|
Record |
Links |
|
Author |
Berdiyorov, G.R.; Neek-Amal, M.; Peeters, F.M.; van Duin, A.C.T. |
|
|
Title |
Stabilized silicene within bilayer graphene : a proposal based on molecular dynamics and density-functional tight-binding calculations |
Type |
A1 Journal article |
|
Year |
2014 |
Publication |
Physical review : B : condensed matter and materials physics |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
89 |
Issue |
2 |
Pages |
024107-6 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Freestanding silicene is predicted to display comparable electronic properties as graphene. However, the yet synthesized silicenelike structures have been only realized on different substrates which turned out to exhibit versatile crystallographic structures that are very different from the theoretically predicted buckled phase of freestanding silicene. This calls for a different approach where silicene is stabilized using very weakly interacting surfaces. We propose here a route by using graphene bilayer as a scaffold. The confinement between the flat graphene layers results in a planar clustering of Si atoms with small buckling, which is energetically unfavorable in vacuum. Buckled hexagonal arrangement of Si atoms similar to freestanding silicene is observed for large clusters, which, in contrast to Si atoms on metallic surfaces, is only very weakly van der Waals coupled to the graphene layers. These clusters are found to be stable well above room temperature. Our findings, which are supported by density-functional tight-binding calculations, show that intercalating bilayer graphene with Si is a favorable route to realize silicene. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000332226200002 |
Publication Date |
2014-01-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1098-0121;1550-235X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
43 |
Open Access |
|
|
|
Notes |
; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. One of us (F. M. P.) acknowledges discussions with Professor Hongjun Gao. G. R. B acknowledges the support of the King Fahd University of Petroleum and Minerals, Saudi Arabia, under the TPRG131-CS-15 DSR project. A.C.T.vD acknowledges funding from AFOSR Grants No. FA9550-10-1-0563 and No. FA9550-11-1-0158. ; |
Approved |
Most recent IF: 3.836; 2014 IF: 3.736 |
|
|
Call Number |
UA @ lucian @ c:irua:115829 |
Serial |
3140 |
|
Permanent link to this record |