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We present here a new interatomic potential parameter set to predict the thermal conductivity of zirconium trisulphide
monolayers. The generated Tersoff type force field is parameterized using data collected with first-principles calcu-
lations. We use non-equilibrium molecular dynamics simulations to predict the thermal conductivity. The generated
parameters result in very good agreement in structural, mechanical, and dynamical parameters. The room temperature
lattice thermal conductivity (κ) of the considered crystal is predicted to be κxx = 25.69 W m−1 K−1 and κyy = 42.38 W
m−1 K−1, which both agree well with their corresponding first-principles values, with a discrepancy of less than 5%.
Moreover, the calculated κ variation with temperature (200 and 400 K) are comparable within the framework of the
accuracy of both first-principles and molecular dynamics simulations.

I. INTRODUCTION

The discovery of graphene1,2 has spanned the synthesis of a
large number of new two-dimensional materials such as boron
nitride (h-BN), silicene, black phosphorus, transition metal
oxides, and transition metal dichalcogenides. The idea be-
hind making a compound with the thickness of one atomic
layer is to exploit its enhanced mechanical, electronic and
thermal transport properties with respect to those exhibited
by its bulk counterpart. For example, while graphite has a fi-
nite electronic band gap, graphene has no band gap3 as well
as a much higher thermal conductivity4 by one order of mag-
nitude. Moreover, many of these new 2D materials have dif-
ferent properties than graphene. For instance, the monolayers
of some transition metal dichalcogenides, such as MoS2 and
WS2, exhibit direct band gaps, making them ideal for a wide
range of applications in electronics and optoelectronics.5,6

Currently, additional efforts are being made to investigate a
new class of chalcogenides with formula MX3, where M = Ti,
Zr, or Hf and X = S, Se, or Te,7,8. These trichalcogenides
have recently attracted much attention due to their narrow
band gaps between 1.0 and 2.0 eV9 that make their nanosheets
suitable not only for optical and electronic applications,10 but
also for building thermoelectric devices11–13. For thermoelec-
tric applications, the aim is always to increase the efficiency
of the material of interest, which is governed by the figure of
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merit

zT =
S2σ

κel +κph

T, (1)

where T is the temperature, S is the thermopower or Seebeck
coefficient, σ is the electrical conductivity, and κel and κph

are the electronic and phononic contributions to the thermal
conductivity, respectively. Hence, the figure of merit can be
improved by either increasing the electronic transport prop-
erties (S and σ ) or decreasing the thermal transport (κel and
κph). To this end, a number of strategies have been put into ac-
tion such as assembling superlattices14,15 or applying strain13.
Nonetheless, the calculation of these properties requires using
quantum-mechanical codes that solve the Schrödinger equa-
tion. In particular, the computation of the phononic thermal
conductivity using first-principles lattice dynamics in mono-
layers is very costly16,17. For instance, materials whose unit
cells are composed of a few atoms require hundreds of sim-
ulations based on density functional theory (DFT) to build
the matrices of second and third order force constants that
are used in turn to compute the thermal conductivity tensor.
Therefore, it is desirable that this tensor can be obtained with
cheaper computational techniques, such as classical molecular
dynamics (MD), that are faster -sand more versatile —allow-
ing, for instance, for nanostructuring— than first-principles
lattice dynamics.

The goal of this work is then to calculate the components
of the thermal conductivity tensor κxx and κyy in ZrS3 mono-
layers with MD simulations. The accuracy of MD depends on
the potential energy function V (r) determined at a given posi-
tion r that is differentiated to find the forces f (r) acting on the
constituent particles of the system. These forces are then used
to integrate the equations of motion at each time step, which
allows tracking the atomic trajectories throughout the simula-
tion. Therefore, the starting point of this work is to build a po-
tential energy function by fitting its parameters to the phonon
dispersion curves obtained with first-principles lattice dynam-
ics. We then produce several sets of parameters to find the one
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that predicts the thermal conductivity components κxx and κyy

in best agreement with DFT’s. These MD components are
determined using the non-equilibrium method,18,19 in which a
heat flux is imposed on one direction of the monolayer and the
system’s response is a thermal gradient, which allows to de-
termine the thermal conductivity components using Fourier’s
law. Another popular method to calculate these two compo-
nents is the Green-Kubo method,20,21 which is based on the
fluctuation-dissipation theorem applied on the heat autocorre-
lation function that establishes a link to determine the thermal
conductivity. However, it can be argued that when applied
to monolayers with a very low thermal conductivity such as
ZrS3, this method is inappropriate because it produces aver-
aged values accompanied with standard deviations of the same
order of magnitude, presenting thus the final results with a
high uncertainty.22 This uncertainty is specially critical, as in
this paper we are not only interested in qualitatively match-
ing the DFT components of the phononic thermal conductiv-
ity, but also in obtaining the anisotropy (i.e. κyy/κxx 6= 1) for
ZrS3, a property common to other trichalcogenides17,23.

After this introduction, this manuscript is organized as fol-
lows: in Sec. II we describe the recipe used to make our
first-principles calculations, starting from the geometry opti-
misations of the ZrS3 systems to the calculation of the thermal
properties with lattice dynamics. We explain the fitting pro-
cedure to generate the parameters for the interatomic potential
and the setup of the non-equilibrium MD simulations. Next, in
Sec. III we compare the phonon dispersions of ZrS3 with DFT
and MD, present the thermal conductivities obtained with both
methods, and analyze other thermal transport properties. Fi-
nally, Sec. IV concludes with our main findings and implica-
tions of this work.

II. THEORETICAL METHODS

A. First-principles calculations

Our methodology starts by employing the Vienna Ab ini-
tio Package (VASP)24–27 to relax the atomic positions and
cell parameters of these nanosheets. The monolayers are
first represented as a unit cell belonging to the P21/m space
group as shown in Figure 1. Reciprocal space integrations
are made using a mesh of 10× 14× 1 k-points centered at
Γ in the Brillouin zone. The geometry relaxation is carried
out setting thresholds of 1× 10−6 eV/nm for the forces and
1 × 10−8 eV for the self-consistency solution of the wave-
function. We use the generalized gradient approximation
of the exchange-correlation potential in the Perdew-Burke-
Ernzerhof (PBE) flavour28 and the projector augmented wave
method (PAW)29,30. We expand the valence orbitals with a
plane wave basis with an energy cutoff of 350 eV. Long-range
van der Waals forces are included using the zero damping
Grimme’s DFT-D3 scheme. Once the geometry of the ZrS3
monolayer is optimized, we obtain the following parameters
for the monolayer a = 0.512 nm and b = 0.363 nm with a
residual value for the external pressure of -0.30 kbar. As a
reference, bulk values from Ref.8 are a = 0.512 nm and b =

0.362 nm.

z

x
y

(a)

(b)

FIG. 1. Representation of a ZrS3 unit cell (a) and a supercell made
of 6x100x1 replicas of the former (b) with atoms painted in orange
for zirconium and in blue for sulfur as well.

Starting from the optimized primitive cell, we compute the
interatomic force constants (IFCs) in 4×5 supercells using the
finite differences method. For the harmonic displacements we
use the PHONOPY code31 considering all neighboring interac-
tions. THIRDORDER.PY32,33 is used to characterize the anhar-
monic interactions, neglecting those beyond seventh neigh-
bors. The IFCs are then used as an input to solve the Boltz-
mann Transport Equation (BTE) iteratively with the almaBTE
code34 and the lattice thermal conductivity is obtained as

κi j = ∑
λ

κi j,λ =C∑
λ

fλ ( fλ +1)(hνλ )
2vi,λ Fj,λ , (2)

where i and j are the spatial directions x, y, and z, C−1 =
kBT 2ΩN being kB Boltzmann’s constant, h the Planck’s con-
stant, Ω the unit cell’s volume, and N the number of q-points.
The summation in Eq. 2 runs over all phonon modes λ ; each
mode has a frequency νλ and a group velocity vλ , and at ther-
mal equilibrium at temperature T its occupancy follows the
Bose-Einstein distribution fλ . The mean free displacement is
initially calculated as Fj,λ = τλ v j,λ , where τλ is the lifetime
of mode λ within the relaxation time approximation (RTA).
Starting from this guess, the solution is then obtained itera-
tively and Fj,λ takes the general form τλ (v j,λ +∆ j,λ ), where
the correction ∆λ captures the changes in the heat current as-
sociated to the deviations in the phonon populations computed
at the RTA level35,36. Scattering from isotopic disorder is
also included considering the natural distributions of Zr and
S isotopes within Tamura’s model37. Given that we use pe-
riodic boundary conditions and the corresponding breakdown
of continuous rotation symmetry, the phonon frequencies of
2D systems calculated using this method are known to include
numerical error that can lead to the appearance of artificial
imaginary acoustic frequencies near Γ.16,17,38 Therefore, we
apply a correction38 to enforce the rotational symmetry in our
calculations.
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B. Parameterization of the force field

Our empirical interatomic potential (EIAP) for ZrS3 mono-
layers takes the classical Tersoff39 form

Vi j(ri j) = fC(ri j) [ fR(ri j)+bi j fA(ri j)] , (3)

where the functions f ’s are defined as follows

fC(r) =







1 : r < R−D
1
2 −

1
2 sin

(

π
2

r−R
D

)

: R−D < r < R+D

0 : r > R+D

fR(r) = Aexp(−λ1r),

fA(r) =−Bexp(−λ2r),

bi j = (1+β nζi j
n)

− 1
2n ,

ζi j = ∑
k 6=i, j

fC(rik)g(θi jk)exp
[

λ3
3(ri j − rik)

3
]

,

g(θi jk) = 1+
c2

d2 −
c2

[

d2 +(h− cosθi jk)2
] .

(4)

The functions f ’s depend on the two-body interatomic dis-
tance ri j between the atom i and its neighbor j. fR is the
repulsive potential energy function, fA is the attractive poten-
tial energy function. The parameter bi j depend on two- and
three-body interactions that take the distances ri j and rik and
the angle θi jk. The pairwise separation rik is taken between
the atom i and its neighbor k. Both distances are then taken to
determine the angle θi jk with the particle i as the central atom.
fC is a smooth cutoff function that limits the range of the po-
tential over the nearest-neighbor interactions within a cutoff
distance, R+D.

Considering the atoms within the cutoff distance by R and
D, two-body parameters, A, B, λ1, λ2 for S-S interactions, and
both two-body (A, B, λ1, λ2) and desired three-body (λ3, n, β ,
c, d, h) parameters for Zr-S (Zr-S-S, and S-Zr-Zr) interactions
are obtained through the particle swarm optimization (PSO)
method40–43. For this purpose, the fitness function for the PSO

f (x) =
I

∑
i=1

di −ai

di

, (5)

where di points out the desired value of the characteristic i

obtained by first-principles calculations, ai points out the ac-
tual value of the characteristic i obtained via the empirical po-
tential for a given set of parameters, and I = 103 is the total
number of the certain physical characteristics of crystal to be
optimized simultaneously. These characteristics are two lat-
tice constants, ninety-three phonon frequencies corresponding
to the selected acoustic (and optic) vibrations for three (and
four) different wavelengths, eight total energy variations with
respect to the cross-sectional area of the unit cell. Throughout
the optimization process, the actual values with the EIAP pa-
rameter sets are determined by using the General Utility Lat-
tice Program (GULP)44. As the criteria to terminate the opti-
mization process, the average error rate of the fitness function
on all characteristics is considered to be less than 8%.

Table I lists all the parameters employed by our EIAP
model. Note that our parametrization does not include S-S
interactions as these occur beyond the cutoff limits consid-
ered by our force field. Nevertheless, we express most of the
parameters to one or zero to mathematically express that the
forces between sulphur atoms are null. Nevertheless, if the
definition of these parameters is needed, users can choose the
other parameters arbitrarily by accepting the β parameter as
zero.

TABLE I. Optimized Tersoff-type EIAP parameters obtained by us-
ing the PSO method for the ZrS3.

[1.5pt] S-S Zr-S S-Zr

[1.1pt] A (eV ) 6079.509429 6791.038544 6791.038544
B (eV ) 3469.937384 2571.342251 2571.342251
λ1 (Å−1) 4.097976 2.682439 2.682439
λ2 (Å−1) 5.406911 2.262903 2.262903
λ3 (Å−1) 1 3.220796 2.360710
n 1 16.561661 17.871640
β 0 3.025912e-6 3.785443e-6
c 1 61909.933731 52020.863988
d 1 11.669713 18.592590
h 1 -0.227712 -0.179199
R (Å) 2.40 3.40 3.40
D (Å) 0.10 0.20 0.20

Having defined each one of the interactions, we discuss
now the optimization process. This process takes as input the
cell vectors and phonon dispersion curves obtained with DFT
and then optimizes the lattice constants of the unit cell and
the phonon frequencies corresponding to the selected acousti-
cal and optical vibrations using different wavelengths. Once
the optimisation is finished, we show in Fig. 2 the phonon
dispersion curves calculated from density functional theory
(DFT) and the optimized potential parameters (EIAP), noting
the good agreement for the lowest-lying frequency branches,
which are the largest contributors to phonon transport. The
phonon dispersion curves do not account for long-range elec-
trostatic interactions. Sohier et al.45 showed that when this
is done properly for 2D materials: (i) the TO-LO splitting at
the Γ point is suppressed and that (ii) at low q-vectors the
optical phonon branches depend linearly on the crystal mo-
mentum. The suppression of the TO-LO splitting, in practice,
is achieved by not including the so-called non-analytical cor-
rections in their common 3D formulation, as corroborated re-
cently in a joint theoretical-experimental study46. Conversely,
the linear dependence of the optical phonon energy at small
q-vectors requires an ad hoc implementation.47 Nevertheless,
we observe that the expected effect of this improved descrip-
tion of the optical phonons next to the Γ point on the estimate
of the thermal conductivity is at most very small, but typi-
cally negligible. For instance, minimal differences have been
found in the thermal conductivity of polar III-V semiconduc-
tors, such as GaAs or InP, upon adding the non-analytical cor-
rections in the harmonic force constants.48

Using the parameters in Table I, we obtain for the unit cell
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FIG. 2. Phonon dispersion curves obtained with the first-principles
(DFT, red line), force-field-based calculations (EIAP, blue line) for
the monolayer ZrS3.

the lattice parameters a = 0.512 nm and b = 0.365 nm that are
in excellent agreement with their counterparts obtained with
DFT (a = 0.512 nm and b = 0.363 nm). In addition, we plot
the variation of the system’s total energy with respect to the
cross sectional area of the unit cell in Fig. 3.
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FIG. 3. Variation of the system’s total energy E with first-principles
(DFT in red) and force-field-based calculations (EIAP in blue) vs.
the relative difference of the cross sectional area A of the unit cell
for the ZrS3 monolayer with respect to their corresponding values in
equilibrium E0 and A0.

C. Non-equilibrium molecular dynamics

Once the parameters of the EIAP model are determined, we
use the LAMMPS49 MD code to calculate the thermal con-
ductivities of single layers of ZrS3 using the reversed non-

equilibrium method18. In this method, a heat flux is induced
along the x and y directions by removing and adding a fixed
amount of energy e each time step in two narrows regions with
a thickness 5 nm: the first one is located at x = 0 and y = 0
nm and is referred to as the hot reservoir, and the second slit is
located at one half of the system’s lengths Lx and Ly referred
to as the cold reservoir. As the equations of motion are being
integrated at constant volume and energy (NVE), the system’s
response is a temperature gradient dT/dx established along
the heat flux direction between both reservoirs. Then, by us-
ing in all cases the same amount of heat flux q and assuming
that non-linear effects in the heat transport can be neglected,
the thermal conductivity can be computed using Fourier’s law

q =
e

A
=−κ

dT

dx
, (6)

where A is the cross section area of the ZrS3 monolayer that
has a thickness ∆z = 0.898 nm taken from the experimental
value of the interlayer separation8 and a cross-section of ∆y∆z

if the flux is applied along the x direction and ∆x∆z along the
y axis. The value of ∆x is 3.07 nm and ∆y is 2.19 nm, which
both are obtained by replicating the unit cell six times in the x
and y directions, respectively.

The systems are then built replicating the unit cell Nrep,x

= 600, 800, 1000, and 1400 times in the x direction to com-
pute the component κxx and Nrep,y = 600, 800, 1200, and 2000
times in the y axis to calculate the component κyy, accounting
for supercell sizes of up to 716.8 and 726 nm, respectively.
Next, these layers are relaxed in two MD runs of 200 ps long
each one with a timestep ∆t of 0.5 x 10−3 ps: the first at 1 bar
and 300 K (NPT); the second at constant volume and energy
(NVE). Finally, we proceed with a third MD run where at each
timestep we add 2 x 10−5 eV to the heat reservoir and subtract
this exact same energy from its cold counterpart. During this
NVE run, the equations of motion are integrated for 7.5 ns for
the smallest and medium-sized systems and 20.0 ns for the
two largest ones (i.e. those taking 6 x 1400 x 1 and 6 x 2000 x
1 replicas). The simulations times are long enough such that
the temperature at the reservoirs is stabilized at around 50 %
of the final simulation time. At this point we start computing
the temperatures along the slab every 5 ps to obtain the ther-
mal gradient. This gradient is determined by dividing the slab
in Nrep,y = Nrep,x/10 domains, which usually contains nearly
500 atoms, a population large enough to define the tempera-
ture at each region j using the equipartition theorem for a 3D
system

3N jkBTj =
1
2 ∑

i

mi(vi −v j)
2, (7)

where kB is the Boltzmann constant, mi is the mass of the ith

atom and vi its the velocity vector and v j is the velocity vector
of the center of mass in each region that contains N j particles.

D. Vibrational analysis

We also extract the vibrational density of states from ZrS3
monolayers using classical MD with our interatomic potential
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and compare it with that obtained employing ab initio molecu-
lar dynamics (AIMD). We calculate these densities of states as
the Fourier transform of the velocity autocorrelation function
Z(tn), which is computed as

Z(tn) =
1

Nat

Nsim

∑
n=0

Nat

∑
i=1

vi(tn) ·vi(t0), (8)

where vi(tn) is the velocity vector of the ith atom at the initial
at time tn, Nat is the number of atoms in the system, and Nsim is
the number of integration steps with a length ∆t = 0.5 x 10−3

ps for the AIMD and MD simulations.
For ab initio MD, we change the following DFT parameters

from the scheme used to obtain the phonon dispersion curves.
We use a less strict threshold of 1 x 10−5 eV (i.e., nonethe-
less 1.04 x 10−7 eV/atom) for self-consistency solution of the
wavefunction to make it several times faster. In addition, due
to the high cost of running AIMD simulations, the size of the
monolayer is restricted to 3 x 4 cells in the x and y directions,
respectively. The monolayer is first relaxed at 1 bar and 300
K using a NPT scheme for 2 x 104 steps. After this 10-ps re-
laxation, the velocity autocorrelation function is calculated at
each integration step, upon which the atomic trajectories are
determined at constant volume at 300 K for another 10 ps. For
the MD simulation, the monolayers have two sizes: 3 x 4 to
compare directly with ab initio results and 10 x 14 to evaluate
any size effects of our interatomic potential on the frequen-
cies. In these classical runs, the two monolayers are relaxed
at 1 bar and 300 K during 200 ps to then collect the autocor-
relation function at each time step using a NVT simulation at
300 K for 7.5 ns.

III. RESULTS AND DISCUSSION

We start presenting our non-equilibrium MD results with
the thermal gradient obtained for a representative case. Figure
4 illustrates the thermal gradient along the y direction across
the system made with 6 x 2000 replicas of the unit cell accom-
panied by the linear fits that are taken to obtain thermal gradi-
ents in absolute values of 0.171 K/nm between in left-hand-
side region between the cold and hot reservoirs and 0.159
K/nm on its right-hand-side partner. For this case and the rest
of them, we take the average of both gradients and plug it into
eq. 6 to determine a value of 26.75 W m−1 K−1 for κyy with
a length Ly = 738.91 nm. This averaging procedure yields a
value of κxx = 19.45 W m−1 K−1 for Lx = 720.31 nm.

The next step in the non-equilibrium method,19,50 is to plot
the reciprocal values of κxx and κyy vs. the lengths Lx and Ly

to remove the contribution of boundary scattering by extrap-
olating the behavior of the thermal conductivity for infinitely
large cells. Fig. 5 shows the linear relationships between 1

κxx

with decreasing 1
Lx

and 1
κyy

with decreasing 1
Ly

at 300 K. Both
sets are then fitted according to

1
κii

=
1

κ∞
ii

(

λ

Li

+1
)

, (9)
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where λ is the effective phonon mean free path and κii,∞ is the
component of the thermal conductivity for a given direction i.
Both linear fittings predict that κxx = 25.69 W m−1 K−1 and
κyy = 42.38 W m−1 K−1, yielding an anisotropic ratio κyy/κxx

of 1.65. These values compare very well with those obtained
using first-principles simulations: κxx = 25.68 W m−1 K−1

and κyy = 40.72 W m−1 K−1, which result in an anisotropic
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ratio κyy

κxx
= 1.54 using a mesh of 55 x 55 x 1 q-points in the

reciprocal space to sample the Brillouin zone. We find that
while the prediction for the x-component with DFT is excel-
lent, while the discrepancy in the y axis is only -4.06 %, which
can be attributed to two factors: first, the inherent error be-
tween the lowest-lying phonon branches along the path Γ-Z
shown in Fig. 2; second, the unavoidable error when project-
ing the thermal conductivity in the limit of 1/Lx and 1/Ly →
0. Nonetheless, we find that this second source of discrep-
ancy with DFT is reasonable as we find that κxx reaches 73.13
% of its projected value with Lx = 720.39 nm and κyy attains
70.22% with Ly = 738.74 nm. These contributions compare
well with those given by our first-principles scheme, which
predicts that with these lengths approximately 56% of κxx and
60% of κyy are reached as shown in Fig. 6.
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FIG. 6. Normalized cumulative function of the components of the
tensor of the lattice thermal conductivity κcum

ph,xx and κcum
ph,yy as a func-

tion of the phonon mean free path from first-principles calculations
at 300 K .

Note though that DFT results are generally subject to sev-
eral choices such as the exchange-correlation functional,51 the
thresholds for the energy in the self-consistency solution of
wavefunction and for the forces in the geometry optimiza-
tion, and the number q-points23. In particular, this number
produces some variance in the thermal conductivity compo-
nents. For instance, κxx is equal to 22.47 W m−1 K−1 with
50 q-points and to 24.81 W m−1 K−1 with 60 q-points, while
the corresponding values for κyy are 39.73 and 38.28 W m−1

K−1. Although both magnitudes are stabilized between 50 and
60 q-points, their oscillations in this range are high enough
to increase or reduce the discrepancy with our MD results.
Furthermore, another source discrepancy emerges from the
role of scattering from isotopic disorder included by default
in our first-principles methodology37. Although the inclusion
of these isotopic disorder is made by default in the almaBTE
code, we expect a little contribution towards the discrepancy
with MD values.

Nevertheless, the comparison between both techniques at
this point lacks a critical factor: temperature , which brings
the influence of lattice expansion and phonon-phonon scatter-
ing with thermal vibrations. For the lattice expansion, note
that our first-principles computations depend on the DFT ma-
trices of second and third order force constants calculated at
zero Kelvin with a = 0.512 nm and b = 0.363 nm, while in our
MD computations the corresponding averaged values of a are
0.513, 0.514, 0.516, and 0.518 nm for the monolayer made of
400x6x1 unit cells, while for b are 0.367, 0.368, 0.369, 0.370
nm and using the for the system composed of 6x400x1 unit
cells at 100, 200, 300, and 400 K. In both cases, the differ-
ence between MD and freezed values of the lattice constants
obtained are up to 0.74% for a and 2.18% for b, which indi-
cates that lattice expansion with increasing temperature is a
non-negligible factor that make these two force constants dif-
fer in DFT and MD differ, and hence, the thermal conductivity
obtained with Eq. 2. For the phonon-phonon scattering with
thermal vibrations, the phonon frequencies displayed in Fig. 2
indicate that when temperature is imposed the peaks of the as-
sociated density of states degenerate, perturbing the weight of
acoustic and optical frequencies towards thermal transport in
Eq. 2, which adds an another source of discrepancy between
the results found with first-principles and classical MD.

Therefore, our investigation about this discrepancy brings
us now to study the vibrational spectra of ZrS3 monolayers
collected from both techniques. However, we are here in-
terested in finding how our interatomic potential reproduces
the vibrational peaks in range of temperatures between 10 K
and 400 K with ab initio and classical MD with a monolayer
built with 3x4 unit cells. Figure 7(a) shows that the AIMD
vibrational spectrum at 10 K have the strongest peak near 2
THz, which coincides with the frequency ranges that are oc-
cupied by the lowest-lying phonon branches collected at T =
0 K shown in Fig. 2. Fig. 7(a) also shows other weaker peaks
up to nearly 11 THz and a phonon gap roughly sitting in an
interval delimited by this frequency and 13.75 THz. At this
point and near 15 THz, we collect two weak optical signals,
in good agreement with the phonon dispersions. However, as
the temperature is increased in AIMD, the strength of all these
peaks is dramatically changed. For instance, although the first
peak persists at 100 K, it vanishes for higher temperatures,
while intermediate signals between 6 and 8 THz clearly stand
out. It is remarkable that at 200 K and above, our AIMD sim-
ulations show a stronger optical peak, consequently defining
a clearer phonon gap. In contrast, only a few of these AIMD
features are reproduced by its classical MD counterparts de-
picted in Fig. 7(b). For example, MD barely reproduces the
AIMD mark at 2 THz; which needs higher temperatures to
recover. In addition, although the phonon gap virtually dis-
appears for all temperatures, we find that the optical vibra-
tions are displayed for 200 K and above, in agreement with
our quantum mechanical spectra. Finally, we assess the influ-
ence of the system size on these MD densities of states with a
much larger monolayer made of 10x14 unit cells. The spectra
in Fig. 7(c) shows that although most of the optical peaks are
washed away, the signals up to 6 THz are still well defined.

Finally, we evaluate the values of κxx and κyy as a func-
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FIG. 7. Normalized VDOS at 10, 100, 200, 300, and 400 K collected
with ab initio molecular dynamics (AIMD) using monolayers made
by replicating the unit cells 3x4 (a), and classical MD with 3x4 (b)
and 10x14 replicas (c).

tion of temperature predicted with our NEMD method and
compare them with those computed with first-principles lat-
tice dynamics. Figure 8 shows the decrease of κxx and κyy

with increasing temperature between 100 and 400 K. The
first-principles components strongly reduce with temperature,
starting with κxx = 97.24 W m−1 K−1 and κyy = 150.96 W
m−1 K−1 at 100 K and shrinking down to 18.30 and 28.21
W m−1 K−1 at 400 K, respectively. This decrease indicates
that Umklapp processes are the dominant scattering mecha-
nism, a feature also found in TiS3 monolayers.17 The NEMD
counterparts also exhibit a decrease but not as pronounced as
κxx decreases from 29.42 W m−1 K−1 at 100 K to 26.28 W
m−1 K−1 at 400 K and κyy from 49.34 to 33.41 W m−1 K−1.
We believe that this much lower sensitivity to temperature is

caused by several factors: first, anharmonic effects with fourth
order or higher not taken into account by our first-principles
scheme52–54; second, strain effects produced by the mono-
layer buckling, which we have shown that enhance phonon
scattering in ZrS3 monolayers that ultimately reduce the ther-
mal conductivity by up five-fold23; third, the well-known dif-
ferences in the phonon distributions between molecular dy-
namics and first-principles descriptions, evidenced in the vi-
brational spectra illustrated in Fig. 7; fourth, classical tra-
jectories cannot be used to determine thermal conductivities
at low temperatures because quantum effects in the nuclear
motion are neglected by our EIAP. Therefore, the disagree-
ment between DFT and MD conductivities below 200 K is
expected as, in principle, our results are accurate only at suf-
ficiently high temperatures, where the Maxwell-Boltzmann
distribution can be assumed to be a good approximation to
Bose-Einstein statistics for phonon populations. However,
even if this approximation cannot be assumed and hence quan-
tum effects are expected to be significant below the Debye
temperature, thermal conductivities computed with MD agree
well with the available experimental data. A number of stud-
ies have investigated this feature in bulk-like and 2D materi-
als in a number of studies,55–57 which has been attributed to
the compensation of two opposite errors provided by classi-
cal simulations: shorter phonon lifetimes and larger single-
phonon contributions to heat capacity than their quantum
counterparts.
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FIG. 8. Thermal conductivities κxx and κyy calculated with NEMD
and DFT vs. temperature.

IV. CONCLUSIONS

In summary, this manuscript presents a new interatomic po-
tential that reproduces the phonon transport properties of zir-
conium trisulphide monolayers predicted with first-principles
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lattice dynamics. This work is intended to compare the ther-
mal conductivity obtained with our potential with that com-
puted with a standard first-principles methodology, which is
based on DFT and a solution of the Boltzmann Transport
Equation beyond the relaxation time approximation (RTA).
This methodology treats anharmonicity up to the third order
and provides good agreement with available experimental re-
sults on several 2D materials.58,59. We have employed the
non-equilibrium method to predict the components κxx and
κyy of the thermal conductivity tensor. Our molecular dy-
namics scheme predicts at 300 K κxx is 25.69 W m−1 K−1

and κyy = 42.38 W m−1 K−1, which both agree well with
their corresponding first-principles counterparts of 25.68 and
40.72 W m−1 K−1. We believe that the small disagreement in
the x-direction is caused by inherent discrepancy between the
lowest-lying phonon branches along the path [0, 0, 0] → [0,
1/2, 0] and the unavoidable uncertainty when projecting the
thermal conductivity in the limit of 1/Lx and 1/Ly → 0.

Additionally, we extract the vibrational density of states of
the monolayers with classical and ab initio molecular dynam-
ics. We find that most of the ab initio peaks are well repro-
duced by our interatomic potential, which naturally tends to
generate a noisier signals. However, the optical peaks in the
classical spectra are completely degenerated, which we think
is caused by the sinusoidal movement of the monolayer that
could be inhibited by the smaller computational cell that we
have had to use in AIMD. Finally, we test our interatomic po-
tential by computing κxx and κyy as a function of temperature
between 100 and 400 K. Our calculations indicate that both
magnitudes shows a less pronounced decrease with increasing
temperature than that shown by those determined with first-
principles lattice dynamics. A feature that suggests again that
the influence of the effects caused by anharmonicity with or-
ders higher than three, the monolayer buckling that induces a
strain to the ZrS3 monolayers, and the unsuitability of the ap-
proximation of classical ionic trajectories at low temperature
in MD.

V. SUPPLEMENTARY INFORMATION

We provide as a supplementary information the parameters
of our interatomic potential for its in LAMMPS.
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