toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Filinov, A.V.; Riva, C.; Peeters, F.M.; Lozovik, Y.E.; Bonitz, M. url  doi
openurl 
  Title (up) Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in GaAs-based quantum wells Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages 035323,1-13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000222996700086 Publication Date 2004-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 77 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69389 Serial 1661  
Permanent link to this record
 

 
Author Helm, M.; Hilber, W.; Fromherz, T.; Peeters, F.M.; Alavi, K.; Pathak, R. doi  openurl
  Title (up) Infrared absorption in superlattices: a probe of the miniband dispersion and the structure of the impurity band Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue Pages 1601-1606  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993LP05000028 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 61 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5785 Serial 1662  
Permanent link to this record
 

 
Author Helm, M.; Peeters, F.M.; DeRosa, F.; Colas, E.; Harbison, J.P.; Florez, L.T. openurl 
  Title (up) Infrared spectroscopy of subbands, minibands, and donors in GaAs/AlGaAs superlatices Type A3 Journal article
  Year 1992 Publication Surface science Abbreviated Journal  
  Volume 263 Issue Pages 518-526  
  Keywords A3 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992HF18600104 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Approved CHEMISTRY, PHYSICAL 54/144 Q2 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 9/35 Q2 #  
  Call Number UA @ lucian @ c:irua:3028 Serial 1664  
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Peeters, F.M. doi  openurl
  Title (up) Infrared to terahertz absorption window in mono- and multi-layer graphene systems Type A1 Journal article
  Year 2014 Publication Optics communications Abbreviated Journal Opt Commun  
  Volume 328 Issue Pages 135-142  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study on optical properties such as optical conductance and light transmission coefficient for mono- and multi-layer graphene systems with AB- and ABC-stacking. Considering an air/graphene/dielectric-water structure, the optical coefficients for those graphene systems are examined and compared. The universal optical conductance sigma(N)(0)=N pi e(2)/(2h) for N layer graphene systems in the visible region is verified. For N 3 layer graphene, the mini-gap induced absorption edges can be observed in odd layers AB-stacked multilayer graphene, where the number and position of the absorption edges are decided by the layers number N. Meanwhile, we can observe the optical absorption windows for those graphene systems in the infrared to terahertz bandwidth (0.2-150 THz). The absorption window is induced by different transition energies required for inter- and intra-band optical absorption channels. We find that the depth and width of the absorption window can be tuned not only via varying temperature and electron density but also by changing the number of graphene layers and the stacking order. These theoretical findings demonstrate that mono- and multi-layer graphene systems can be applied as frequency tunable optoelectronic devices working in infrared to terahertz bandwidth. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000336970000022 Publication Date 2014-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0030-4018; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.588 Times cited 7 Open Access  
  Notes ; This work was supported by the Ministry of Science and Technology of China (Grant no, 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 1.588; 2014 IF: 1.449  
  Call Number UA @ lucian @ c:irua:118364 Serial 1666  
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title (up) Infrared to terahertz optical conductivity of n-type and p-type monolayer MoS2 in the presence of Rashba spin-orbit coupling Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 155432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effect of Rashba spin-orbit coupling (SOC) on the optoelectronic properties of n- and p-type monolayer MoS2. The optical conductivity is calculated within the Kubo formalism. We find that the spin-flip transitions enabled by the Rashba SOC result in a wide absorption window in the optical spectrum. Furthermore, we evaluate the effects of the polarization direction of the radiation, temperature, carrier density, and the strength of the Rashba spin-orbit parameter on the optical conductivity. We find that the position, width, and shape of the absorption peak or absorption window can be tuned by varying these parameters. This study shows that monolayer MoS2 can be a promising tunable optical and optoelectronic material that is active in the infrared to terahertz spectral range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386097800003 Publication Date 2016-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes ; Y.M.X. acknowledges financial support from the China Scholarship Council (CSC). This work was also supported by the National Natural Science Foundation of China (Grant No. 11574319), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. B.V.D. is supported by a Ph.D. fellowship from the Flemish Science Foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:138175 Serial 4355  
Permanent link to this record
 

 
Author Helm, M.; Peeters, F.M.; de Rosa, F.; Colas, E.; Harbison, J.P.; Florez, L.T. pdf  doi
openurl 
  Title (up) Infrared-spectroscopy of subbands, minibands, and donors in GaAs/AlGaAs superlattices Type A1 Journal article
  Year 1992 Publication Surface science : a journal devoted to the physics and chemistry of interfaces T2 – 9TH INTERNATIONAL CONF ON THE ELECTRONIC PROPERTIES OF TWO-DIMENSIONAL, SYSTEMS ( EP2DS-9 ) / 5TH INTERNATIONAL CONF ON MODULATED SEMICONDUCTOR, STRUCTURES ( MSS-5 ), JUL Abbreviated Journal Surf Sci  
  Volume 263 Issue 1-3 Pages 518-526  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A far-infrared absorption study of electrons in lightly-doped GaAs/Al0.3Ga0.7As superlattices is presented. Both weakly and strongly coupled superlattices are investigated, and the difference between intersubband transitions and transitions between extended minibands is demonstrated. At low temperatures, the absorption spectra are dominated by donor transitions. The 1s-2p(z) transition, which is intimately related to the intersubband transition, is observed. All experimental data are compared to an envelope function calculation for the miniband structure and a variational calculation for the donor energies. Excellent agreement between experiment and theory is achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1992HF18600104 Publication Date 2002-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.925 Times cited 5 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:103055 Serial 1665  
Permanent link to this record
 

 
Author Smets, Q.; Verreck, D.; Verhulst, A.S.; Rooyackers, R.; Merckling, C.; Van De Put, M.; Simoen, E.; Vandervorst, W.; Collaert, N.; Thean, V.Y.; Sorée, B.; Groeseneken, G.; Heyns, M.M.; doi  openurl
  Title (up) InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 18 Pages 184503-184509  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In0.53Ga0.47As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In0.53Ga0.47As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000336919400048 Publication Date 2014-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 34 Open Access  
  Notes ; Quentin Smets and Devin Verreck gratefully acknowledge the support of a Ph. D. stipend from IWT-Vlaanderen. This work was supported by imec's industrial affiliation program. The authors thank Kim Baumans, Johan Feyaerts, Johan De Cooman, Alireza Alian, and Jos Moonens for their support in process development; Bastien Douhard and Joris Delmotte for SIMS characterization; Alain Moussa for AFM characterization; Joris Van Laer and Tom Daenen for their support in electrical characterization; Kuo-Hsing Kao, Mehbuba Tanzid, and Ali Pourghaderi for their support in modeling. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:118009 Serial 1667  
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title (up) Inhomogeneous melting in anisotropically confined two-dimensional clusters Type A1 Journal article
  Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 74 Issue 3 Pages 031107,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000240870100019 Publication Date 2006-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.366; 2006 IF: 2.438  
  Call Number UA @ lucian @ c:irua:60998 Serial 1668  
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title (up) Inhomogeneous phases in coupled electron-hole bilayer graphene sheets : charge density waves and coupled wigner crystals Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 11510  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Recently proposed accurate correlation energies are used to determine the phase diagram of strongly coupled electron-hole graphene bilayers. The control parameters of the phase diagram are the charge carrier density and the insulating barrier thickness separating the bilayers. In addition to the electron-hole superfluid phase we find two new inhomogeneous ground states, a one dimensional charge density wave phase and a coupled electron-hole Wigner crystal. The elementary crystal structure of bilayer graphene plays no role in generating these new quantum phases, which are completely determined by the electrons and holes interacting through the Coulomb interaction. The experimental parameters for the new phases lie within attainable ranges and therefore coupled electron-hole bilayer graphene presents itself as an experimental system where novel emergent many-body phases can be realized.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000410739000008 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 13 Open Access  
  Notes ; We thank Alex Hamilton, Bart Partoens, and Andrea Perali for useful discussions. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:145620 Serial 4742  
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M. pdf  url
doi  openurl
  Title (up) Inner and outer ring states of MoS2 quantum rings : energy spectrum, charge and spin currents Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 24 Pages 244303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the energy levels and persistent currents of MoS2 quantum rings having different shapes and edge types in the presence of a perpendicular magnetic field by means of the tight-binding approach. We find states localized at the inner and outer boundaries of the ring. These energy levels exhibit different magnetic field dependences for the inner and outer ring states due to their different localization properties. They both exhibit the usual Aharanov-Bohm oscillations but with different oscillation periods. In the presence of spin-orbit coupling, we show distinct spin and charge persistent currents for inner and outer ring states. We find well-defined spin currents with negligibly small charge currents. This is because the local currents of spin-up and -down states flow in opposite directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000474439600026 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes ; This work was supported by the Hunan Provincial Natural Science Foundation of China (Nos. 2015JJ2040, 2018JJ2080, and 2018JJ4047), the National Natural Science Foundation of China (NNSFC) (No. 51502087), the Scientific Research Fund of Hunan Provincial Education Department (Nos. 15A042, 15B056, and 17B060), and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:161309 Serial 5417  
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 17 Pages 7363-7370  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569375400061 Publication Date 2020-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 24 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number UA @ admin @ c:irua:171996 Serial 6546  
Permanent link to this record
 

 
Author Varykhalov, A.; Marchenko, D.; Sanchez-Barriga, J.; Scholz, M.R.; Verberck, B.; Trauzettel, B.; Wehling, T.O.; Carbone, C.; Rader, O. url  doi
openurl 
  Title (up) Intact dirac cones at broken sublattice symmetry : photoemission study of graphene on Ni and Co Type A1 Journal article
  Year 2012 Publication Physical review X Abbreviated Journal Phys Rev X  
  Volume 2 Issue 4 Pages 041017-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The appearance of massless Dirac fermions in graphene requires two equivalent carbon sublattices of trigonal shape. While the generation of an effective mass and a band gap at the Dirac point remains an unresolved problem for freestanding extended graphene, it is well established by breaking translational symmetry by confinement and by breaking sublattice symmetry by interaction with a substrate. One of the strongest sublattice-symmetry-breaking interactions with predicted and measured band gaps ranging from 400 meV to more than 3 eV has been attributed to the interfaces of graphene with Ni and Co, which are also promising spin-filter interfaces. Here, we apply angle-resolved photoemission to epitaxial graphene on Ni (111) and Co(0001) to show the presence of intact Dirac cones 2.8 eV below the Fermi level. Our results challenge the common belief that the breaking of sublattice symmetry by a substrate and the opening of the band gap at the Dirac energy are in a straightforward relation. A simple effective model of a biased bilayer structure composed of graphene and a sublattice-symmetry-broken layer, corroborated by density-functional-theory calculations, demonstrates the general validity of our conclusions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication College Park, Md Editor  
  Language Wos 000312703200001 Publication Date 2012-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.789 Times cited 86 Open Access  
  Notes ; A. V. acknowledges helpful discussions with N. Sandler. This work was supported by SPP 1459 of the Deutsche Forschungsgemeinschaft. B. V. acknowledges support from the Research Foundation Flanders (FWO-Vlaanderen). B. T. and T. O. W. would like to thank the KITP at Santa Barbara for hospitality during the completion of this work. ; Approved Most recent IF: 12.789; 2012 IF: 6.711  
  Call Number UA @ lucian @ c:irua:105964 Serial 1677  
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M. url  doi
openurl 
  Title (up) Integer and half-integer quantum Hall effect in silicene: Influence of an external electric field and impurities Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 23 Pages 235423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of silicene's strong spin-orbit interaction and of an external electric field E-z on the transport coefficients are investigated in the presence of a perpendicular magnetic field B. For finite E-z the spin and valley degeneracy of the Landau levels is lifted and leads to additional plateaus in the Hall conductivity, at half-integer values of 4e(2)/h, due to spin intra-Landau-level transitions that are absent in graphene. These plateaus are more sensitive to disorder and thermal broadening than the main plateaus, occurring at integral values of 4e(2)/h, when the Fermi level passes through the Landau levels. We also evaluate the Hall and longitudinal resistivities and critically contrast the results with those for graphene on a substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000346377400004 Publication Date 2014-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 32 Open Access  
  Notes ; Our work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122771 Serial 1678  
Permanent link to this record
 

 
Author Wang, W.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title (up) Intense-terahertz-laser-modulated magnetopolaron effect on shallow-donor states in the presence of magnetic field in the Voigt configuration Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 1 Pages 014114  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The laser-modulated magnetopolaron effect on shallow donors in semiconductors is investigated in the presence of a magnetic field in the Voigt configuration. A nonperturbative approach is used to describe the electron-photon interaction by including the radiation field in an exact way via a laser-dressed interaction potential. Through a variational approach we evaluate the donor binding energy. We find that the interaction strength of the laser-dressed Coulomb potential in the z direction cannot only be enhanced but also weakened by the radiation field, while that in the x-y plane is only weakened. In this way, the binding energy of the states with odd z parity, like 2p(z) can be decreased or increased with respect to its static binding energy by the radiation field, while that of the other states can be only decreased. Furthermore, all binding energies become insensitive to the magnetic field if the radiation field is strong. The magnetopolaron effect on these energies is studied within second-order time-dependent perturbation theory. In the nonresonant region, a laser-modulated magnetopolaron correction, including the effect of single-photon processes, is observed. In the resonant region, a laser-modulated magnetopolaron effect, accompanied by the emission and absorption of a single photon, is found. Moreover, the 1s -> 2p(+) transition, accompanied by the emission of a single photon, is tuned by the radiation field into resonance with the longitudinal-optical phonon branch. This is electrically analogous to the magnetopolaron effect, and therefore we name it the dynamical magnetopolaron effect. Finally, by changing the frequency of the radiation field, these interesting effects can be tuned to be far away from the reststrahlen band and, therefore, can be detected experimentally. This in turn provides a direct measure of the electron-phonon interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457057500001 Publication Date 2019-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by National Natural Science Foundation of China (Grants No. 11404214, No. 11455015, and No. 61504016) and the China Scholarship Council (CSC), and Science and Technology Research Foundation of Jiangxi Provincial Education Department (Grants No. GJJ161062 and No. GJJ180868). B.V.D. was supported by the Research Foundation – Flanders (FWO-Vl) through a postdoctoral fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:157555 Serial 5218  
Permanent link to this record
 

 
Author Leao, S.A.; Hipolito, O.; Peeters, F.M. doi  openurl
  Title (up) Inter and intrasubband transitions via lo phonons in quantum wires Type A1 Journal article
  Year 1993 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 13 Issue 1 Pages 37-40  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effects of the finite confining potential V0 on the absorption and emission scattering rates of electrons interacting with LO phonons for a cylindrical GaAs quantum wire. The emission rates are qualitatively similar to those of the 2D case. The absorption rates on the other hand exhibit two different regimes: 1) for a wire radius smaller than a certain value (80 Å in the case where V0 = 190 meV) the behavior is similar to the 2D and 3D analogues, but 2) for larger radius the absorption rates initially increase with increasing energy, reach a maximum value and then decrease monotonicaly. A complete study is made as a function of wire radius, and electron energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1993KK13700007 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.097 Times cited 8 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:103011 Serial 1680  
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Fischetti, M.V. url  doi
openurl 
  Title (up) Inter-ribbon tunneling in graphene: An atomistic Bardeen approach Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 214306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases in current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000378923100022 Publication Date 2016-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:134652 Serial 4198  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Interaction between a superconducting vortex and an out-of-plane magnetized ferromagnetic disk: influence of the magnet geometry Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 68 Issue Pages 094510,1-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000185717600091 Publication Date 2003-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes Approved Most recent IF: 3.836; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:44985 Serial 1681  
Permanent link to this record
 

 
Author Sozen, Y.; Eren, I.; Ozen, S.; Yagmurcukardes, M.; Sahin, H. pdf  url
doi  openurl
  Title (up) Interaction of Ge with single layer GaAs : from Ge-island nucleation to formation of novel stable monolayers Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 505 Issue Pages 144218-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, reactivity of single-layer GaAs against Ge atoms is studied by means of ab initio density functional theory calculations. Firstly, it is shown that Ge atoms interact quite strongly with the GaAs layer which allows the formation of Ge islands while it hinders the growth of detached germanene monolayers. It is also predicted that adsorption of Ge atoms on GaAs single-layer lead to formation of two novel stable single-layer crystal structures, namely 1H-GaGeAs and 1H(A)-GaGeAs. Both the total energy optimizations and the calculated vibrational spectra indicate the dynamical stability of both single layer structures. Moreover, although both structures crystallize in 1H phase, 1H-GaGeAs and 1H(A)-GaGeAs exhibit distinctive vibrational features in their Raman spectra which is quite important for distinguishing the structures. In contrast to the semiconducting nature of single-layer GaAs, both polytypes of GaGeAs exhibit metallic behavior confirmed by the electronic band dispersions. Furthermore, the linear-elastic constants, in-plane stiffness and Poisson ratio, reveal the ultrasoft nature of the GaAs and GaGeAs structures and the rigidity of GaAs is found to be slightly enhanced via Ge adsorption. With their stable, ultra-thin and metallic properties, predicted single-layer GaGeAs structures can be promising candidates for nanoscale electronic and mechanical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510846500026 Publication Date 2019-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.7 Times cited Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:167733 Serial 6548  
Permanent link to this record
 

 
Author Saiz, F.; Karaaslan, Y.; Rurali, R.; Sevik, C. url  doi
openurl 
  Title (up) Interatomic potential for predicting the thermal conductivity of zirconium trisulfide monolayers with molecular dynamics Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 129 Issue 15 Pages 155105  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present here a new interatomic potential parameter set to predict the thermal conductivity of zirconium trisulfide monolayers. The generated Tersoff-type force field is parameterized using data collected with first-principles calculations. We use non-equilibrium molecular dynamics simulations to predict the thermal conductivity. The generated parameters result in very good agreement in structural, mechanical, and dynamical parameters. The room temperature lattice thermal conductivity ( kappa) of the considered crystal is predicted to be kappa x x = 25.69Wm – 1K – 1 and kappa y y = 42.38Wm – 1K – 1, which both agree well with their corresponding first-principles values with a discrepancy of less than 5%. Moreover, the calculated kappa variation with temperature (200 and 400 K) are comparable within the framework of the accuracy of both first-principles and molecular dynamics simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000641993600001 Publication Date 2021-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:178234 Serial 8112  
Permanent link to this record
 

 
Author Nicholas, R.J.; Sasaki, S.; Miura, N.; Peeters, F.M.; Shi, J.M.; Hai, G.Q.; Devreese, J.T.; Lawless, M.J.; Ashenford, D.E.; Lunn, B. pdf  doi
openurl 
  Title (up) Interband magnetooptical studies of resonant polaron coupling in CdTe/Cd1-xMnxTe quantum-wells Type A1 Journal article
  Year 1994 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 50 Issue 11 Pages 7596-7601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract Magnetoreflectivity measurements of the 1s and 2s exciton energies in a CdTe/Cd1-xMnxTe superlattice have been made in magnetic fields up to 45 T, showing the resonant polaron coupling of electrons to LO phonons. Strong reflectivity features are seen for both the 1s and 2s excitons, which show a strong field-dependent spin splitting due to the dilute magnetic barriers. At B-z=0, the 2s exciton feature is observed lying 18 meV above the Is state, and is shifted upward in energy by the magnetic fields. No resonant behavior occurs when the 2s state passes through the LO-phonon energy of 21 meV, but at higher fields of around 20 T, the resonances for both spin states (sigma(+/-)) of the 2s exciton broaden and show a strong anticrossing behavior. These experiments are shown to be in excellent agreement with a theoretical treatment which includes the resonant polaron coupling of the electrons alone. Both experiment and theory demonstrate an extremely strong resonant splitting of the 2s exciton states of approximately 11 meV, which is over 50% of the LO-phonon energy. The dominance of single-particle polaron coupling is attributed to the relative sizes of the polaron (35 Angstrom A) and the exciton (50 Angstrom A) radius.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1994PJ43700045 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:99837 Serial 1687  
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Interband optical absorption in a circular graphene quantum dot Type A1 Journal article
  Year 2012 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume T149 Issue Pages 014056-014056,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the energy levels and optical properties of a circular graphene quantum dot in the presence of an external magnetic field perpendicular to the dot. Based on the Dirac-Weyl equation and assuming zero outward current at the edge of the dot we present the results for two different types of boundary conditions, i.e. infinite-mass (IMBC) and zigzag boundary conditions. We found that the dot with zigzag edges displays a zero-energy state in the energy spectra while this is not the case for the IMBCs. For both boundary conditions, the confinement becomes dominated by the magnetic field, where the energy levels converge to the Landau levels as the magnetic field increases. The effect of boundary conditions on the electron-and hole-energy states is found to affect the interband absorption spectra, where we found larger absorption in the case of IMBCs. The selection rules for interband optical transitions are determined and discussed for both boundary conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000303523500057 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 5 Open Access  
  Notes ; This work was supported by the EuroGraphene program of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.28; 2012 IF: 1.032  
  Call Number UA @ lucian @ c:irua:99136 Serial 1688  
Permanent link to this record
 

 
Author Arsoski, V.; Tadić, M.; Peeters, F.M. url  openurl
  Title (up) Interband optical properties of concentric type-I nanorings in a normal magnetic field Type A1 Journal article
  Year 2010 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A  
  Volume 117 Issue 5 Pages 733-737  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two concentric two-dimensional GaAs/(Al,Ga)As nanorings in a normal magnetic field are theoretically studied. The single-band effective mass approximation is adopted for both the electron and the hole states, and the analytical solutions are given. We find that the electronic single particle states are arranged in pairs, which exhibit anticrossings and the orbital momentum transitions in the energy spectrum when magnetic field increases. Their period is essentially determined by the radius of the outer ring. The oscillator strength for interband transitions is strongly reduced close to each anticrossing. We show that an optical excitonic Aharonov-Bohm effect may occur in concentric nanorings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2010 IF: 0.467  
  Call Number UA @ lucian @ c:irua:83377 Serial 1690  
Permanent link to this record
 

 
Author Duden, E.I.; Savaci, U.; Turan, S.; Sevik, C.; Demiroglu, I. pdf  url
doi  openurl
  Title (up) Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue 8 Pages 085301-85311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract High-performance rechargeable batteries are becoming very important for high-end technologies with their ever increasing application areas. Hence, improving the performance of such batteries has become the main bottleneck to transferring high-end technologies to end users. In this study, we propose an argon intercalation strategy to enhance battery performance via engineering the interlayer spacing of honeycomb structures such as graphite, a common electrode material in lithium-ion batteries (LIBs). Herein, we systematically investigated the LIB performance of graphite and hexagonal boron nitride (h-BN) when argon atoms were sent into between their layers by using first-principles density-functional-theory calculations. Our results showed enhanced lithium binding for graphite and h-BN structures when argon atoms were intercalated. The increased interlayer space doubles the gravimetric lithium capacity for graphite, while the volumetric capacity also increased by around 20% even though the volume was also increased. The ab initio molecular dynamics simulations indicate the thermal stability of such graphite structures against any structural transformation and Li release. The nudged-elastic-band calculations showed that the migration energy barriers were drastically lowered, which promises fast charging capability for batteries containing graphite electrodes. Although a similar level of battery promise was not achieved for h-BN material, its enhanced battery capabilities by argon intercalation also support that the argon intercalation strategy can be a viable route to enhance such honeycomb battery electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000899825400001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:193399 Serial 7313  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Studart, N.; Wang, Y.J.; McCombe, B.D. doi  openurl
  Title (up) Interface effects on magnetopolarons in GaAs/AlxGa1-xAs quantum wells at high magnetic fields Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 58 Issue Pages 7822-7829  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000076130500055 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24161 Serial 1693  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title (up) Interface optical phonon mode coupling in GaAs/AlAs quantum wells at high magnetic fields Type A1 Journal article
  Year 1993 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 184 Issue Pages 289-292  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993KU62100058 Publication Date 2002-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5741 Serial 1695  
Permanent link to this record
 

 
Author Dong, H.M.; Liang, H.P.; Tao, Z.H.; Duan, Y.F.; Milošević, M.V.; Chang, K. doi  openurl
  Title (up) Interface thermal conductivities induced by van der Waals interactions Type A1 Journal article
  Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal  
  Volume 26 Issue 5 Pages 4047-4051  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interface heat transfer of two layers induced by van der Waals (vdW) contacts is theoretically investigated, based on first-principles calculations at low temperatures. The results suggest that out-of-plane acoustic phonons with low frequencies dominate the interface thermal transport due to the vdW interaction. The interface thermal conductivity is proportional to the cubic of temperature at very low temperatures, but becomes linearly proportional to temperature as temperature increases. We show that manipulating the strain alters vdW coupling, leading to increased interfacial thermal conductivity at the interface. Our findings provide valuable insights into the interface heat transport in vdW heterostructures and support further design and optimization of electronic and optoelectronic nanodevices based on vdW contacts. The heat transfer induced by van der Waals contacts is dominated by ZA phonons. The interface thermal conductivity is proportional to the cubic of temperature, but becomes linearly proportional to temperature as temperature increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142323400001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202795 Serial 9050  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sozen, Y.; Baskurt, M.; Peeters, F.M.; Sahin, H. doi  openurl
  Title (up) Interface-dependent phononic and optical properties of GeO/MoSO heterostructures Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The interface-dependent electronic, vibrational, piezoelectric, and optical properties of van der Waals heterobilayers, formed by buckled GeO (b-GeO) and Janus MoSO structures, are investigated by means of first-principles calculations. The electronic band dispersions show that O/Ge and S/O interface formations result in a type-II band alignment with direct and indirect band gaps, respectively. In contrast, O/O and S/Ge interfaces give rise to the formation of a type-I band alignment with an indirect band gap. By considering the Bethe-Salpeter equation (BSE) on top of G(0)W(0) approximation, it is shown that different interfaces can be distinguished from each other by means of the optical absorption spectra as a consequence of the band alignments. Additionally, the low- and high-frequency regimes of the Raman spectra are also different for each interface type. The alignment of the individual dipoles, which is interface-dependent, either weakens or strengthens the net dipole of the heterobilayers and results in tunable piezoelectric coefficients. The results indicate that the possible heterobilayers of b-GeO/MoSO asymmetric structures possess various electronic, optical, and piezoelectric properties arising from the different interface formations and can be distinguished by means of various spectroscopic techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000738899600001 Publication Date 2021-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:184722 Serial 6998  
Permanent link to this record
 

 
Author Nguyen, H.T.T.; Obeid, M.M.; Bafekry, A.; Idrees, M.; Vu, T.V.; Phuc, H., V; Hieu, N.N.; Le Hoa, T.; Amin, B.; Nguyen, C., V url  doi
openurl 
  Title (up) Interfacial characteristics, Schottky contact, and optical performance of a graphene/Ga2SSe van der Waals heterostructure: Strain engineering and electric field tunability Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 7 Pages 075414-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional graphene-based van der Waals heterostructures have received considerable interest because of their intriguing characteristics compared with the constituent single-layer two-dimensional materials. Here, we investigate the interfacial characteristics, Schottky contact, and optical performance of graphene/Ga2SSe van der Waals (vdW) heterostructure using first-principles calculations. The effects of stacking patterns, electric gating, and interlayer coupling on the interfacial properties of graphene/Ga2SSe heterostructures are also examined. Our results demonstrate that the Dirac cone of graphene is well preserved at the F point in all stacking patterns due to the weak vdW interactions, which keep the heterostructures feasible such that they can be obtained in further experiments. Moreover, depending on the stacking patterns, a small band gap of about 13-17 meV opens in graphene and has a high carrier mobility, indicating that the graphene/Ga2SSe heterostructures are potential candidates for future high-speed nanoelectronic applications. In the ground state, the graphene/Ga2SSe heterostructures form an n-type Schottky contact. The transformation from an n-type to a p-type Schottky contact or to an Ohmic contact can be forced by electric gating or by varying the interlayer coupling. Our findings could provide physical guidance for designing controllable Schottky nanodevices with high electronic and optical performances.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000557294500006 Publication Date 2020-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 12 Open Access  
  Notes ; This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.01-2019.05. The authors declare that there are no conflicts of interest regarding the publication of this paper. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:171163 Serial 6549  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title (up) Interlayer excitons in transition metal dichalcogenide heterostructures Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115104  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs), we construct a four-band Hamiltonian describing interlayer excitons consisting of an electron in one TMD layer and a hole in the other TMD layer. An expression for the electron-hole interaction potential is derived, taking into account the effect of the dielectric environment above, below, and between the two TMD layers as well as polarization effects in the transition metal layer and in the chalcogen layers of the TMD layers. We calculate the interlayer exciton binding energy and average in-plane interparticle distance for different TMD heterostructures. The effect of different dielectric environments on the exciton binding energy is investigated and a remarkable dependence on the dielectric constant of the barrier between the two layers is found, resulting from competing effects as a function of the in-plane and out-of-plane dielectric constants of the barrier. The polarization effects in the chalcogen layers, which in general reduce the exciton binding energy, can lead to an increase in binding energy in the presence of strong substrate effects by screening the substrate. The excitonic absorbance spectrum is calculated and we show that the interlayer exciton peak depends linearly on a perpendicular electric field, which agrees with recent experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443671900004 Publication Date 2018-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153653UA @ admin @ c:irua:153653 Serial 5110  
Permanent link to this record
 

 
Author Helm, M.; Hilber, W.; Strasser, G.; de Meester, R.; Peeters, F.M.; Wacker, A. doi  openurl
  Title (up) Interminiband spectroscopy of biased superlattices Type A1 Journal article
  Year 2000 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 7 Issue Pages 274-278  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000086076800059 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2000 IF: 0.878  
  Call Number UA @ lucian @ c:irua:34357 Serial 1699  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: