution of the negative temperature coefficient (NTC) thermistor spinel NiMn2O4 was studied in the temperature range from 55 to 900 degrees C, using a combined in situ neutron diffraction and thermopower study. Rietveld refinements of in situ neutron diffraction data reveal a temperature dependence of the degree of inversion with an inversion parameter of 0.70(1) at 900 degrees C and 0.87(1) at 55 degrees C. Thermopower measurements were evaluated using a modified Heikes formula, and the [Mn4+]/[Mn3+] ratio on octahedral sites of the spinel structure was calculated considering spin and orbital degeneracy. The inversion degree and disproportionation parameter, determined independently as function of temperature, were used to calculate the cation distribution of NiMn2O4 in the whole temperature range. At high temperature, within the stability range of the spinel, the cation distribution is characterized by a moderate degree of inversion with a concentration of NiB2+${\mathrm{Ni}}\mathrm{B}<  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000880360600001 Publication Date 2022-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9; 2023 IF: 2.841  
  Call Number UA @ admin @ c:irua:192087 Serial 7326  
Permanent link to this record
 

 
Author Lopez-Garcia, C.; Canossa, S.; Hadermann, J.; Gorni, G.; Oropeza, F.E.; de la Pena O'Shea, V.A.; Iglesias, M.; Monge, M.A.; Gutierrez-Puebla, E.; Gandara, F. url  doi
openurl 
  Title Heterometallic molecular complexes act as messenger building units to encode desired metal-atom combinations to multivariate metal-organic frameworks Type A1 Journal article
  Year (down) 2022 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 144 Issue 36 Pages 16262-16266  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel synthetic approach is described for the targeted preparation of multivariate metal-organic frameworks (MTV-MOFs) with specific combinations of metal elements. This methodology is based on the use of molecular complexes that already comprise desired metal-atom combinations, as building units for the MTV-MOF synthesis. These units are transformed into the MOF structural constituents through a ligand/linker exchange process that involves structural modifications while preserving their origina l l y encoded atomic combination. Thus, through the use of heterometalli c ring-shaped molecules combining gallium and nickel or cobalt, we have obtained MOFs with identical combinations of the metal elements, now incorporated in the rod-shaped secondary building unit, as confirmed with a combination of X-ray and electron diffraction, electron microscopy, and X-ray absorption spectroscopy techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000841435900001 Publication Date 2022-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15  
  Call Number UA @ admin @ c:irua:190023 Serial 7169  
Permanent link to this record
 

 
Author Feng, X.; Jena, H.S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G.; Sun, J.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B.; Bals, S.; Voort, P.V.D. pdf  url
doi  openurl
  Title Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66 Type A1 Journal article
  Year (down) 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume Issue Pages jacs.1c05357  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The differentiation between missing linker defects

and missing cluster defects in MOFs is difficult, thereby limiting the

ability to correlate materials properties to a specific type of defects.

Herein, we present a novel and easy synthesis strategy for the

creation of solely “missing cluster defects” by preparing mixed-metal

(Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn

nodes. The resulting material has the reo UiO-66 structure, typical

for well-defined missing cluster defects. The missing clusters are

thoroughly characterized, including low-pressure Ar-sorption, iDPCSTEM

at a low dose (1.5 pA), and XANES/EXAFS analysis. We

show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster

UiO-66 in CO2 sorption and heterogeneous catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000730569500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 29 Open Access OpenAccess  
  Notes Agentschap Innoveren en Ondernemen, HBC.2019.0110 HBC.2021.0254 ; Universiteit Gent; Fonds Wetenschappelijk Onderzoek, 665501 ; Dalian University of Technology; China Scholarship Council, 201507565009 ; National Natural Science Foundation of China, 22101039 ; H2020 European Research Council, 815128 REALNANO ; sygmaSB Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:183951 Serial 6833  
Permanent link to this record
 

 
Author Gonzalez-Nelson, A.; Mula, S.; Simenas, M.; Balciunas, S.; Altenhof, A.R.; Vojvodin, C.S.; Canossa, S.; Banys, J.; Schurko, R.W.; Coudert, F.-X.; van der Veen, M.A. url  doi
openurl 
  Title Emergence of coupled rotor dynamics in metal-organic frameworks via tuned steric interactions Type A1 Journal article
  Year (down) 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 31 Pages 12053-12062  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. To fully exploit linker rotation, such as in the form of molecular machines, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion. Here, we show that for MIL-53, a topology with closely spaced rotors, the phenylene functionalization allows researchers to tune the rotors' steric environment, shifting linker rotation from completely static to rapid motions at frequencies above 100 MHz. For steric interactions that start to inhibit independent rotor motion, we identify for the first time the emergence of coupled rotation modes in linker dynamics. These findings pave the way for function-specific engineering of gear-like cooperative motion in MOFs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000684581100022 Publication Date 2021-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:180504 Serial 6867  
Permanent link to this record
 

 
Author Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; Bud'ko, S.L.; Canfield, P.C.; Huang, W.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J., V pdf  doi
openurl 
  Title Topochemical deintercalation of Li from layered LiNiB : toward 2D MBene Type A1 Journal article
  Year (down) 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 11 Pages 4213-4223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li similar to 0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state Li-7 and B-1(1) NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of (Li similar to 0.5NiB) and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB](2) and Li[NiB](3) compositions. The crystal structure of Li similar to 0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB](2), or triple [NiB](3) layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li similar to 0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761500021 Publication Date 2021-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:177697 Serial 6790  
Permanent link to this record
 

 
Author Imran, M.; Peng, L.; Pianetti, A.; Pinchetti, V.; Ramade, J.; Zito, J.; Di Stasio, F.; Buha, J.; Toso, S.; Song, J.; Infante, I.; Bals, S.; Brovelli, S.; Manna, L. url  doi
openurl 
  Title Halide perovskite-lead chalcohalide nanocrystal heterostructures Type A1 Journal article
  Year (down) 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 3 Pages 1435-1446  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the synthesis of colloidal CsPbX3-Pb4S3Br2 (X = Cl, Br, I) nanocrystal heterostructures, providing an example of a sharp and atomically resolved epitaxial interface between a metal halide perovskite and a non-perovskite lattice. The CsPbBr3-Pb4S3Br2 nanocrystals are prepared by a two-step direct synthesis using preformed subnanometer CsPbBr3 clusters. Density functional theory calculations indicate the creation of a quasi-type II alignment at the heterointerface as well as the formation of localized trap states, promoting ultrafast separation of photogenerated excitons and carrier trapping, as confirmed by spectroscopic experiments. Postsynthesis reaction with either Cl- or I- ions delivers the corresponding CsPbCI3-Pb4S3Br2 and CsPbI3-Pb4S3Br2 heterostructures, thus enabling anion exchange only in the perovskite domain. An increased structural rigidity is conferred to the perovskite lattice when it is interfaced with the chalcohalide lattice. This is attested by the improved stability of the metastable gamma phase (or “black” phase) of CsPbI3 in the CsPbI3-Pb4S3Br2 heterostructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614064400024 Publication Date 2021-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 54 Open Access OpenAccess  
  Notes This work was performed on the Dutch national e-infrastructure with the support of SURF Cooperative. L.P. and J.S. are thankful for the support by the National Key R&D Program of China (2018YFC0910600) and the National Natural Science Foundation of China (61775145). F.D.S. and S.B. acknowledge support by the European Research Council via the ERC-StG “NANOLED” (851794) and the ERC-Cog “REALNANO” (815128). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme through Grant Agreement No. 731019 (EUSMI). S.B., A.P., and V.P. gratefully acknowledge the financial support from the Italian Ministry of University and Research (MIUR) through grant “Dipartimenti di Eccellenza2017 Materials For Energy”.; sygma Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:176584 Serial 6726  
Permanent link to this record
 

 
Author Bottari, F.; Daems, E.; de Vries, A.-M.; Van Wielendaele, P.; Trashin, S.; Blust, R.; Sobott, F.; Madder, A.; Martins, J.C.; De Wael, K. pdf  doi
openurl 
  Title Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds Type A1 Journal article
  Year (down) 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue 46 Pages jacs.0c08691-19630  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Medical Biochemistry  
  Abstract In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a β-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592911000024 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access  
  Notes Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:173136 Serial 6488  
Permanent link to this record
 

 
Author Christiansen, T.; Cotte, M.; de Nolf, W.; Mouro, E.; Reyes-Herrera, J.; De Meyer, S.; Vanmeert, F.; Salvado, N.; Gonzalez, V.; Lindelof, P.E.; Mortensen, K.; Ryholt, K.; Janssens, K.; Larsen, S. url  doi
openurl 
  Title Insights into the composition of ancient Egyptian red and black inks on papyri achieved by synchrotron-based microanalyses Type A1 Journal article
  Year (down) 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 117 Issue 45 Pages 27825-27835  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluo-rescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, microXRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb-3(CO3)(2)(OH)(2)] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000590753400016 Publication Date 2020-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access  
  Notes Approved Most recent IF: 11.1; 2020 IF: 9.661  
  Call Number UA @ admin @ c:irua:174323 Serial 8107  
Permanent link to this record
 

 
Author Toso, S.; Akkerman, Q.A.; Martin-Garcia, B.; Prato, M.; Zito, J.; Infante, I.; Dang, Z.; Moliterni, A.; Giannini, C.; Bladt, E.; Lobato, I.; Ramade, J.; Bals, S.; Buha, J.; Spirito, D.; Mugnaioli, E.; Gemmi, M.; Manna, L. pdf  url
doi  openurl
  Title Nanocrystals of lead chalcohalides : a series of kinetically trapped metastable nanostructures Type A1 Journal article
  Year (down) 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue 22 Pages 10198-10211  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to similar to 30 nm), an indirect bandgap, photoconductivity (responsivity = 4 +/- 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538526500035 Publication Date 2020-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 32 Open Access OpenAccess  
  Notes ; We would like to thank Dr. A. Toma for the access to the IIT clean room facilities' SEM/FIB and evaporators, the Smart Materials group (IIT) for the access to the ATR-FTIR equipment, S. Marras for the support during XRPD measurements, G. Pugliese for help with the TGA measurements, M. Campolucci for help with the experiments on NC growth kinetics, S. Lauciello for help with the SEM-EDX analyses, and D. Baranov and R. Brescia for the helpful discussions. We also acknowledge funding from the Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement COMPASS No. 691185. I.I. acknowledges the Dutch NWO for financial support under the Vidi scheme (Grant No. 723.013.002). S.B. acknowledges support by means of the ERC Consolidator Grant No. 815128 REALNANO. E. M. and M.G acknowledge the Regione Toscana for funding the purchase of the Timepix detector through the FELIX project (Por CREO FESR 2014-2020 action). ; sygma Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:170218 Serial 6566  
Permanent link to this record
 

 
Author Han, Y.; Zeng, Y.; Hendrickx, M.; Hadermann, J.; Stephens, P.W.; Zhu, C.; Grams, C.P.; Hemberger, J.; Frank, C.; Li, S.; Wu, M.X.; Retuerto, M.; Croft, M.; Walker, D.; Yao, D.-X.; Greenblatt, M.; Li, M.-R. doi  openurl
  Title Universal a-cation splitting in LiNbO₃-type structure driven by intrapositional multivalent coupling Type A1 Journal article
  Year (down) 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue 15 Pages 7168-7178  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Understanding the electric dipole switching in multiferroic materials requires deep insight of the atomic-scale local structure evolution to reveal the ferroelectric mechanism, which remains unclear and lacks a solid experimental indicator in high-pressure prepared LiNbO3-type polar magnets. Here, we report the discovery of Zn-ion splitting in LiNbO3-type Zn2FeNbO6 established by multiple diffraction techniques. The coexistence of a high-temperature paraelectric-like phase in the polar Zn2FeNbO6 lattice motivated us to revisit other high-pressure prepared LiNbO3-type A(2)BB'O-6 compounds. The A-site atomic splitting (similar to 1.0-1.2 angstrom between the split-atom pair) in B/B'-mixed Zn2FeTaO6 and O/N-mixed ZnTaO2N is verified by both powder X-ray diffraction structural refinements and high angle annular dark field scanning transmission electron microscopy images, but is absent in single-B-site ZnSnO3. Theoretical calculations are in good agreement with experimental results and suggest that this kind of A-site splitting also exists in the B-site mixed Mn-analogues, Mn2FeMO6 (M = Nb, Ta) and anion-mixed MnTaO2N, where the smaller A-site splitting (similar to 0.2 angstrom atomic displacement) is attributed to magnetic interactions and bonding between A and B cations. These findings reveal universal A-site splitting in LiNbO3-type structures with mixed multivalent B/B', or anionic sites, and the splitting-atomic displacement can be strongly suppressed by magnetic interactions and/or hybridization of valence bands between d electrons of the A- and B-site cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526300600046 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Science Foundation of China (NSFC-21875287), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), and an NSF-DMR-1507252 grant (U.S.). Use of the NSLS, Brookhaven National Laboratory, was supported by the DOE BES (DE-AC02-98CH10886). M.R. is thankful for the Spanish Juan de la Cierva grant FPDI-2013-17582. Y.Z. and D.-X.Y. are supported by NKRDPC-2018YFA0306001, NKRDPC-2017YFA0206203, NSFC-11974432, NSFG-2019A1515011337, the National Supercomputer Center in Guangzhou, and the Leading Talent Program of Guangdong Special Projects. Work on IOP, CAS, was supported by NSFC and MOST grants. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. J.H. and M.H. thank the FWO for support for the electron microscopy studies through grant G035619N. We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time and help during the experiments. ; Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:170294 Serial 6646  
Permanent link to this record
 

 
Author Geerlings, N.M.J.; Karman, C.; Trashin, S.; As, K.S.; Kienhuis, M.V.M.; Hidalgo-Martinez, S.; Vasquez-Cardenas, D.; Boschker, H.T.S.; De Wael, K.; Middelburg, J.J.; Polerecky, L.; Meysman, F.J.R. url  doi
openurl 
  Title Division of labor and growth during electrical cooperation in multicellular cable bacteria Type A1 Journal article
  Year (down) 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 117 Issue 10 Pages 5478-5485  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13 C (bicarbonate and propionate) and 15 N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519530400054 Publication Date 2020-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited 6 Open Access  
  Notes ; We thank Arnold van Dijk for helping with the GasBench isotope ratio mass spectrometry analysis. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from the Netherlands Organisation for Scientific Research (NWO) in the Netherlands (grant 023.005.049). K.S.A. received financial support from the Olaf Schuiling fund. F.J.R.M. was financially supported by the Research Foundation Flanders (FWO) via grant G043119N, and the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). J.J.M. was supported by the Ministry of Education via the Netherlands Earth System Science Centre. The NanoSIMS facility was partly supported by an NWO large infrastructure subsidy to J.J.M. (175.010.2009.011). ; Approved Most recent IF: 11.1; 2020 IF: 9.661  
  Call Number UA @ admin @ c:irua:166452 Serial 6487  
Permanent link to this record
 

 
Author Pittarello, L.; Mckibbin, S.; Yamaguchi, A.; Ji, G.; Schryvers, D.; Debaille, V.; Claeys, P. pdf  doi
openurl 
  Title Two generations of exsolution lamellae in pyroxene from Asuka 09545 : Clues to the thermal evolution of silicates in mesosiderite Type A1 Journal article
  Year (down) 2019 Publication The American mineralogist Abbreviated Journal Am Mineral  
  Volume 104 Issue 11 Pages 1663-1672  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesosiderite meteorites consist of a mixture of crustal basaltic or gabbroic material and metal. Their formation process is still debated due to their unexpected combination of crust and core materials, possibly derived from the same planetesimal parent body, and lacking an intervening mantle component. Mesosiderites have experienced an extremely slow cooling rate from ca. 550 degrees C, as recorded in the metal (0.25-0.5 degrees C/Ma). Here we present a detailed investigation of exsolution features in pyroxene from the Antarctic mesosiderite Asuka (A) 09545. Geothermobarometry calculations, lattice parameters, lamellae orientation, and the presence of clinoenstatite as the host were used in an attempt to constrain the evolution of pyroxene from 1150 to 570 degrees C and the formation of two generations of exsolution lamellae. After pigeonite crystallization at ca. 1150 degrees C, the first exsolution process generated the thick augite lamellae along (100) in the temperature interval 1000-900 degrees C. By further cooling, a second order of exsolution lamellae formed within augite along (001), consisting of monoclinic low-Ca pyroxene, equilibrated in the temperature range 900-800 degrees C. The last process, occurring in the 600-500 degrees C temperature range, was likely the inversion of high to low pigeonite in the host crystal, lacking evidence for nucleation of orthopyroxene. The formation of two generations of exsolution lamellae, as well as of likely metastable pigeonite, suggest non-equilibrium conditions. Cooling was sufficiently slow to allow the formation of the lamellae, their preservation, and the transition from high to low pigeonite. In addition, the preservation of such fine-grained lamellae limits long-lasting, impact reheating to a peak temperature lower than 570 degrees C. These features, including the presence of monoclinic low-Ca pyroxene as the host, are reported in only a few mesosiderites. This suggests a possibly different origin and thermal history from most mesosiderites and that the crystallography (i.e., space group) of low-Ca pyroxene could be used as parameter to distinguish mesosiderite populations based on their cooling history.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494707400014 Publication Date 2019-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-004x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.021 Times cited Open Access  
  Notes Approved Most recent IF: 2.021  
  Call Number UA @ admin @ c:irua:164645 Serial 6331  
Permanent link to this record
 

 
Author MacLennan, D.; Trentelman, K.; Szafran, Y.; Woollett, A.T.; Delaney, J.K.; Janssens, K.; Dik, J. pdf  doi
openurl 
  Title Rembrandt's An Old Man in Military Costume : combining hyperspectral and MA-XRF imaging to understand how two paintings were painted on a single panel Type A1 Journal article
  Year (down) 2019 Publication Journal of the American Institute for Conservation Abbreviated Journal  
  Volume 58 Issue 1-2 Pages 54-68  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Over the past several decades the painting An Old Man in Military Costume by Rembrandt Harmensz van Rijn (ca. 1630-31; J. Paul Getty Museum, 78.PB.246) has been the subject of a number of investigations carried out in order to better visualize a second painting beneath the surface figure. The underlying image – the head and shoulders of a man wearing a cloak – is oriented 180 degrees from the upper image and appears to be fairly complete. Scanning macro x-ray fluorescence (XRF) spectroscopy reveals the face is painted with lead white and a mercury-containing pigment (likely vermilion), and the cloak is painted with a copper-containing pigment. Following the revelation and digital color reconstruction of the underlying figure, a number of questions still remained. Here, through the use of infrared reflectance imaging spectroscopy (i.e., hyperspectral imaging) and macro-XRF imaging spectroscopy, together with cross-sections taken from targeted areas, the sequence of painting in both compositions was explored. Of particular interest was the discovery of evidence of multiple attempts to situate the lower figure, and the subsequent application of a blocking-out layer over the lower figure before the artist rotated the panel and executed the upper figure. In addition, examination of the placement of the two images on the panel adds to our understanding of the subtle complexities of Rembrandt's working process. RESUMEAu cours des dernieres decennies, la peinture Le vieil homme en costume militaire de Rembrandt Harmensz van Rijn (ca. 1630-31; J. Paul Getty Museum, 78.PB.246) a fait l'objet de nombreuses investigations menees dans le but de mieux visualiser une seconde peinture dissimulee sous la surface. L'image sous-jacente – la tete et les epaules d'un homme vetu d'une cape – est orientee a 180 degres de de l'image du vieil homme, et elle semble assez complete. La spectroscopie a macro-balayage de fluorescence X (MA-XRF) revele que le visage est peint avec du blanc de plomb et un pigment contenant du mercure (comme le vermillon), et que la cape est peinte avec un pigment a base de cuivre. Plusieurs questions restaient en suspens suite a cette decouverte et a la reconstruction numerique en couleur de l'image sous-jacente. Grace a l'emploi de techniques d'imagerie comme la spectroscopie proche infrarouge (ex., imagerie hyperspectrale) et l'imagerie MA-XRF, combinees a l'analyse de coupes stratigraphiques prelevees a des endroits cibles, on a pu explorer la sequence d'application des couches picturales de chacune des deux compositions. Une decouverte particulierement interessante est la preuve que l'artiste a fait plusieurs tentatives pour positionner la figure sous-jacente puis, a ensuite applique une couche pour la recouvrir completement avant de faire pivoter le panneau et peindre la figure du vieil homme. De plus, l'examen du positionnement des deux images sur le panneau ajoute a notre comprehension de la subtile complexite du processus de creation de Rembrandt. Traduit par Elisabeth Forest. RESUMONas ultimas decadas, a pintura Um Velho em Traje Militar, de Rembrandt Harmensz van Rijn (ca. 1630-31; J. Paul Getty Museum, 78.PB.246), foi objeto de uma serie de investigacoes realizadas para visualizar melhor uma segunda pintura abaixo da figura aparente. A imagem subjacente – a cabeca e os ombros de um homem usando uma capa – e orientada a 180 graus da imagem superior e parece estar bastante completa. O macro mapeamento de imagem por espectroscopia de fluorescencia de raios X (FRX) revela que a face e pintada com branco de chumbo e um pigmento contendo mercurio (provavelmente vermelhAo), e a capa e pintada com um pigmento contendo cobre. Apos a descoberta e reconstrucAo digital da cor da figura subjacente, uma serie de questoes ainda permanecem. EntAo, atraves da utilizacAo do mapeamento por imagem de espectroscopia de refletancia por infravermelhos (i.e. mapeamento hiperespectral) e macro mapeamento por imagem de FRX, juntamente com cortes estratigraficos de amostras retiradas de areas de interesse, a pintura em ambas as composicoes foi explorada. De particular interesse foi a descoberta de evidencias de multiplas tentativas de posicionar a figura subjacente, e a subsequente aplicacAo de uma camada intermediaria de separacAo sobre a figura inferior antes do artista girar o painel e executar a figura superior. Alem disso, o exame da colocacAo das duas imagens no painel aumenta nossa compreensAo das sutis complexidades do processo de trabalho de Rembrandt. Traduzido por Marcia Rozzi e Beatriz Haspo. RESUMENA lo largo de las ultimas decadas, la pintura Un anciano con traje militar de Rembrandt Harmensz van Rijn (ca. 1630-31; J. Paul Getty Museum, 78.PB.246) ha sido objeto de varias investigaciones realizadas con el fin de visualizar mejor una segunda pintura debajo de la figura de la superficie. La imagen subyacente, la cabeza y los hombros de un hombre que lleva una capa, esta orientada a 180 grados de la imagen superior y parece estar bastante completa. La espectroscopia de fluorescencia de rayos X (XRF) de barrido revela que la cara esta pintada con blanco de plomo y un pigmento que contiene mercurio (probablemente bermellon), y la capa esta pintada con un pigmento que contiene cobre. Tras la revelacion y la reconstruccion digital del color de la figura subyacente, aun quedaban algunas preguntas. Aqui, por medio del uso de la espectroscopia de imagenes de reflectancia infrarroja (es decir, imagenes hiperespectrales) e imagenes macro-XRF, junto con las secciones transversales tomadas de areas especificas, se exploro la secuencia de pintura en ambas composiciones. De particular interes fue el descubrimiento de evidencia de multiples intentos de situar la figura inferior, y la aplicacion posterior de una capa de bloqueo sobre la figura inferior antes de que el artista rotara el panel y ejecutara la figura superior. Ademas, el examen de la colocacion de las dos imagenes en el panel contribuye a nuestra comprension de las sutiles complejidades del proceso de trabajo de Rembrandt. Traduccion: Amparo Rueda.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468065200005 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0197-1360 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:160407 Serial 5811  
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
  Year (down) 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 38 Pages 9515-9520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447224900057 Publication Date 2018-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 50 Open Access OpenAccess  
  Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059  
Permanent link to this record
 

 
Author Xia, C.; Winckelmans, N.; Prins, P.T.; Bals, S.; Gerritsen, H.C.; de Mello Donegá, C. url  doi
openurl 
  Title Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth Type A1 Journal article
  Year (down) 2018 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 140 Issue 140 Pages 5755-5763  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431600000016 Publication Date 2018-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 43 Open Access OpenAccess  
  Notes Chenghui Xia acknowledges China Scholarship Council (CSC) for financial support (NO. 201406330055). S.B and N.W. acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Number ECHO.712.014.001. The authors thank Xiaobin Xie and Da Wang for some TEM measurements, Donglong Fu for XRD measurements, Christina H. M. van Oversteeg for ICP-OES measurements, and Chun-Che Lin for suggestions regarding the synthesis. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:150362UA @ admin @ c:irua:150362 Serial 4917  
Permanent link to this record
 

 
Author Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality Type A1 Journal article
  Year (down) 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 115 Pages 3225-3230  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Amyloid fibrils, which are closely associated with various neurodegenerative

diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no

apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson’s disease,

wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428382400032 Publication Date 2018-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 187 Open Access OpenAccess  
  Notes We thank Prof. Dr. J.-P. Timmermans and the Antwerp Centre of Advanced Microscopy for providing access to the Tecnai G2 Spirit BioTWIN TEM. We also thank the Basque Biobank (Basque Foundation for Health Innovation and Research, BIOEF) for providing us with Parkinson’s disease-affected brain samples. J.K. acknowledges financial support from the European Commission under Marie Sklodowska-Curie Program H2020- MSCA-IF-2015708321. S.B. and A.L.C. acknowledge European Research Council Grants 335078 COLOURATOM and 648071 ProNANO. S.B. and L.M.L.-M. acknowledge funding from European Commission Grant EUSMI 731019. A.L.C., J.C., and L.M.L.-M. acknowledge funding from Spanish Ministry of Economy and Competitiveness (MINECO) Grants MAT2013-46101- R, AGL2015-65046-C2-1-R, and BIO2016-77367-C2-1-R. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:restricted); saraecas; ECASSara; Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:150355UA @ admin @ c:irua:150355 Serial 4918  
Permanent link to this record
 

 
Author Wang, Y.-L.; Glatz, A.; Kimmel, G.J.; Aranson, I.S.; Thoutam, L.R.; Xiao, Z.-L.; Berdiyorov, G.R.; Peeters, F.M.; Crabtree, G.W.; Kwok, W.-K. pdf  doi
openurl 
  Title Parallel magnetic field suppresses dissipation in superconducting nanostrips Type A1 Journal article
  Year (down) 2017 Publication America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 114 Issue 48 Pages E10274-E10280  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the \u0022holy grail\u0022 of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000416891600007 Publication Date 2017-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 18 Open Access  
  Notes ; This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation was supported by the Scientific Discovery through Advanced Computing program funded by US DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. L.R.T. and Z.-L.X. acknowledge support through National Science Foundation Grant DMR-1407175. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. ; Approved Most recent IF: 9.661  
  Call Number UA @ lucian @ c:irua:147697 Serial 4889  
Permanent link to this record
 

 
Author van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. pdf  url
doi  openurl
  Title Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3Perovskite Nanocrystals through Cation Exchange Type A1 Journal article
  Year (down) 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 4087-4097  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic

anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1−xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few

%) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known

system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397477700027 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 535 Open Access OpenAccess  
  Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. J.J.G. and D.V. acknowledge financial support from the Debye Graduate program. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). K.H.W.v.d.B., S.B., S.V.A. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), a Ph.D. grant to K.H.W.v.d.B, and a postdoctoral research grant to T.A. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:141754UA @ admin @ c:irua:141754 Serial 4482  
Permanent link to this record
 

 
Author Zhang, S.; Sahin, H.; Torun, E.; Peeters, F.; Martien, D.; DaPron, T.; Dilley, N.; Newman, N. pdf  doi
openurl 
  Title Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics Type A1 Journal article
  Year (down) 2017 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc  
  Volume 100 Issue 100 Pages 1508-1516  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The temperature coefficient of resonant frequency ((f)) of a microwave resonator is determined by three materials parameters according to the following equation: (f)=-(1/2 (epsilon) + 1/2 + (L)), where (L), (epsilon), and are defined as the linear temperature coefficients of the lattice constant, dielectric constant, and magnetic permeability, respectively. We have experimentally determined each of these parameters for Ba(Zn1/3Ta2/3)O-3, 0.8 at.% Ni-doped Ba(Zn1/3Ta2/3)O-3, and Ba(Ni1/3Ta2/3)O-3 ceramics. These results, in combination with density functional theory calculations, have allowed us to develop a much improved understanding of the fundamental physical mechanisms responsible for the temperature coefficient of resonant frequency, (f).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Columbus, Ohio Editor  
  Language Wos 000399610800034 Publication Date 2017-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.841 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 2.841  
  Call Number UA @ lucian @ c:irua:143682 Serial 4597  
Permanent link to this record
 

 
Author Friedman, P.C.; Miller, V.; Fridman, G.; Lin, A.; Fridman, A. pdf  doi
openurl 
  Title Successful treatment of actinic keratoses using nonthermal atmospheric pressure plasma : a case series Type L1 Letter to the editor
  Year (down) 2017 Publication Journal of the American Academy of Dermatology Abbreviated Journal  
  Volume 76 Issue 2 Pages 349-350  
  Keywords L1 Letter to the editor; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396905000041 Publication Date 2017-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0190-9622 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155655 Serial 8617  
Permanent link to this record
 

 
Author Niu, H.; Pitcher, M.J.; Corkett, A.J.; Ling, S.; Mandal, P.; Zanella, M.; Dawson, K.; Stamenov, P.; Batuk, D.; Abakumov, A.M.; Bull, C.L.; Smith, R.I.; Murray, C.A.; Day, S.J.; Slater, B.; Cora, F.; Claridge, J.B.; Rosseinsky, M.J. url  doi
openurl 
  Title Room Temperature Magnetically Ordered Polar Corundum GaFeO3 Displaying Magnetoelectric Coupling Type A1 Journal article
  Year (down) 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 4 Pages 1520-1531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d(5) cations above room temperature in the AFeO(3) system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3 -type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A(3+)/Fe3+ cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393355600034 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 12 Open Access OpenAccess  
  Notes This work was funded by the EPSRC under EP/N004884. We thank the STFC for provision of beam time at ISIS and Diamond Light Source. We thank the Materials Chemistry Consortium (EPSRC, EP/L000202) for access to computer time on the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). A.M.A. is grateful to the Russian Science Foundation (Grant 14-13-00680) for financial support. MJ.R is a Royal Society Research Professor. We wish to thank Dr. Ming Li (University of Nottingham, UK) for helpful discussion and advice. Original data is available at the University of Liverpool's DataCat repository at DOI: 10.17638/datacat.liverpool.ac.uk/235. The supporting crystallographic information file may also be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (e-mail: crysdata@fiz-karlsruhe.de), on quoting the deposition number CSD-432419. Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:147507 Serial 4777  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Zhang, K.; Marleny Rodriguez-Albelo, L.; Masala, A.; Bordiga, S.; Jiang, J.; Navarro, J.A.R.; Kirschhock, C.E.A.; Martens, J.A. doi  openurl
  Title 1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation Type A1 Journal article
  Year (down) 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 819-828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new hierarchical MOF consisting of Cu(II) centers connected by benzene-tricarboxylates (BTC) is prepared by thermoinduced solid transformation of a dense CuBTC precursor phase. The mechanism of the material formation has been thoroughly elucidated and revealed a transformation of a ribbon-like 1D building unit into 2D layers and finally a 3D network. The new phase contains excess copper, charge compensated by systematic hydroxyl groups, which leads to an open microporous framework with tunable permanent mesoporosity. The new phase is particularly attractive for molecular separation. Energy consumption of adsorptive separation processes can be lowered by using adsorbents that discriminate molecules based on adsorption entropy rather than enthalpy differences. In separation of a 11-component mixture of C-1-C-6 alkanes, the hierarchical phase outperforms the structurally related microporous HKUST-1 as well as silicate-based hierarchical materials. Grand canonical Monte Carlo (GCMC) simulation provides microscopic insight into the structural host-guest interaction, confirming low adsorption enthalpies and significant entropic contributions to the molecular separation. The unique three-dimensional hierarchical structure as well as the systematic presence of Cu(II) unsaturated coordination sites cause this exceptional behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000392459300041 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 33 Open Access Not_Open_Access  
  Notes ; L.H.W. and S.T. thank Research Foundation Flanders (FWO) for a postdoctoral research fellowship under contract numbers 12M1415N and G004613N, respectively. J.J. is grateful to the National University of Singapore for financial supports (R261-508-001-646/733 and R-279-000-474-112). J.A.R.N. acknowledges generous funding from Spanish Ministry of Economy (CTQ2014-53486-R) and FEDER and Marie Curie IIF-625939 (L.M.R.A) funding from European Union. J.A.M. gratefully acknowledges financial support from Flemish Government (Long-term structural funding Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). We thank E. Gobechiya for XRD measurements. We would like to acknowledge Matthias Thommes for the discussion on the interpretation of N<INF>2</INF> physisorption isotherms. ; Approved Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:141513 c:irua:141513 c:irua:141513 c:irua:141513 Serial 4492  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. url  doi
openurl 
  Title High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning Type A1 Journal article
  Year (down) 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 107-110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We show here that thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of pentatwinned nanoparticles, with pre-selected morphology (nanorods, bipyramids and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained nanoparticles, which in the case of nanorods avoids the need for additives such as Ag+ ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final nanoparticles. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. All together, these results represent a paradigm shift in anisotropic gold nanoparticle synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392036900025 Publication Date 2016-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 267 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Research Council through ERC Advanced Grant Plasmaquo and the ERC Starting Grant COLOURATOM. T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:139018UA @ admin @ c:irua:139018 Serial 4339  
Permanent link to this record
 

 
Author Kuno, Y.; Tassel, C.; Fujita, K.; Batuk, D.; Abakumov, A.M.; Shitara, K.; Kuwabara, A.; Moriwake, H.; Watabe, D.; Ritter, C.; Brown, C.M.; Yamamoto, T.; Takeiri, F.; Abe, R.; Kobayashi, Y.; Tanaka, K.; Kageyama, H. pdf  doi
openurl 
  Title ZnTaO2N: Stabilized High-Temperature LiNbO3-type Structure Type A1 Journal article
  Year (down) 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 15950-15955  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract By using a high-pressure reaction, we prepared a new oxynitride ZnTaO2N that crystallizes in a centrosymmetric (R (3) over barc) high-temperature LiNbO3-type structure (HTLN-type). The stabilization of the HTLN-type structure down to low temperatures (at least 20 K) makes it possible to investigate not only the stability of this phase, but also the phase transition to a noncentrosymmetric (R3c) LiNbO3-type structure (LN-type) which is yet to be clarified. Synchrotron and neutron diffraction studies in combination with transmission electron microscopy show that Zn is located at a disordered 12c site instead of 6a, implying an order disorder mechanism of the phase transition. It is found that the dosed d-shell of Zn2+, as well as the high-valent Ta5+ ion, is responsible for the stabilization of the HTLN-type structure, affording a novel quasitriangular ZnO2N coordination. Interestingly, only 3% Zn substitution for MnTaO2N induces a phase transition from LN- to HTLN-type structure, implying the proximity in energy between the two structural types, which is supported by the first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000389962800032 Publication Date 2016-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:140298 Serial 4452  
Permanent link to this record
 

 
Author Bladt, E.; van Dijk-Moes, R.J.A.; Peters, J.; Montanarella, F.; de Mello Donega, C.; Vanmaekelbergh, D.; Bals, S. url  doi
openurl 
  Title Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth Type A1 Journal article
  Year (down) 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 14288-14293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hetero-nanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we present a High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) study of CdSe (core) / CdS (giant shell) hetero-nanocrystals. Electron tomography reveals that the nanocrystals have a bullet shape, either ending in a tip or a small dip, and that the CdSe core is positioned closer to the tip (or dip) than to the hexagonal base. Based on a high resolution HAADF-STEM study, we were able to determine all the surface facets. We present a heuristic model for the different growth stages of the CdS crystal around the CdSe core.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387095000026 Publication Date 2016-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access OpenAccess  
  Notes S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). D.V. wishes to acknowledge the Dutch Foundation for Fundamental Research on Matter (FOM) in the programme ‘Designing Dirac Carriers in Semiconductor Superstructures’. E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:138251 Serial 4325  
Permanent link to this record
 

 
Author Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles Type A1 Journal article
  Year (down) 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 11453-11456  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core−shell NPs (nanorods and nanocubes) into octahedral nanorattles via roomtemperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383410700008 Publication Date 2016-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 75 Open Access OpenAccess  
  Notes This work has been funded by the European Research Council (ERC Advanced Grant No. 267867- PLASMAQUO, ERC Starting Grant No. 335078-COLOURATOMS) and Spanish MINECO (Grants MAT2013-45168-R and MAT2013-46101-R); ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:137123 Serial 4329  
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Zanaga, D.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P. pdf  url
doi  openurl
  Title Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes Type A1 Journal article
  Year (down) 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 3493-3500  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of template-confined chemical reactions allows the synthesis of complex molecules that would hardly be producible through conventional method. This idea was developed to produce high quality nanocrystals more than 20 years ago. However, template-mediated assembly of colloidal nanocrystals is still at an elementary level, not only because of the limited templates suitable for colloidal assemblies, but also because of the poor control over the assembly of nanocrystals within a confined space. Here, we report the design of a new system called “supracrystalline colloidal eggs” formed by controlled assembly of nanocrystals into complex colloidal supracrystals through superlattice-matched epitaxial overgrowth along the existing colloidosomes. Then, with this concept, we extend the supracrystalline growth to lattice-mismatched binary nanocrystal superlattices, in order to reach anisotropic superlattice growths, yielding freestanding binary nanocrystal supracrystals that could not be produced previously.  
  Address CEA/IRAMIS , CEA Saclay F-91191 Gif-sur-Yvette, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372477700034 Publication Date 2016-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 57 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The authors thank Dr. P. A. Albouy for the SAXS measurement.; esteem2_ta Approved Most recent IF: 13.858  
  Call Number c:irua:131923 c:irua:131923 Serial 4018  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: