toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Molnar, B.; Vasilopoulos, P.; Peeters, F.M. openurl 
  Title Square-wave conductance through a chain of rings due to spin-orbit interaction Type P1 Proceeding
  Year 2005 Publication AIP conference proceedings Abbreviated Journal  
  Volume 772 Issue Pages 1335-1336  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We study ballistic electron transport through a finite chain of quantum circular rings in the presence of spin-orbit interaction (SOI) of strength alpha. The transmission and reflection coefficients for a single ring, obtained analytical lylead to the conductance for a chain of rings as a function of alpha and of the wave vector k of the incident electron. Due to destructive spin interferences the chain can be totaly opaque for certain ranges of k the width of which depends on the value of alpha. A periodic modulation of a widens up the gaps considerably and produces a nearly binary conductance output.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:94771 Serial (up) 3113  
Permanent link to this record
 

 
Author Shanenko, A.A.; Smondyrev, M.A.; Devreese, J.T. openurl 
  Title Stabilisation of bipolarons by polaron environment Type A1 Journal article
  Year 1996 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 98 Issue Pages 1091  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1996UT02900012 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 11 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:16186 Serial (up) 3115  
Permanent link to this record
 

 
Author Goldoni, G.; Schweigert, V.; Peeters, F.M. doi  openurl
  Title Stability and dynamical properties of a double-layer Wigner crystal in two dimensions Type A1 Journal article
  Year 1996 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 361/362 Issue Pages 163-166  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996UZ03300041 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.925 Times cited 4 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:15814 Serial (up) 3118  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Baelus, B.J.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Stability and transition between vortex configurations in square mesoscopic samples with antidots Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 68 Issue Pages 174521,1-19  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000186971600089 Publication Date 2003-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 51 Open Access  
  Notes Approved Most recent IF: 3.836; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:44984 Serial (up) 3121  
Permanent link to this record
 

 
Author Smondyrev, M.A.; Shanenko, A.A.; Devreese, J.T. openurl 
  Title Stability criterion for large bipolarons in a polaron-gas background Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 63 Issue Pages 024302,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:34310 Serial (up) 3122  
Permanent link to this record
 

 
Author Goldoni, G.; Peeters, F.M. doi  openurl
  Title Stability, dynamical properties and melting of a classical bi-layer Wigner crystal Type A1 Journal article
  Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 53 Issue Pages 4591-4603  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996TZ17700056 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 117 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:15800 Serial (up) 3123  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.; van Duin, A.T. doi  openurl
  Title Stability of CH3 molecules trapped on hydrogenated sites of graphene Type A1 Journal article
  Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 455 Issue Pages 60-65  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the effect of a hydrogen atom on the thermal stability of a trapped CH3 molecule on graphene using ReaxFF molecular dynamics simulations. Due to the hydrogen-molecule interaction, enhanced pinning of the CH3 molecule is observed when it is positioned adjacent to the graphene site with the hydrogen atom. We discuss the formation process of such a stable configuration, which originates from different adhesion and migration energies of the hydrogen atom and the CH3 molecule. We also studied the effect of the CH3-H configuration on the electronic transport properties of graphene nanoribbons using first principles density-functional calculations. We found that the formation of the CH3-H structure results in extra features in the transmission spectrum due to the formation of strongly localized states, which are absent when the CH3 molecule is trapped on pristine graphene. Our findings will be useful in exploiting gas sensing properties of graphene, especially for selective detection of individual molecules. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000344239200016 Publication Date 2014-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.386 Times cited 5 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-VI). A. van Duin acknowledges funding from the Air Force Office of Scientific Research (AFOSR) under Grant no. FA9550-10-1-0563 G. R. Berdiyorov acknowledges support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under the RG1329-1 and RG1329-2 DSR projects. ; Approved Most recent IF: 1.386; 2014 IF: 1.319  
  Call Number UA @ lucian @ c:irua:121193 Serial (up) 3124  
Permanent link to this record
 

 
Author Peeters, F.M.; Szafran, B.; Chwiej, T.; Bednarek, S.; Adamowski, J. doi  openurl
  Title Stability of charged exciton states in quantum wires Type A1 Journal article
  Year 2006 Publication Few-body systems Abbreviated Journal Few-Body Syst  
  Volume 38 Issue 2/4 Pages 121-124  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wien Editor  
  Language Wos 000238498200013 Publication Date 2006-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963;1432-5411; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.877 Times cited 3 Open Access  
  Notes Approved Most recent IF: 0.877; 2006 IF: 0.765  
  Call Number UA @ lucian @ c:irua:60035 Serial (up) 3125  
Permanent link to this record
 

 
Author Pina, J.C.; de Souza Silva, C.C.; Milošević, M.V. url  doi
openurl 
  Title Stability of fractional vortex states in a two-band mesoscopic superconductor Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 2 Pages 024512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the stability of noncomposite fractional vortex states in a mesoscopic two-band superconductor within the two-component Ginzburg-Landau model. Our analysis explicitly takes into account the relationship between the model parameters and microscopic material parameters, such as partial density of states, Fermi velocities and elements of the electron-phonon coupling matrix. We have found that states with different phase winding number in each band (L-1 not equal L-2) and fractional flux can exist in many different configurations, including rather unconventional ones where the dominating band carries larger winding number and states where vertical bar L-1 – L-2 vertical bar > 1. We present a detailed analysis of the stability of the observed vortex structures with respect to changing the microscopic parameters, showing that, in the weak coupling case, fractional vortex states can be assessed in essentially the whole range of temperatures and applied magnetic fields in which both bands are active. Finally, we propose an efficient way of increasing the range of parameters for which these fractional vortex states can be stabilized. In particular, our proposal allows for observation of fractional vortex structures in materials with stronger coupling, where those states are forbidden at a homogeneous field. This is accomplished with the help of the stray fields of a suitably prepared magnetic dot placed nearby the superconducting disk.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000306309600006 Publication Date 2012-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; We thank Eric B. Claude, Miguel A. Zorro, and Rogerio M. da Silva for assistance in the development of the numerical code used in our simulations. This work was supported by the Brazilian science agencies CNPq and FACEPE, by the FACEPE/CNPq-PRONEX program, under Grant No. APQ-0589-1.05/08, and by CNPq-FWO Brazil-Flanders co-operation program. M.V.M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100766 Serial (up) 3126  
Permanent link to this record
 

 
Author Smondyrev, M.A.; Verbist, G.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Stability of multipolaron matter Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 47 Issue 5 Pages 2596-2601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993KL78900022 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 10 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:5745 Serial (up) 3127  
Permanent link to this record
 

 
Author Govaerts, K.; Sluiter, M.H.F.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Stability of Sb-Te layered structures : first-principles study Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 14 Pages 144114-144114,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Using an effective one-dimensional cluster expansion in combination with first-principles electronic structure calculations we have studied the energetics and electronic properties of Sb-Te layered systems. For a Te concentration between 0 and 60 at. % an almost continuous series of metastable structures is obtained consisting of consecutive Sb bilayers next to consecutive Sb2Te3 units, with the general formula (Sb-2)(n)(Sb2Te3)(m) (n, m = 1,2, ... ). Between 60 and 100 at.% no stable structures are found. We account explicitly for the weak van derWaals bonding between Sb bilayers and Sb2Te3 units by using a recently developed functional, which strongly improves the interlayer bonding distances. At T = 0 K, no evidence is found for the existence of two separate single-phase regions delta and gamma and a two-phase region delta + gamma. Metastable compounds with a Te concentration between 0 and 40 at. % are semimetallic, whereas compounds with a Te concentration between 50 and 60 at. % are semiconducting. Compounds with an odd number of Sb layers are metallic and have a much higher formation energy than those with an even number of consecutive Sb layers, thereby favoring the formation of Sb bilayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303115400004 Publication Date 2012-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes Iwt; Fwo Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98255 Serial (up) 3129  
Permanent link to this record
 

 
Author Schoeters, B.; Neyts, E.C.; Khalilov, U.; Pourtois, G.; Partoens, B. url  doi
openurl 
  Title Stability of Si epoxide defects in Si nanowires : a mixed reactive force field/DFT study Type A1 Journal article
  Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 15 Issue 36 Pages 15091-15097  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Modeling the oxidation process of silicon nanowires through reactive force field based molecular dynamics simulations suggests that the formation of Si epoxide defects occurs both at the Si/SiOx interface and at the nanowire surface, whereas for flat surfaces, this defect is experimentally observed to occur only at the interface as a result of stress. In this paper, we argue that the increasing curvature stabilizes the defect at the nanowire surface, as suggested by our density functional theory calculations. The latter can have important consequences for the opto-electronic properties of thin silicon nanowires, since the epoxide induces an electronic state within the band gap. Removing the epoxide defect by hydrogenation is expected to be possible but becomes increasingly difficult with a reduction of the diameter of the nanowires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000323520600029 Publication Date 2013-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 3 Open Access  
  Notes ; BS gratefully acknowledges financial support of the IWT, Institute for the Promotion of Innovation by Science and Technology in Flanders, via the SBO project “SilaSol”. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. ; Approved Most recent IF: 4.123; 2013 IF: 4.198  
  Call Number UA @ lucian @ c:irua:110793 Serial (up) 3130  
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Peeters, F.M. url  doi
openurl 
  Title Stability of spintronic devices based on quantum ring networks Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 12 Pages 125324,1-125324,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport properties in mesoscopic networks are investigated, where the strength of the (Rashba-type) spin-orbit coupling is tuned with external gate voltages. We analyze in detail to what extent the ideal behavior and functionality of some promising network-based devices are modified by random (spin-dependent) scattering events and by thermal fluctuations. It is found that although the functionality of these devices is obviously based on the quantum coherence of the transmitted electrons, there is a certain stability: moderate level of errors can be tolerated. For mesoscopic networks made of typical semiconductor materials, we found that when the energy distribution of the input carriers is narrow enough, the devices can operate close to their ideal limits even at relatively high temperature. As an example, we present results for two different networks: one that realizes a Stern-Gerlach device and another that simulates a spin quantum walker. Finally we propose a simple network that can act as a narrow band energy filter even in the presence of random scatterers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383300091 Publication Date 2009-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79230 Serial (up) 3131  
Permanent link to this record
 

 
Author Marmorkos, I.K.; Matulis, A.; Peeters, F.M. openurl 
  Title Stability of the superconducting vortex structure around a magnetic dot Type A3 Journal article
  Year 1995 Publication Physics of low-dimensional structures Abbreviated Journal  
  Volume 10/11 Issue Pages 77-86  
  Keywords A3 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:13036 Serial (up) 3133  
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Stabilization of vortex-antivortex configurations in mesoscopic superconductors by engineered pinning Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue Pages 184511,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000246890600093 Publication Date 2007-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:69649 Serial (up) 3139  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Neek-Amal, M.; Peeters, F.M.; van Duin, A.C.T. url  doi
openurl 
  Title Stabilized silicene within bilayer graphene : a proposal based on molecular dynamics and density-functional tight-binding calculations Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 2 Pages 024107-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Freestanding silicene is predicted to display comparable electronic properties as graphene. However, the yet synthesized silicenelike structures have been only realized on different substrates which turned out to exhibit versatile crystallographic structures that are very different from the theoretically predicted buckled phase of freestanding silicene. This calls for a different approach where silicene is stabilized using very weakly interacting surfaces. We propose here a route by using graphene bilayer as a scaffold. The confinement between the flat graphene layers results in a planar clustering of Si atoms with small buckling, which is energetically unfavorable in vacuum. Buckled hexagonal arrangement of Si atoms similar to freestanding silicene is observed for large clusters, which, in contrast to Si atoms on metallic surfaces, is only very weakly van der Waals coupled to the graphene layers. These clusters are found to be stable well above room temperature. Our findings, which are supported by density-functional tight-binding calculations, show that intercalating bilayer graphene with Si is a favorable route to realize silicene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332226200002 Publication Date 2014-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 43 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. One of us (F. M. P.) acknowledges discussions with Professor Hongjun Gao. G. R. B acknowledges the support of the King Fahd University of Petroleum and Minerals, Saudi Arabia, under the TPRG131-CS-15 DSR project. A.C.T.vD acknowledges funding from AFOSR Grants No. FA9550-10-1-0563 and No. FA9550-11-1-0158. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115829 Serial (up) 3140  
Permanent link to this record
 

 
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Stabilized vortex-antivortex molecules in a superconducting microdisk with a magnetic nanodot on top Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue 5 Pages 052502,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000244532600020 Publication Date 2007-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:63790 Serial (up) 3141  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M. doi  openurl
  Title Stable and metastable states in a mesoscopic superconducting “eight” loop in presence of an external magnetic field Type A1 Journal article
  Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 400 Issue 3-4 Pages 165-170  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The stable and metastable states of different configurations of a mesoscopic loop in the form of an eight is studied in the presence of a magnetic field. We find that for certain configurations the current is equal to zero for any value of the magnetic field leading to a magnetic field independent superconducting state. The state with fixed phase circulation becomes unstable when the momentum of the superconducting electrons reaches a critical value. At this moment the kinetic energy of the superconducting condensate becomes of the same order as the potential energy of the Cooper pairs and it leads to an instability. Numerical analysis of the time-dependent Ginzburg-Landau equations shows that the absolute value of the order parameter changes gradually at the transition from a state with one phase circulation to another although the vorticity change occurs abruptly. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000187726300010 Publication Date 2003-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.404; 2004 IF: 1.072  
  Call Number UA @ lucian @ c:irua:103757 Serial (up) 3142  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Singh, S.K.; Peeters, F.M. doi  openurl
  Title Stable half-metallic monolayers of FeCl2 Type A1 Journal article
  Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 106 Issue 106 Pages 192404  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural, electronic, and magnetic properties of single layers of Iron Dichloride (FeCl2) were calculated using first principles calculations. We found that the 1T phase of the single layer FeCl2 is 0.17 eV/unit cell more favorable than its 1H phase. The structural stability is confirmed by phonon calculations. We found that 1T-FeCl2 possess three Raman-active (130, 179, and 237 cm(-1)) and one infrared-active (279 cm(-1)) phonon branches. The electronic band dispersion of the 1T-FeCl2 is calculated using both gradient approximation of Perdew-Burke-Ernzerhof and DFT-HSE06 functionals. Both functionals reveal that the 1T-FeCl2 has a half-metallic ground state with a Curie temperature of 17 K. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000355008100020 Publication Date 2015-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 84 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.411; 2015 IF: 3.302  
  Call Number c:irua:126411 Serial (up) 3143  
Permanent link to this record
 

 
Author Leenaerts, O.; Schoeters, B.; Partoens, B. url  doi
openurl 
  Title Stable kagome lattices from group IV elements Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 115202  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A thorough investigation of three-dimensional kagome lattices of group IV elements is performed with first-principles calculations. The investigated kagome lattices of silicon and germanium are found to be of similar stability as the recently proposed carbon kagome lattice. Carbon and silicon kagome lattices are both direct-gap semiconductors but they have qualitatively different electronic band structures. While direct optical transitions between the valence and conduction bands are allowed in the carbon case, no such transitions can be observed for silicon. The kagome lattice of germanium exhibits semimetallic behavior but can be transformed into a semiconductor after compression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351900700003 Publication Date 2015-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125516 Serial (up) 3144  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Stacking order dependent electric field tuning of the band gap in graphene multilayers Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 11 Pages 115432,1-115432,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of different stacking order of graphene multilayers on the electric field induced band gap is investigated. We considered a positively charged top and a negatively charged back gate in order to independently tune the band gap and the Fermi energy of three and four layer graphene systems. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We found that the gap for trilayer graphene with the ABC stacking is much larger than the corresponding gap for the ABA trilayer. Also we predict that for four layers of graphene the energy gap strongly depends on the choice of stacking, and we found that the gap for the different types of stacking is much larger as compared to the case of Bernal stacking. Trigonal warping changes the size of the induced electronic gap by approximately 30% for intermediate and large values of the induced electron density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000276248800145 Publication Date 2010-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 142 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82274 Serial (up) 3148  
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.; Bednarek, S. url  doi
openurl 
  Title Stark effect on the exciton spectra of vertically coupled quantum dots: horizontal field orientation and nonaligned dots Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue 11 Pages 115303,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000245329600070 Publication Date 2007-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:64292 Serial (up) 3149  
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Stark shift in single and vertically coupled type-I and type-II quantum dots Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 23 Pages 233301,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000176767900018 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 43 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:62431 Serial (up) 3150  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Baelus, B.J.; Peeters, F.M. url  doi
openurl 
  Title Stationary-phase slip state in quasi-one-dimensional rings Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 66 Issue 5 Pages 054531-54536  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The nonuniform superconducting state in a ring in which the order parameter vanishing at one point is studied. This state is characterized by a jump of the phase by pi at the point where the order parameter becomes zero. In uniform rings such a state is a saddle-point state and consequently unstable. However, for nonuniform rings with, e.g., variations of geometrical or physical parameters or with attached wires this state can be stabilized and may be realized experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000177873000137 Publication Date 2002-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:104147 Serial (up) 3152  
Permanent link to this record
 

 
Author van Dyck, D.; Croitoru, M.D. pdf  url
doi  openurl
  Title Statistical method for thickness measurement of amorphous objects Type A1 Journal article
  Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 90 Issue 24 Pages 241911-241913  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The authors propose a nondestructive method for the determination of the thickness of an amorphous sample. This method is based on the statistics of the phase of the electron exit wave function, which depend on the number of atoms traversed by the incident electron which itself is a function of the thickness of the object. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential. (c) 2007 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000247305400033 Publication Date 2007-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes Fwo Approved Most recent IF: 3.411; 2007 IF: 3.596  
  Call Number UA @ lucian @ c:irua:102671 Serial (up) 3158  
Permanent link to this record
 

 
Author Sahin, H.; Sivek, J.; Li, S.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Stone-Wales defects in silicene : formation, stability, and reactivity of defect sites Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 4 Pages 045434-45436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract During the synthesis of ultrathin materials with hexagonal lattice structure Stone-Wales (SW) type of defects are quite likely to be formed and the existence of such topological defects in the graphenelike structures results in dramatic changes of their electronic and mechanical properties. Here we investigate the formation and reactivity of such SW defects in silicene. We report the energy barrier for the formation of SW defects in freestanding (similar to 2.4 eV) and Ag(111)-supported (similar to 2.8 eV) silicene and found it to be significantly lower than in graphene (similar to 9.2 eV). Moreover, the buckled nature of silicene provides a large energy barrier for the healing of the SW defect and therefore defective silicene is stable even at high temperatures. Silicene with SW defects is semiconducting with a direct band gap of 0.02 eV and this value depends on the concentration of defects. Furthermore, nitrogen substitution in SW-defected silicene shows that the defect lattice sites are the least preferable substitution locations for the N atoms. Our findings show the easy formation of SW defects in silicene and also provide a guideline for band gap engineering in silicene-based materials through such defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322113300007 Publication Date 2013-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 93 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109805 Serial (up) 3162  
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Janssens, K.L.; Korkusinski, M.; Hawrylak, P. url  doi
openurl 
  Title Strain and band edges in single and coupled cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 92 Issue 10 Pages 5819-5829  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A comparative study is made of the strain distribution in cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots as obtained from isotropic elasticity theory, the anisotropic continuum mechanical model, and from atomistic calculations. For the isotropic case, the recently proposed approach [J. H. Davies, J. Appl. Phys. 84, 1358 (1998)] is used, while the finite-element method, the valence force field method, and Stillinger-Weber potentials are employed to calculate the strain in anisotropic structures. We found that all four methods result in strain distributions of similar shapes, but with notable quantitative differences inside the dot and near the disk-matrix boundary. The variations of the diagonal strains with the height of the quantum dot, with fixed radius, as calculated from all models, are almost linear. Furthermore, the energies of the band edges in the two types of quantum dots are extracted from the multiband effective-mass theory by inserting the strain distributions as obtained by the four models. We demonstrated that all strain models produce effective potentials for the heavy and light holes which agree very well inside the dot. A negligible anisotropy of all normal strains in the (x,y) plane is found, which, providing the axial symmetry of the kinetic part of the multiband effective-mass Hamiltonian, justifies the use of the axial approximation. Strain propagation along the vertical direction is also considered with the aim to study the influence of strain on the electron coupling in stacks of quantum dots. We found that the interaction between the strain fields of the individual quantum dots makes the effective quantum wells for the electrons in the conduction band shallower, thereby counteracting the quantum mechanical coupling. (C) 2002 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000178987200036 Publication Date 2002-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 73 Open Access  
  Notes Approved Most recent IF: 2.068; 2002 IF: 2.281  
  Call Number UA @ lucian @ c:irua:103327 Serial (up) 3164  
Permanent link to this record
 

 
Author Arsoski, V.V.; Tadić, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Strain and band-mixing effects on the excitonic Aharonov-Bohm effect in In(Ga)As/GaAs ringlike quantum dots Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085314-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Neutral excitons in strained axially symmetric In(Ga)As/GaAs quantum dots with a ringlike shape are investigated. Similar to experimental self-assembled quantum rings, the analyzed quantum dots have volcano-like shapes. The continuum mechanical model is employed to determine the strain distribution, and the single-band envelope function approach is adopted to compute the electron states. The hole states are determined by the axially symmetric multiband Luttinger-Kohn Hamiltonian, and the exciton states are obtained from an exact diagonalization. We found that the presence of the inner layer covering the ring opening enhances the excitonic Aharonov-Bohm (AB) oscillations. The reason is that the hole becomes mainly localized in the inner part of the quantum dot due to strain, whereas the electron resides mainly inside the ring-shaped rim. Interestingly, larger AB oscillations are found in the analyzed quantum dot than in a fully opened quantum ring of the same width. Comparison with the unstrained ringlike quantum dot shows that the amplitude of the excitonic Aharonov-Bohm oscillations are almost doubled in the presence of strain. The computed oscillations of the exciton energy levels are comparable in magnitude to the oscillations measured in recent experiments. DOI: 10.1103/PhysRevB.87.085314  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315278000003 Publication Date 2013-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the EU NoE: SANDiE, the Ministry of Education, Science, and Technological Development of Serbia, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107656 Serial (up) 3165  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Strain-engineered graphene through a nanostructured substrate : 1 : deformations Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 19 Pages 195445-195445,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic simulations we investigate the morphological properties of graphene deposited on top of a nanostructured substrate. Sinusoidally corrugated surfaces, steps, elongated trenches, one-dimensional and cubic barriers, spherical bubbles, Gaussian bumps, and Gaussian depressions are considered as support structures for graphene. The graphene-substrate interaction is governed by van der Waals forces and the profile of the graphene layer is determined by minimizing the energy using molecular dynamics simulations. Based on the obtained optimum configurations, we found that (i) for graphene placed over sinusoidally corrugated substrates with corrugation wavelengths longer than 2 nm, the graphene sheet follows the substrate pattern while for supported graphene it is always suspended across the peaks of the substrate, (ii) the conformation of graphene to the substrate topography is enhanced when increasing the energy parameter in the van der Waals model, (iii) the adhesion of graphene into the trenches depends on the width of the trench and on the graphene's orientation, i. e., in contrast to a small-width (3 nm) nanoribbon with armchair edges, the one with zigzag edges follows the substrate profile, (iv) atomic-scale graphene follows a Gaussian bump substrate but not the substrate with a Gaussian depression, and (v) the adhesion energy due to van der Waals interaction varies in the range [0.1-0.4] J/m(2).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304394800012 Publication Date 2012-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 62 Open Access  
  Notes ; We thank L. Covaci and S. Costamagna for valuable comments. We acknowledge M. Zarenia, M. R. Masir and D. Nasr for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and ESF EUROCORE program EuroGRAPHENE: CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98942 Serial (up) 3166  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Strain-engineered graphene through a nanostructured substrate : 2 : pseudomagnetic fields Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 19 Pages 195446-195446,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The strain-induced pseudomagnetic field in supported graphene deposited on top of a nanostructured substrate is investigated by using atomistic simulations. A step, an elongated trench, a one-dimensional barrier, a spherical bubble, a Gaussian bump, and a Gaussian depression are considered as support structures for graphene. From the obtained optimum configurations we found very strong induced pseudomagnetic fields which can reach up to similar to 1000 T due to the strain-induced deformations in the supported graphene. Different magnetic confinements with controllable geometries are found by tuning the pattern of the substrate. The resulting induced magnetic fields for graphene on top of a step, barrier, and trench are calculated. In contrast to the step and trench the middle part of graphene on top of a barrier has zero pseudomagnetic field. This study provides a theoretical background for designing magnetic structures in graphene by nanostructuring substrates. We found that altering the radial symmetry of the deformation changes the sixfold symmetry of the induced pseudomagnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304394800013 Publication Date 2012-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF EUROCORE program EuroGRAPHENE: CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98943 Serial (up) 3167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: