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Inhomogeneous phases in coupled 
electron-hole bilayer graphene 
sheets: Charge Density Waves and 
Coupled Wigner Crystals
M. Zarenia1, D. Neilson2 & F. M. Peeters1

Recently proposed accurate correlation energies are used to determine the phase diagram of strongly 
coupled electron-hole graphene bilayers. The control parameters of the phase diagram are the charge 
carrier density and the insulating barrier thickness separating the bilayers. In addition to the electron-
hole superfluid phase we find two new inhomogeneous ground states, a one dimensional charge density 
wave phase and a coupled electron-hole Wigner crystal. The elementary crystal structure of bilayer 
graphene plays no role in generating these new quantum phases, which are completely determined 
by the electrons and holes interacting through the Coulomb interaction. The experimental parameters 
for the new phases lie within attainable ranges and therefore coupled electron-hole bilayer graphene 
presents itself as an experimental system where novel emergent many-body phases can be realized.

The interplay between superconducting and charge density wave (CDW) phases that is often observed in con-
nection with High-Temperature superconductors, is attracting considerable attention. It has been argued that 
details of the very elaborate crystal structures typical of High-Temperature superconductors play a central role 
in determining the properties of the CDWs. A polarizable background is needed to drive the CDW phase, and 
the crystal lattice provides this background. However the complexity of the crystals in these materials, makes it 
challenging to identify the competing contributions1–5. We report in this manuscript on a, by far, simpler system 
exhibiting the same association of superfluid and CDW phases, but a system in which the polarizable background 
is uniform, so there is no intricate background structure that could determine the properties of the CDW.

There exist several studies pertinent to inhomogeneous phases in coupled two-dimensional-electron-gas 
(2DEG) layers6–8. Despite these early attempts, however, there are no studies of the CDW phase for small 
electron-hole layer separations where interlayer correlation effects will be strong. The earliest approaches could 
not treat strong interlayer coupling7, 8, while for QMC calculations, it is impractical to study an inhomogeneous 
ground state like a CDW with oscillations of both unknown period and amplitude6.

Here we propose two strongly coupled two-dimensional (2D) bilayers of graphene (BLG), one bilayer contain-
ing electrons and the other holes, as an experimentally accessible system to observe the CDW phase. An electron 
and hole bilayer graphene has a quadratic dispersion around the Fermi level EF for densities ρ < 4 × 1012 cm−2 9. 
The electron and hole effective masses are matched, lying in the range . < < .

 

⁎m m0 03 / 0 05e
10, 11. A lower limit of 

experimental attainable densities is ρ >∼ 1010 cm−2 12–14. The electron and hole densities are controlled by top and 
back metal gates. The electric field from the metal gates opens up an energy band gap between the parabolic con-
duction and valence bands15. We consider bilayer graphene embedded in a hexagonal Boron Nitride (h-BN) 
dielectric which is important to ensure high charge mobility and a large potential barrier between the graphene 
bilayers. The valley degeneracy is gv = 2 and the dielectric constant κ = 316. The separation barrier between the 
bilayer sheets can be as little as d = 1 nm with no significant leakage from tunneling17. Such separations are much 
less than the effective Bohr radius, ∼⁎a 11B   nm for bilayer graphene. At the densities of interest to us, the average 
spacing between the carriers in each bilayer is much greater than the lattice constant of graphene, making details 
of the graphene lattice structure unimportant. We will consider only equal electron and hole densities. 
Furthermore, high quality graphene lattices with extremely low disorder can be fabricated18, 19.
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In this paper we find, besides the superfluid phase discussed in refs 20–23, that there are two new inhomo-
geneous ground-state phases: (i) a strongly-coupled one-dimensional charge density wave (1D-CDW), and (ii) 
a coupled electron-hole Wigner crystal (c-WC). Because of the simple structure of the system, the drivers for all 
these phases are very simple. First, there is the Coulomb attraction between electrons and holes from the two 
bilayers which is controlled by the layer separation d. Second, there is the Coulomb repulsion between pairs of 
electrons or pairs of holes within each bilayer which is controlled by the carrier density ρ in the bilayer.

We find that the 1D-CDW, with density modulations in one planar direction, is always more stable than the 
two-dimensional CDW. (We also find that in regions of phase space where the liquid phase is more stable than 
the 1D-CDW, that the liquid phase has a lower energy than the two-dimensional CDW). As would be expected, 
for the 1D-CDW phase, the planar density modulation in the two bilayers share the same periodicity and they 
are in phase (see Fig. 1(a)), since this ensures a maximum attractive potential energy gain from the electron-hole 
interactions. In contrast with the case of High-Temperature superconductors, the holes from one bilayer act as a 
perfectly symmetric polarizable background for the electrons in the other bilayer, and vice versa. This property 
makes our CDW phase uniquely different from CDW phases in other systems.

In the c-WC phase, an electron Wigner crystal in one bilayer couples to a hole Wigner crystal in the other 
bilayer. The electron and hole sites of the c-WC will align, again to maximize the attractive potential energy gain 
from the electron-hole interactions, so each lattice site in the hole Wigner crystal lies directly opposite a lattice site 
in the electron Wigner crystal (see Fig. 1(b)).

When the separation d between bilayers is not too large, the Coulomb attraction between the electrons and 
holes will generate strongly bound electron-hole pairs that can condense into a quantum coherent superfluid 
state23, 24. However, for densities above a cut-off density, strong screening is predicted to suppress the superfluid-
ity23, 25.

As the layer separation d is increased, an interesting phase transition should occur from the superfluid phase 
to the 1D-CDW phase. While CDWs are conventionally treated as a classical phase, Bardeen26 argued for extend-
ing the coherent quantum state interpretation from superconductors to include 1D-CDWs. Latyshev et al.27 sub-
sequently reported observation of Aharonov-Bohm-like oscillations in the original CDW material NbSe3

28.
At still lower densities, the transition with increasing d would, instead, be from the superfluid to the c-WC 

phase. This transition would be driven by the competition between the repulsive interactions between like-charge 
carriers in one bilayer, which favour the Wigner crystal, and the attractive interactions between electrons and 
holes, which favour pair formation and superfluidity. At very small densities ρ and for small d, the electron-hole 
pairs are compact and nearly neutral. The residual repulsive interactions within a bilayer are through weak 
dipolar interactions, so a superfluid phase would be favoured. However at larger d for the same ρ, the attrac-
tive electron-hole interactions between layers become weak compared with the repulsive interactions between 
like-carriers within each bilayer. The repulsive interactions favour the WC phase, and the system would make a 
transition from the superfluid to the quantum c-WC phase. At extremely low densities, the Wigner crystal would 
become classical, and at that point there would be an interesting transition from the quantum coherent superfluid 
condensate to a classical Wigner crystal phase.

At sufficiently large d, the bilayers will decouple into two independent bilayers, so for decreasing ρ, the Fermi 
liquid phase will make a transition directly to a Wigner crystal that is only very weakly coupled.

Methods
It is impractical to investigate the CDW phase in this system using quantum Monte Carlo (QMC) tech-
niques, since the amplitude, periodicity and dimensionality, are not a priori known. In a recent work29, a new 
and fast interpolation scheme was introduced to obtain accurate correlation energies for the one-layer 2DEG. 
The method gives excellent agreement with QMC correlation energies for both one-valley and two-valley 
two-dimensional-electron-gas systems.

Figure 1. Schematic illustration of electron and hole density distribution in (a) charge density wave phase and 
(b) coupled Wigner crystal.
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In this approach the correlation energy Ec[ρ] is determined by an interpolation of Wα[ρ], the potential energy 
functional of ρ without the Hartree contribution, of a fictitious system that interacts with a Coulomb interaction 
scaled by a coupling constant factor α. The interpolation is between ρ

α=
W [ ]lim 0

 (weakly-interacting) and 
ρ

α=∞
W [ ]lim  (strongly-interacting)30,

ρ = −






+ −
−





∞E W W X

X
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c 0

where α= −α α= ∞X W W Wd /d /( )0 0 .
Here, we extend the approach from ref. 29 (see Sec. S1 of Supplementary for a brief discussion of the approach) 

to coupled electron-hole bilayer graphene sheets. For the two bilayers, the exact Random Phase Approximation 
for the above expressions in the weakly-interacting limit, α → 0, are given by
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where v11 = v22 = vq, v12 = v21 = −vqe−qd, with vq = e2/κq. The term ′W0
(2) in Eq. (3) is determined from the contri-

bution of the second-order correction to the correlation energy Ec
(2). It is given by ′ =W E20

(2)
c
(2)29, with 
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(2)  Hartree, independent of the layer separation. χ ω χ ω= q qi i( , ) ( , )0 0  is the non-interacting 

density-density response function for layer  and is given by,
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fk is the Fermi-Dirac function for the wave vector k, gs and gv are the spin and valley degeneracies, η > 0 is an 
infinitesimal number, and φ′ = + ′′F ss(1 cos2 )/2k k

s s
,
,  is the wavefunction overlap factor in BLG with φ the angle 

between k and k′. ε ′
k
s s( ) are the electron (s = +1) and hole (s = −1) energy bands in BLG defined as,
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This can properly describe BLG at low energies9, 31. γ ≈ 400 meV is the dominant interlayer coupling between the 
sublattices A and B′ from the upper and lower layers, and vF = 106 m/s is the Fermi velocity. U1 and U2 are the 
electrostatic potentials applied to the upper and lower layers which are required to induce electrons (or holes) in 
each BLG.

We note that the transition to the inhomogeneous phases occurs at very low densities, corresponding to low 
energies, e.g. for < . ×



n 1 5 1011 cm−2, <


E 5F  meV. We show in the Supplementary Information that for such low 
energies, whenever there is a significant gap in the BLG spectrum, ∆ = − U U U EF1 2 , χ0 can be evaluated by 
considering only the conduction band E+. For this reason we neglect the influence of the hole band in the calcu-
lation of Eq. (5), considering only the conduction band in the BLG with quadratic dispersion.

In the limit of strong interactions, α → ∞, the ground state is the classical WC. We can treat the classical crys-
tal as a collection of neutral unit cells, each cell with an electron or hole at its centre and surrounded by a charged 
disk of uniform neutralizing background of radius πρ=r 1/0 . Then W∞ is obtained from a straightforward 
electrostatic calculation,

= + + + + + + +∞ ⊕ ⊕⊕ ⊕ ⊕W E E E E E E E E , (8)e h e h eh   

where
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We use Hartree units throughout the paper and we introduce the parameter = ⁎r r a/s B0 .
Equations (2), (3) and (8), when inserted in Eq. (1), give us the correlation energy Ec[ρ]. To obtain the total 

ground state energy E[ρ], we employ a Density Functional Theory formalism, for which

ρ ρ ρ ρ ρ= + + + +E K E E E E[ ] [ ] [ ] [ ] [ ] , (10)coul x c i

where K[ρ], Ecoul[ρ], and Ex[ρ] respectively denote the non-interacting kinetic energy, intra-layer Coulomb 
energy, and exchange energy functionals. The local-density approximation forms of these functionals are given 
by Eqs (10–13) in ref. 29, with valley index gv = 2 for bilayer graphene. Ei is the inter-layer Coulomb interaction,
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where ρ


r( ) is the charge density distribution in layer .
We use Eq. (10) to obtain the ground state energy per particle ∫ε ρ ρ ρ= E d r[ ] [ ]/ 2

0 for the liquid phase with 
uniform density ρ(r) = ρ0, and for the non-uniform density distribution ρ(r) of the c-WC and the CDW phases.

For the c-WC phase, we take the variational form for the density distribution,

∑ρ ρ
β

π
β= − − −r r a am n( ) exp[ ( ) ],

(12)m n
0
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,
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2

where m and n are integers, and a1 = a(1, 0) and = −a a( 1/2, 3 /2)2  are the lattice vectors for the 
two-dimensional hexagonal lattice, with the lattice constant ρ= =a a 2/ 3WC 0  fixed by ρ0. This variational 
form is a superposition of Gaussians centred on the WC lattice sites. βWC is our variational parameter that deter-
mines the degree of localization on each lattice site.

For the 2D-CDW we use the same variational form for ρ(r), Eq. (12), but now we take a as an additional var-
iational parameter.

For the 1D-CDW phase, we take the variational form

∑ρ ρ
β

π
β γ= − − ×r r am( ) exp[ ( ) ],

(13)m
0

CDW
CDW CDW 1

2

with the amplitude βCDW and the periodicity γCDW as the two variational parameters.

Results and Discussions
Figure 2 shows the phase diagram as a function of the inter-particle spacing rs within each bilayer sheet and the 
separation d between the bilayer sheets. We see that for large >∼

⁎d a/ 15B , the Fermi liquid is the ground state down 
to density rs ≈ 32, where the transition to the c-WC occurs. This is as expected, since the coupling between the 
sheets is weak when 

⁎d a/ 1B , and consequently the results become similar to the results for a single isolated 
sheet32, 33.

When we decrease the separation d below =⁎d a/ 15B , the transition to the c-WC phase initially moves to lower 
density. This is caused by the increasing strength of the interlayer attractions when <



d r0. As a result the positions 
of the electrons and holes become more tightly correlated, and so there is increasing cancellation between their 
charges. This has the effect of reducing the electron-electron and hole-hole repulsion within each bilayer, which 
is what drives the transition to the WC. The long-range Coulomb repulsion between like-charges in the same 
bilayer is screened and tends towards the much weaker dipolar repulsion. The weaker repulsion makes it more 
difficult to form the c-WC, and the transition moves to lower density.

When d decreases below =⁎d a/ 12B , a new CDW phase interposes itself between the Fermi liquid and c-WC 
phases. With increasing rs for fixed d, there are then two transitions: (i) from the Fermi liquid to the CDW phase, 
and (ii) from the CDW phase to the c-WC phase. As d is further decreased, both these transitions move to higher 
densities. The reason is that an increase in the strength of the interlayer electron-hole attraction favours formation 
of the inhomogeneous phases7, 8.

At sufficiently small d, the electron-hole attraction becomes strong enough for electron-hole bound pairs to 
form in significant numbers, and these should condense into a coherent superfluid state6, 23. It has been predicted 
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that there is no BCS superfluid regime because for small < .


r 2 5s  there is very strong screening and this sup-
presses superfluidity23. As rs increases above 2.5, the superfluid phase would first form directly in the BCS-BEC 
cross-over regime, and for larger rs it would then evolve into the Bose-Einstein regime.

For . < <
 

r2 5 10s , the transition temperature for superfluidity at small d~1 nm can be large, i.e. >10 K23. 
However when >∼r 20s  the superfluid phase would occur only at extreme low temperatures, since the 
Kosterlitz-Thouless temperature TKT, which establishes an upper limit on the transition temperature for a 2D 
superfluid of only TKT ≤ 40 mK by rs = 20 even for the smallest d. We recall that TKT decreases with rs as −rs

2. In 
practice, for such low transition temperatures, residual disorder in the graphene lattice is likely to kill any super-
fluidity. Furthermore, for rs = 20, the predicted superfluid condensate fraction is already extremely small for all 
values of d. Even at =⁎d a/ 1B , the condensate fraction is only c = 0.026, and c decreases even further for larger d. 
We conclude that for >∼r 20s , even if any superfluid should survive, it would most likely coexist in a phase sepa-
rated state with the CDW or c-WC phase. In Fig. 2, a possible superfluid phase (not calculated here) has been 
schematically represented by the transparent area.

Figure 3(a–d) show the CDW and c-WC electron bilayer density distributions at rs = 60 for two values of the 
layer separation d, chosen close to the two CDW–c-WC phase boundaries. It is interesting to note how the perio-
dicity of the CDW changes with d. The periodicity is longer for smaller d, and it evolves towards aWC as d is 
increased. However even at the upper boundary of the CDW phase region at =⁎d a/ 10B , the value is still 

∼a a2CDW WC, (Fig. 3(d)). In Fig. 3(a,c), notice that the carriers in the WC become more localized on the lattice 
sites as d is decreased, due to the fact that for rs = 60 the WC lies closer to the liquid phase boundary when 

=⁎d a/ 10B  than for =⁎d a/ 5B  (see Fig. 2).
The differences in the total energies of the Fermi liquid, CDW, and c-WC phases provide us with an upper 

limit estimate of the transition temperatures. Figure 4(a,b) show the energy differences between the Fermi liquid 
and c-WC, and the Fermi liquid and CDW, respectively. Both sets of energy differences are consistently of the 
order of 50–100 K. This remains the case even for the largest layer spacings, >∼

⁎d a/ 30B , where the c-WC 
approaches the uncoupled Wigner crystal. We thus expect that the transition temperatures for the CDW and 
c-WC phases to be comparable with the transition temperature for the uncoupled Wigner crystal.

Discussion and Conclusions
The CDW phase could be identified using scanning tunneling microscopy (STM). The formation of the CDW 
along with the associated periodic lattice distortion opens a gap in the Fermi surface, modifying the local 
density-of-states, and this could be detected by tunneling34–37. A CDW phase can be also detected by transport 
measurements. 1D stripes may be pinned by disorder, in which case the CDW could be identified either with 
standard threshold voltage conductivity measurements or with frequency threshold measurements of ac con-
ductivity38. A 1D-CDW breaks the rotational symmetry of the 2D plane, so it could manifest itself as a highly 
anisotropic transport response. Anisotropic resistivity as evidence of a CDW state has been experimentally stud-
ied, for example, in single crystals of R2CoGa8 (R = Gd, Tb, Dy, Ho, Er, Tm, Y, and Lu)39 and RTe3 (R = Y, La, Ce, 

Figure 2. Zero temperature phase diagram for the ground state of the coupled electron-hole bilayer graphene 
system as a function of layer density parameter rs and the separation between the layers d. The top x-axis gives 
the corresponding electron (hole) density. The transparent region at small d, schematically represents the 
superfluid phase (not calculated here) that would interplay with the 1D charge-density-wave (1D-CDW) and 
coupled Wigner crystal phases.
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Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm)40. However, there would not necessarily be any observable anisotropy, 
because the lack of an underlying anisotropic crystal structure means that no unique orientation of the 1D-CDW 
would be favored. Thus formation of randomly oriented domains of 1D-CDWs could occur. Further experimen-
tal evidence for the formation of a CDW state would be the observation of negative electronic compressibility in 
the bilayers. This can be measured via the difference between the actual differential capacitance and the classical 
geometric capacitance. The negative compressibility has been previously studied in double graphene monolayers 
in the presence of a perpendicular magnetic field41.

STM could also be used to observe a WC density profile. The c-WC phase could be also observed with trans-
port measurements. Wigner crystallization should be accompanied by a transition to an insulating state, caused 
by pinning of the Wigner lattices by residual disorder42, 43. The c-WC phase can be distinguished from the CDW 
phase by observing differences in their low-lying excitation spectrum, since unlike the plasmon of the Fermi 
liquid phase, the low-energy collective mode for the WC is centred on a momentum transfer q equal to the recip-
rocal vector of the WC lattice44. This characteristic dispersion property of the collective mode should be readily 
observable in Raman spectra. Experimental investigation of optical phonon modes is an alternative approach to 
detect a c-WC phase as has been suggested for coupled 2D layers in semiconductor structures45.

Next we comment on the puzzling results reported from recent Coulomb drag experiments in coupled 
electron-hole graphene bilayers46, 47. A negative Coulomb drag was observed in two different temperature 
regimes, i.e. at low temperatures down to T = 1.5 K (ref. 46), and at high temperatures up to T = 170 K (ref. 47). 
Because the drag reported in ref. 47 was observed to be symmetric across the electron-hole and electron-electron 
systems, our inhomogeneous phases resulting from electron-hole correlations are unlikely to be the origin of the 
anomalous drag observed in coupled graphene bilayers.

Figure 3. Electron density distribution ρ(r) at rs = 60 for the (a,c) WC and (b,d) CDW phases near their mutual 
phase boundaries. Bilayer separation is (a,b) =⁎d a/ 5B  and (c,d) =⁎d a/ 10B . aWC is the WC lattice constant.
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In summary, we have proposed a system of two strongly coupled electron-hole bilayer graphene sheets as a 
promising candidate to observe new inhomogeneous c-WC and 1D-CDW phases which would interplay with 
the previously predicted electron-hole superfluid23, 24. We find in the strong interlayer coupling regime, that a 
1D-CDW occurs at significantly higher densities than the c-WC phase.

There has been a long-standing issue in coupled electron-hole systems of whether a CDW phase would be 
two-dimensional or one-dimensional. A two-dimensional CDW phase would most likely retain the hexagonal 
structure of the 2D WC phase, but with a longer periodicity. We find that a hexagonal two-dimensional CDW 
phase has always a larger energy than both the Fermi liquid and 1D-CDW phases. We conclude from this that the 
hexagonal two-dimensional CDW phase would not be found as the ground state in coupled electron-hole layers.
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