toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Van Doorslaer, S.; Meynen, V.; Gorton, L.; De Wael, K. url  doi
openurl 
  Title Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase Type A1 Journal article
  Year (up) 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 92 Issue 92 Pages 3643-3649  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 μM. The sensitivity was 0.51 A M–1 cm–2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518234700023 Publication Date 2020-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited 3 Open Access  
  Notes ; The authors thank Scientific Reseatch-Flanders (F-WO) (grant 12T4219N) for funding. ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:166241 Serial 5463  
Permanent link to this record
 

 
Author Muhammad, S.; Wuyts, K.; Nuyts, G.; De Wael, K.; Samson, R. pdf  url
doi  openurl
  Title Characterization of epicuticular wax structures on leaves of urban plant species and its association with leaf wettability Type A1 Journal article
  Year (up) 2020 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban For Urban Gree  
  Volume 47 Issue 47 Pages 126557  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Epicuticular wax (EW) protects the plant’s integrity and acts as a barrier against biotic and abiotic stresses. The micro-structured three-dimensional EW’s and presence of leaf trichomes influence the wettability of a leaf surface. In this study, leaves of 96 perennial urban plant species were examined to determine an association between epicuticular wax structure (EWS) types and leaf wettability and investigate their seasonal variation. The EWS types were identified using Scanning Electron Microscopy (SEM), while leaf wettability was analyzed by measuring the drop contact angle (DCA) on both the abaxial and the adaxial sides of leaves collected from a common garden in June and September 2016. Four distinct EWS types namely thin film, platelets, crusts, and tubules were observed on leaves of investigated plant species in both June and September. The EWS types varied significantly between functional plant types and plant families in both June and September. In June, the abaxial DCA ranged from 56° to 147°, and the adaxial DCA ranged from 56° to 136°. In September, the abaxial DCA ranged from 54° to 130°, and the adaxial DCA ranged from 51° to 125°. The effect of time, leaf side, and EWS type on leaf wettability were significant. Plant species which showed a change in EWS type or clustering from June to September did not show a more pronounced reduction in DCA compared to those species which exhibited a constant EWS type. Findings from our study illustrate that DCA is not a good indicator in determining the different EWS types due to overlapping DCA intervals between the identified EWS types. However, the identified EWS types remained fairly stable throughout the in-leaf season and do not require repeated measurements for characterization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508389000028 Publication Date 2019-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-8667 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited 5 Open Access  
  Notes ; The research was funded by the Ontario Student Assistance Program (OSAP # 15103399). The SEM equipment was funded by FWO/Hercules. The authors acknowledge the help of the ENdEMIC group involved in the upkeep of the experimental site. The authors would like to thank the anonymous reviewers for their critical comments and constructive suggestions in improving the quality of the article. ; Approved Most recent IF: 6.4; 2020 IF: 2.113  
  Call Number UA @ admin @ c:irua:164906 Serial 5504  
Permanent link to this record
 

 
Author Castanheiro, A.; Hofman, J.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; Lenaerts, S.; De Wael, K.; Samson, R. pdf  url
doi  openurl
  Title Leaf accumulation of atmospheric dust : biomagnetic, morphological and elemental evaluation using SEM, ED-XRF and HR-ICP-MS Type A1 Journal article
  Year (up) 2020 Publication Atmospheric Environment Abbreviated Journal Atmos Environ  
  Volume 221 Issue 221 Pages 117082  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Atmospheric dust deposition on plants enables the collection of site-specific particulate matter (PM). Knowing the morphology and composition of PM aids in disclosing their emitting sources as well as the associated human health risk. Therefore, this study aimed for a leaf-level holistic analysis of dust accumulation on plant leaves. Plant species (ivy and strawberry) with distinct leaf macro- and micro-morphology were exposed during 3 months at a moderate road traffic site in Antwerp, Belgium. Leaves collected every three weeks were analyzed for their magnetic signature, morphology and elemental content, by a combination of techniques (biomagnetic analyses, ED-XRF, HR-ICP-MS, SEM). Dust accumulation on the leaves was observed both visually (SEM) and magnetically, while the metal enrichment was limited (only evident for Cr) and more variable over time. Temporal dynamics during the second half of the exposure period, due to precipitation events and reduction of atmospheric pollution input, were evidenced in our results (elements/magnetically/SEM). Ivy accumulated more dust than strawberry leaves and seemed less susceptible to wash-off, even though strawberry leaves contain trichomes and a rugged micromorphology, leaf traits considered to be important for capturing PM. The magnetic enrichment (in small-grained, SD/PSD magnetite particles), on the other hand, was not species-specific, indicating a common contributing source. Variations in pollution contributions, meteorological phenomena, leaf traits, particle deposition (and encapsulation) versus micronutrients depletion, are discussed in light of the conducted monitoring campaign. Although not completely elucidative, the complex, multifactorial process of leaf dust accumulation can better be understood through a combination of techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503097100001 Publication Date 2019-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access  
  Notes ; The authors thank the Flemish Environment Agency (VMM) for their collaboration and air quality and meteorological data, and Karen Wuyts for the discussion about plant leaf characteristics. A.C. gratefully acknowledges the Research Foundation Flanders (FWO) for her PhD fellowship (1S21418N). J.H. received a FWO postdoctoral fellowship grant (1214816N). ; Approved Most recent IF: 5; 2020 IF: 3.629  
  Call Number UA @ admin @ c:irua:165458 Serial 5691  
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.A.; Korostei, Y.S.; Dubinina, T.V.; Tomilova, L.G.; Verbruggen, S.W.; De Wael, K. pdf  doi
openurl 
  Title Photoelectrochemistry for measuring the photocatalytic activity of soluble photosensitizers Type A1 Journal article
  Year (up) 2020 Publication ChemPhotoChem Abbreviated Journal  
  Volume 4 Issue 4 Pages 300-306  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We introduce a rapid method to test the photocatalytic activity of singlet‐oxygen‐producing photosensitizers using a batch cell, a LED laser and a conventional potentiostat. The strategy is based on coupling of photo‐oxidation of hydroquinone and simultaneous electrochemical reduction of its oxidized form at a carbon electrode in an organic solvent (methanol). This scheme gives an immediate response and avoids complications related to long‐term experiments such as oxidative photo‐degradation of photosensitizers and singlet oxygen traps by reactive oxygen species (ROS). Among the tested compounds, a fluoro‐substituted subphthalocyanine showed the highest photocurrent and singlet oxygen quantum yield (ΦΔ) in comparison to phenoxy‐ and tert‐butyl‐substituted analogues, whereas the lowest photocurrents and yields were observed for aggregated and dimeric phthalocyanine complexes. The method is useful for fast screening of the photosensitizing activity and represents the first example of one‐pot coupling of electrochemical and photocatalytic reactions in organic media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520100400001 Publication Date 2020-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2367-0932 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes ; We gratefully acknowledge the financial support by ERA.Net RUS Plus Plasmon Electrolight project (No. 18-53-76006 ERA) and RSF 17-13-01197. ; Approved Most recent IF: 3.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:165912 Serial 5771  
Permanent link to this record
 

 
Author Marchetti, A.; Saniz, R.; Krishnan, D.; Rabbachin, L.; Nuyts, G.; De Meyer, S.; Verbeeck, J.; Janssens, K.; Pelosi, C.; Lamoen, D.; Partoens, B.; De Wael, K. pdf  url
doi  openurl
  Title Unraveling the Role of Lattice Substitutions on the Stabilization of the Intrinsically Unstable Pb2Sb2O7Pyrochlore: Explaining the Lightfastness of Lead Pyroantimonate Artists’ Pigments Type A1 Journal article
  Year (up) 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 32 Issue 7 Pages 2863-2873  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The pyroantimonate pigments Naples yellow and lead tin antimonate yellow are recognized as some of the most stable synthetic yellow pigments in the history of art. However, this exceptional lightfastness is in contrast with experimental evidence suggesting that this class of mixed oxides is of semiconducting nature. In this study the electronic structure and light-induced behavior of the lead pyroantimonate pigments were determined by means of a combined multifaceted analytical and computational approach (photoelectrochemical measurements, UV-vis diffuse reflectance spectroscopy, STEM-EDS, STEM-HAADF, and density functional theory calculations). The results demonstrate both the semiconducting nature and the lightfastness of these pigments. Poor optical absorption and minority carrier mobility are the main properties responsible for the observed stability. In addition, novel fundamental insights into the role played by Na atoms in the stabilization of the otherwise intrinsically unstable Pb2Sb2O7 pyrochlore were obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526394000016 Publication Date 2020-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 8 Open Access OpenAccess  
  Notes Universiteit Antwerpen; Belgian Federal Science Policy Office; Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:168819 Serial 6363  
Permanent link to this record
 

 
Author de Jong, M.; Florea, A.; Daems, D.; Van Loon, J.; Samyn, N.; De Wael, K. url  doi
openurl 
  Title Electrochemical Analysis of Speedball-like Polydrug Samples Type A1 Journal article
  Year (up) 2020 Publication Analyst Abbreviated Journal Analyst  
  Volume Issue Pages  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development  
  Abstract Increasing global production, trafficking and consumption of drugs of abuse cause an emerging threat to people’s health and safety. Electrochemical approaches have proven to be useful for on-site analysis of drugs of abuse. However, few attention has been focused on the analysis of polydrug samples, despite these samples causing severe health concerns, certainly when stimulants and depressants are combined, as is the case for Speedball, a mixture of cocaine and heroin. In this work, we provide solutions for the selective detection of cocaine (stimulant) in polydrug samples adulterated with heroin and codeine (depressants). The presence of either one of these compounds in cocaine street samples leads to an overlap with the cocaine signal in square-wave voltammetry measurements at unmodified carbon screen-printed electrodes, leading to inconclusive screening results in the field. The provided solutions to this problem consist of two parallel approaches: (i) cathodic pretreatment of the carbon screen-printed electrode surface prior to measurement in both alkaline and neutral conditions; (ii) electropolymerization of orthophenylenediamine on graphene modified carbon screen-printed electrodes prior to measurement in neutral conditions. Both strategies allow simultaneous detection of cocaine and heroin in speedball samples as well as simultaneous detection of cocaine and codeine. Implementing these strategies in portable devices holds great potential for significantly improved accuracy of on-site cocaine screening in polydrug samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568961600011 Publication Date 2020-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.2 Times cited Open Access  
  Notes This work was supported by IOF-SBO and IOF-POC from University of Antwerp, Antwerp, Belgium; and VLAIO IM [HBC.2019.2181], Brussels, Belgium. Approved Most recent IF: 4.2; 2020 IF: 3.885  
  Call Number AXES @ axes @c:irua:170444 Serial 6395  
Permanent link to this record
 

 
Author de Jong, M.; Sleegers, N.; Schram, J.; Daems, D.; Florea, A.; De Wael, K. pdf  url
doi  openurl
  Title A Benzocaine‐Induced Local Near‐Surface pH Effect: Influence on the Accuracy of Voltammetric Cocaine Detection Type A1 Journal article
  Year (up) 2020 Publication Analysis & Sensing Abbreviated Journal Anal. Sens.  
  Volume Issue Pages anse.202000012  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This work reports on a local induced near-surface pH effect (pHS), due to the presence of one analyte, leading to an influence or even suppression of redox signals of a second analyte present in solution. This concept and its impact on voltammetric sensing is illustrated by focusing on the detection of cocaine in the presence of the common adulterant benzocaine. An in-depth study on the occurring interference mechanism and why it occurs for benzocaine specifically and not for other adulterants was performed through the use of multiple electrochemical strategies. It was concluded that the potential shift and loss of intensity of the squarewave voltammetric cocaine signal in the presence of benzocaine was caused by a local pHS effect. A cathodic pretreatment strategy was developed to nonetheless allow accurate cocaine detection. The gathered insights are useful to explain unidentified phenomena involving compounds with properties similar to benzocaine in voltammetric electroanalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2629-2742 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes The authors acknowledge financial support from IOF-SBO/POC (UAntwerp), the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N and Grant 1SB 8120N, and VLAIO IM [HBC.2019.2181]. Approved Most recent IF: NA  
  Call Number AXES @ axes @c:irua:173031 Serial 6427  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Samyn, N.; Bijvoets, S.M.; Heerschop, M.W.J.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Identifying Electrochemical Fingerprints of Ketamine with Voltammetry and Liquid Chromatography–Mass Spectrometry for Its Detection in Seized Samples Type A1 Journal article
  Year (up) 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 92 Issue 19 Pages 13485-13492  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Herein, a straightforward electrochemical approach for the determination of ketamine in street samples and seizures is presented by employing screen-printed electrodes (SPE). Square wave voltammetry (SWV) is used to study the electrochemical behavior of the illicit drug, thus profiling the different oxidation states of the substance at different pHs. Besides, the oxidation pathway of ketamine on SPE is investigated for the first time with liquid chromatography–high-resolution mass spectrometry. Under the optimized conditions, the calibration curve of ketamine at buffer solution (pH 12) exhibits a sensitivity of 8.2 μA μM–1, a linear relationship between 50 and 2500 μM with excellent reproducibility (RSD = 2.2%, at 500 μM, n = 7), and a limit of detection (LOD) of 11.7 μM. Subsequently, binary mixtures of ketamine with adulterants and illicit drugs are analyzed with SWV to investigate the electrochemical fingerprint. Moreover, the profile overlapping between different substances is addressed by the introduction of an electrode pretreatment and the integration of a tailor-made script for data treatment. Finally, the approach is tested on street samples from forensic seizures. Overall, this system allows for the on-site identification of ketamine by law enforcement agents in an easy-to-use and rapid manner on cargos and seizures, thereby disrupting the distribution channel and avoiding the illicit drug reaching the end-user.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580426800091 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access  
  Notes Universiteit Antwerpen; H2020 Societal Challenges, 833787 ; Fonds Wetenschappelijk Onderzoek, 1S3765817N 1SB8120N ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number AXES @ axes @c:irua:170523 Serial 6435  
Permanent link to this record
 

 
Author Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. pdf  doi
openurl 
  Title Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs Type A1 Journal article
  Year (up) 2020 Publication Acs Sensors Abbreviated Journal Acs Sensors  
  Volume 5 Issue 9 Pages 2679-2700  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and

commercialization efforts.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000573560800003 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2379-3694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.9 Times cited Open Access  
  Notes Horizon 2020 Framework Programme, 833787 ; Center of Wearable Sensors, University of California San Diego; Approved Most recent IF: 8.9; 2020 IF: NA  
  Call Number AXES @ axes @c:irua:170894 Serial 6436  
Permanent link to this record
 

 
Author Kardel, F.; Wuyts, K.; De Wael, K.; Samson, R. pdf  doi
openurl 
  Title Assessing atmospheric dry deposition via water-soluble ionic composition of roadside leaves Type A1 Journal article
  Year (up) 2020 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This study focuses on the water-soluble ion concentrations in the washing solution of leaves of different roadside tree species at three sites in Iran to estimate the ionic composition of the dry deposition of ambient air particulates. All considered water-soluble ion concentrations were significantly higher next to the roads with high traffic density compared to the reference site with low traffic density. The PCA results showed that Ca2+, Mg2+, and originated mainly from traffic activities and geological sources, and Na+, Cl-, K+ and F- from sea salts. In addition to sea salt, K+ and F- were also originated from anthropogenic sources i.e. industrial activities, biomass burning and fluorite mining. Moreover, the concentration of the water-soluble ions depended on species and site. C. lawsoniana had significantly higher ion concentrations in its leaf washing solution compared to L. japonicum and P. brutia which indicates C. lawsoniana is the most suitable species for accumulating of atmospheric dry deposition. From our results, it can be concluded that sites with similar traffic density can have different particle loads and water-soluble ion species, and that concentrations in leaf-washing solutions depend on site conditions and species-specific leaf surface characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000527821700001 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169584 Serial 6451  
Permanent link to this record
 

 
Author Rutten, I.; Daems, D.; Lammertyn, J. url  doi
openurl 
  Title Boosting biomolecular interactions through DNA origami nano-tailored biosensing interfaces Type A1 Journal article
  Year (up) 2020 Publication Journal Of Materials Chemistry B Abbreviated Journal J Mater Chem B  
  Volume 8 Issue 16 Pages 3606-3615  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The interaction between a bioreceptor and its target is key in developing sensitive, specific and robust diagnostic devices. Suboptimal interbioreceptor distances and bioreceptor orientation on the sensor surface, resulting from uncontrolled deposition, impede biomolecular interactions and lead to a decreased biosensor performance. In this work, we studied and implemented a 3D DNA origami design, for the first time comprised of assay specifically tailored anchoring points for the nanostructuring of the bioreceptor layer on the surface of disc-shaped microparticles in the continuous microfluidic environment of the innovative EvalutionTM platform. This bioreceptor immobilization strategy resulted in the formation of a less densely packed surface with reduced steric hindrance and favoured upward orientation. This increased bioreceptor accessibility led to a 4-fold enhanced binding kinetics and a 6-fold increase in binding efficiency compared to a directly immobilized non-DNA origami reference system. Moreover, the DNA origami nanotailored biosensing concept outperformed traditional aptamer coupling with respect to limit of detection (11 × improved) and signal-to-noise ratio (2.5 × improved) in an aptamer-based sandwich bioassay. In conclusion, our results highlight the potential of these DNA origami nanotailored surfaces to improve biomolecular interactions at the sensing surface, thereby increasing the overall performance of biosensing devices. The combination of the intrinsic advantages of DNA origami together with a smart design enables bottom-up nanoscale engineering of the sensor surface, leading towards the next generation of improved diagnostic sensing devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000548186500032 Publication Date 2020-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750x; 2050-7518 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 2 Open Access  
  Notes ; We gratefully acknowledge financial support from Fund for Scientific Research (FWO, FWO-Flanders Doctoral grant Iene Rutten 1S30016N and FWO-Flanders Postdoctoral Fellow Devin Daems 12U1618N). We kindly thank MyCartis for access to their EvalutionTM platform, microparticle supplies and technical support. We would also like to thank Steven De Feyter and Joan Teyssandier (Molecular imaging and Photonics, Department of Chemistry, KU Leuven, Belgium) for providing the AFM facilities and technical support. We thank Peter Vangheluwe (Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven) for access to their gel imaging system, Typhoon FLA 9000. ; Approved Most recent IF: 7; 2020 IF: 4.543  
  Call Number UA @ admin @ c:irua:166104 Serial 6462  
Permanent link to this record
 

 
Author Al-Emam, E.; Soenen, H.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Characterization of polyvinyl alcohol-borax/agarose (PVA-B/AG) double network hydrogel utilized for the cleaning of works of art Type A1 Journal article
  Year (up) 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 106  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators' tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580572500001 Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited 1 Open Access  
  Notes ; Ehab Al-Emam thanks the Egyptian Ministry of Higher Education for funding his Ph.D. scholarship in addition to being grateful to University of Antwerp for additional funding. ; Approved Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:173594 Serial 6466  
Permanent link to this record
 

 
Author Byrnes, I.; Lind, O.C.; Hansen, E.L.; Janssens, K.; Salbu, B. url  doi
openurl 
  Title Characterization of radioactive particles from the Dounreay nuclear reprocessing facility Type A1 Journal article
  Year (up) 2020 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 727 Issue Pages 138488-12  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Radioactive particles originating from nuclear fuel reprocessing at the United Kingdom Atomic Energy Authority's Dounreay Facility were inadvertently released to the environment in the late 1950s to 1970s and have subsequently been found on site grounds and local beaches. Previous assessments of risk associated with encountering a particle have been based on conservative assumptions related to particle composition and speciation. To reduce uncertainties associated with environmental impact assessments from Dounreay particles, further characterization is relevant. Results of particles available for this study showed variation between Dounreay Fast Reactor (DFR) and Materials Test Reactor (MTR) particles, reflecting differences in fuel design, release scenarios, and subsequent environmental influence. Analyses of DFR particles showed they are small (100-300 mu m) and contain spatially correlated U and Nb. Molybdenum, part of the DFR fuel, was identified at atomic concentrations below 1%. Based on SR-based micrometer-scale X-ray Absorption Near Edge Structure spectroscopy (mu-XANES), U may be present as U (IV), and, based on a measured Nb/U atom ratio of similar to 2, stoichiometric considerations are commensurable with the presence of UNb2O7. The MTR particles were larger (740-2000 mu m) and contained U and Al inhomogeneously distributed. Neodymium (Nd) was identified in atomic concentrations of around 1-2%, suggesting it was part of the fuel design. The presence of U(IV) in MTR particles, as indicated by mu-XANES analysis, may be related to oxidation of particle surfaces, as could be expected due to corrosion of UAlx fuel particles in air. High U-235/U-238 atom ratios in individual DFR (3.2 +/- 0.8) and MTR (2.6 +/- 0.4) particles reflected the presence of highly enriched uranium. The DFR particles featured lower Cs-137 activity levels (2.00-9.58 kBq/particle) than the MTR (43.2-641 kBq Cs-137/particle) particles. The activities of the dose contributing radionuclides Sr-90/Y-90 were proportional to Cs-137 (Sr-90/Cs-137 activity ratio approximate to 0.8) and particle activities were roughly proportional to the size. Based on direct beta measurements, gamma spectrometry, and the VARSKIN6 model, contact dose rates were calculated to be approximately 74 mGy/h for the highest activity MTR particle, in agreement with previously published estimates. (C) 2020 The Authors. Published by Elsevier B.V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537414400014 Publication Date 2020-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited 1 Open Access  
  Notes ; This study has been funded by the Research Council of Norway through its Centre of Excellence (CoE) funding scheme (Project No. 223268/F50). The authors are grateful to the Scottish Environmental Protection Agency for providing the samples examined in this study and Deutsches Elektronen-Synchrotron (DESY) for granting beamtime at HASYLAB BL. The authors would like to thank Prof. D.H. Oughton for fruitful discussions on dosimetry, Dr. K. Proost for assistance with micro-XANES measurements, Dr. T. Gavfert for assistance with calibration of the Canberra SPAB15 instrument, and Dr. E. Reinoso-Maset for support on the Bruker M4 Tornado mu-XRF. The authors also thank Karl Andreas Jensen for guidance and support on ICP-MS. Finally, the authors express gratitude to Dr. D. Hamby and the RAMP organization for providing access to the VARSKIN6 code. ; Approved Most recent IF: 9.8; 2020 IF: 4.9  
  Call Number UA @ admin @ c:irua:170154 Serial 6467  
Permanent link to this record
 

 
Author Cagno, S.; van der Snickt, G.; Legrand, S.; Caen, J.; Patin, M.; Meulebroeck, W.; Dirkx, Y.; Hillen, M.; Steenackers, G.; Rousaki, A.; Vandenabeele, P.; Janssens, K. url  doi
openurl 
  Title Comparison of four mobile, non‐invasive diagnostic techniques for differentiating glass types in historical leaded windows : MA‐XRF , UV–Vis–NIR, Raman spectroscopy and IRT Type A1 Journal article
  Year (up) 2020 Publication X-Ray Spectrometry Abbreviated Journal X-Ray Spectrom  
  Volume Issue Pages xrs.3185-17  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract This paper critically compares the performance of four non-invasive techniques that match the accuracy, flexibility, time-efficiency, and transportability required for in situ characterization of leaded glass windows: macroscopic X-ray fluorescence imaging (MA-XRF), UV-Vis-NIR, Raman spectroscopy, and infrared thermography (IRT). In order to compare the techniques on equal grounds, all techniques were tested independently of each other by separate research groups on the same historical leaded window tentatively dated to the 17th century, without prior knowledge. The aim was to assess the ability of these techniques to document the conservation history of the window by classifying and grouping the colorless glass panes, based on differences in composition. IRT, MA-XRF and UV-Vis-NIR spectroscopy positively distinguished at least two glass groups, with MA-XRF providing the most detailed chemical information. In particular, based on the ratio between the network modifier (K) and network stabilizer (Ca) and on the level of colorants and decolorizers (Fe, Mn, As), the number of plausible glass families could be strongly reduced. In addition, UV-Vis-NIR detected cobalt at ppm level and gave more specific information on the chromophore Fe2+/Fe(3+)ratio. Raman spectroscopy was hampered by fluorescence caused by the metal ions of the decolorizer in most of the panes, but nevertheless identified one group as HLLA.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561869600001 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.2 Times cited Open Access  
  Notes ; Belgian Federal Science Policy Office, Grant/Award Number: BR/175/A3/FENESTRA; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: 12X1919N; Baillet-Latour Fund ; Approved Most recent IF: 1.2; 2020 IF: 1.298  
  Call Number UA @ admin @ c:irua:170972 Serial 6473  
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Liberi, S.; Covaceuszach, S.; Cassetta, A.; Angelini, A.; De Wael, K.; Moretto, L.M. pdf  doi
openurl 
  Title Covalent immobilization of delipidated human serum albumin on poly(pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid Type A1 Journal article
  Year (up) 2020 Publication Bioelectrochemistry Abbreviated Journal Bioelectrochemistry  
  Volume 134 Issue Pages 107540  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The immobilization of biomolecules at screen printed electrodes for biosensing applications is still an open challenge. To enrich the toolbox of bioelectrochemists, graphite screen printed electrodes (G-SPE) were modified with an electropolymerized film of pyrrole-2-carboxilic acid (Py-2-COOH), a pyrrole derivative rich in carboxylic acid functional groups. These functionalities are suitable for the covalent immobilization of biomolecular recognition layers. The electropolymerization was first optimized to obtain stable and conductive polymeric films, comparing two different electrolytes: sodium dodecyl sulphate (SDS) and sodium perchlorate. The G-SPE modified with Py-2-COOH in 0.1 M SDS solution showed the required properties and were further tested. A proof-of-concept study for the development of an impedimetric sensor for perfluorooctanoic acid (PFOA) was carried out using the delipidated human serum albumin (hSA) as bioreceptor. The data interpretation was supported by size exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) analysis of the bioreceptor-target complex and the preliminary results suggest the possibility to further develop this biosensing strategy for toxicological and analytical studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579727300004 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access  
  Notes Approved Most recent IF: 5; 2020 IF: 3.346  
  Call Number UA @ admin @ c:irua:172494 Serial 6477  
Permanent link to this record
 

 
Author Geerlings, N.M.J.; Karman, C.; Trashin, S.; As, K.S.; Kienhuis, M.V.M.; Hidalgo-Martinez, S.; Vasquez-Cardenas, D.; Boschker, H.T.S.; De Wael, K.; Middelburg, J.J.; Polerecky, L.; Meysman, F.J.R. url  doi
openurl 
  Title Division of labor and growth during electrical cooperation in multicellular cable bacteria Type A1 Journal article
  Year (up) 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 117 Issue 10 Pages 5478-5485  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13 C (bicarbonate and propionate) and 15 N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519530400054 Publication Date 2020-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited 6 Open Access  
  Notes ; We thank Arnold van Dijk for helping with the GasBench isotope ratio mass spectrometry analysis. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from the Netherlands Organisation for Scientific Research (NWO) in the Netherlands (grant 023.005.049). K.S.A. received financial support from the Olaf Schuiling fund. F.J.R.M. was financially supported by the Research Foundation Flanders (FWO) via grant G043119N, and the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). J.J.M. was supported by the Ministry of Education via the Netherlands Earth System Science Centre. The NanoSIMS facility was partly supported by an NWO large infrastructure subsidy to J.J.M. (175.010.2009.011). ; Approved Most recent IF: 11.1; 2020 IF: 9.661  
  Call Number UA @ admin @ c:irua:166452 Serial 6487  
Permanent link to this record
 

 
Author Bottari, F.; Daems, E.; de Vries, A.-M.; Van Wielendaele, P.; Trashin, S.; Blust, R.; Sobott, F.; Madder, A.; Martins, J.C.; De Wael, K. pdf  doi
openurl 
  Title Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds Type A1 Journal article
  Year (up) 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue 46 Pages jacs.0c08691-19630  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Medical Biochemistry  
  Abstract In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a β-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592911000024 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access  
  Notes Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:173136 Serial 6488  
Permanent link to this record
 

 
Author van der Snickt, G.; Dooley, K.A.; Sanyova, J.; Dubois, H.; Delaney, J.K.; Gifford, E.M.; Legrand, S.; Laquiere, N.; Janssens, K. url  doi
openurl 
  Title Dual mode standoff imaging spectroscopy documents the painting process of the Lamb of God in the Ghent Altarpiece by J. and H. Van Eyck Type A1 Journal article
  Year (up) 2020 Publication Science Advances Abbreviated Journal  
  Volume 6 Issue 31 Pages eabb3379  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract The ongoing conservation treatment program of the Ghent Altarpiece by Hubert and Jan Van Eyck, one of the iconic paintings of the west, has revealed that the designs of the paintings were changed several times, first by the original artists, and then during later restorations. The central motif, The Lamb of God, representing Christ, plays an essential iconographic role, and its depiction is important. Because of the prevalence of lead white, it was not possible to visualize the Van Eycks' original underdrawing of the Lamb, their design changes, and the overpaint by later restorers with a single spectral imaging modality. However, by using elemental (x-ray fluorescence) and molecular (infrared reflectance) imaging spectroscopies, followed by analysis of the resulting data cubes, the necessary chemical contrast could be achieved. In this way, the two complementary modalities provided a more complete picture of the development and changes made to the Lamb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000556543100033 Publication Date 2020-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access  
  Notes ; This research was part of the activities of the Chair on Advanced Imaging Techniques for the Arts, established by the Baillet Latour fund. In addition, it was supported by the Belgian Science Policy Office (Project MO/39/011) and the Gieskes-Strijbis fund. We are also indebted to the BOF-GOA SOLARPaint project of the University of Antwerp Research Council and to FWO (Brussels) projects G056619N and G054719N. J.K.D. and K.A.D. acknowledge support from the National Gallery of Art. ; Approved Most recent IF: 13.6; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171270 Serial 6494  
Permanent link to this record
 

 
Author Kara De Maeijer, P.; Craeye, B.; Snellings, R.; Kazemi-Kamyab, H.; Loots, M.; Janssens, K.; Nuyts, G. pdf  doi
openurl 
  Title Effect of ultra-fine fly ash on concrete performance and durability Type A1 Journal article
  Year (up) 2020 Publication Construction And Building Materials Abbreviated Journal Constr Build Mater  
  Volume 263 Issue Pages 120493-13  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract In the present study ultra-fine fly ash as a novel by-product obtained by a dry and closed separation process was investigated as cement replacement in concrete. The impact of ultra-fine fly ash on material properties was investigated following an upscaling as an approach considering paste, mortar and concrete properties. Two types of cement, Portland cement (CEMI) and slag cement (CEMIII), two types of ultra-fly ashes, one with particle size d90< 9.3lm (FA1) and second with d90< 4.6lm (FA2) were used.At paste- and mortar- level, cement was replaced at 0%, 15%, 25%, 35% and 50% with FA1 and FA2. At concrete- level, cement was replaced at 0%, 15% and 25% with different ratios of FA1 and FA2. The results at paste- and mortar- level showed that an increased fineness of the fly ash (FA2) contributes to better workability of the mix. For CEMI, the compressive strength of concrete with FA2 at 25% cement replacement was already equal to the reference 0% replacement concrete at the age of 28 days. For CEMIII, the compressive strength of concrete mix with FA1 with 15% and FA2 with 25% cement replacements reached the reference concrete value at the age of 91 days. Regarding the durability, replacing cement with ultra-fine fly ash (FA2) had a positive influence on the resistivity, chloride migration coefficient and alkali-silica reaction (ASR), and a negative influence on the carbonation resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582567100093 Publication Date 2020-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access  
  Notes Approved Most recent IF: 7.4; 2020 IF: 3.169  
  Call Number UA @ admin @ c:irua:171815 Serial 6498  
Permanent link to this record
 

 
Author Morales-Yánez, F.; Trashin, S.; Sariego, I.; Roucher, C.; Paredis, L.; Chico, M.; De Wael, K.; Muyldermans, S.; Cooper, P.; Polman, K. url  doi
openurl 
  Title Electrochemical detection of Toxocara canis excretory-secretory antigens in children from rural communities in Esmeraldas Province, Ecuador : association between active infection and high eosinophilia Type A1 Journal article
  Year (up) 2020 Publication Parasites & Vectors Abbreviated Journal Parasite Vector  
  Volume 13 Issue 1 Pages 245-247  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Background The diagnosis of active Toxocara canis infections in humans is challenging. Larval stages of T. canis do not replicate in human tissues and disease may result from infection with a single T. canis larva. Recently, we developed a nanobody-based electrochemical magnetosensor assay with superior sensitivity to detect T. canis excretory-secretory (TES) antigens. Here, we evaluate the performance of the assay in children from an Ecuadorian birth cohort that followed children to five years of age. Methods Samples were selected based on the presence of peripheral blood eosinophilia and relative eosinophil counts. The samples were analyzed by the nanobody-based electrochemical magnetosensor assay, which utilizes a bivalent biotinylated nanobody as capturing agent on the surface of streptavidin pre-coated paramagnetic beads. Detection was performed by a different nanobody chemically labelled with horseradish peroxidase. Results Of 87 samples tested, 33 (38%) scored positive for TES antigen recognition by the electrochemical magnetosensor assay. The average concentration of TES antigen in serum was 2.1 ng/ml (SD = 1.1). The positive result in the electrochemical assay was associated with eosinophilia > 19% (P = 0.001). Parasitological data were available for 57 samples. There was no significant association between positivity by the electrochemical assay and the presence of other soil-transmitted helminth infections. Conclusions Our nanobody-based electrochemical assay provides highly sensitive quantification of TES antigens in serum and has potential as a valuable tool for the diagnosis of active human toxocariasis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535618800003 Publication Date 2020-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1756-3305 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes ; This project was funded by the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Flanders), project No. G.0189.13N. The ECUAVIDA cohort was funded by the Wellcome Trust (grant 072405/Z/03/Z and 088862/Z/09/Z). ; Approved Most recent IF: 3.2; 2020 IF: 3.08  
  Call Number UA @ admin @ c:irua:168966 Serial 6501  
Permanent link to this record
 

 
Author Eliaerts, J.; Meert, N.; Dardenne, P.; Van Durme, F.; Baeten, V.; Samyn, N.; De Wael, K. pdf  url
doi  openurl
  Title Evaluation of a calibration transfer between a bench top and portable Mid-InfraRed spectrometer for cocaine classification and quantification Type A1 Journal article
  Year (up) 2020 Publication Talanta Abbreviated Journal Talanta  
  Volume 209 Issue Pages 120481  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A portable Fourier Transform Mid-InfraRed (FT-MIR) spectrometer using Attenuated Total Reflectance (ATR) sampling is used for daily routine screening of seized powders. Earlier, ATR-FT-MIR combined with Support Vector Machines (SVM) algorithms resulted in a significant improvement of the screening method to a reliable and straightforward classification and quantification tool for both cocaine and levamisole. However, can this tool be transferred to new (hand-held) devices, without loss of the extensive data set? The objective of this study was to perform a calibration transfer between a newly purchased bench top (BT) spectrometer and a portable (P) spectrometer with existing calibration models. Both instruments are from the same brand and have identical characteristics and acquisition parameters (FT instrument, resolution of 4 cm(-1) and wavenumber range 4000 to 500 cm(-1)). The original SVM classification model (n = 515) and SVM quantification model (n = 378) were considered for the transfer trial. Three calibration transfer strategies were assessed: 1) adjustment of slope and bias; 2) correction of spectra from the new instrument BT to P using Piecewise Direct Standardization (PDS) and 3) building a new mixed instrument model with spectra of both instruments. For each approach, additional cocaine powders were measured (n = 682) and the results were compared with GC-MS and GC-FID. The development of a mixed instrument model was the most successful in terms of performance. The future strategy of a mixed model allows applying the models, developed in the laboratory, to portable instruments that are used on-site, and vice versa. The approach offers opportunities to exchange data within a network of forensic laboratories using other FT-MIR spectrometers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000509632900016 Publication Date 2019-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 6.1; 2020 IF: 4.162  
  Call Number UA @ admin @ c:irua:166475 Serial 6511  
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Trashin, S.; De Wael, K. url  doi
openurl 
  Title Gold-sputtered microelectrodes with built-in gold reference and counter electrodes for electrochemical DNA detection Type A1 Journal article
  Year (up) 2020 Publication Analyst Abbreviated Journal Analyst  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Gold-sputtered microelectrodes with built-in gold reference and counter electrodes represent a promising platform for the development of disposable DNA sensors. Pretreating gold electrode surfaces and immobilization of DNA thereon is commonly employed in biosensing applications. However, with no scientific or practical guidelines to prepare a DNA sensor using these miniature gold-sputtered microelectrodes, cleaning and immobilization steps need to be systematically optimized and updated. In this work, we present efficient cleaning and modification of miniaturized gold-sputtered microelectrodes with thiolated DNA probes for DNA detection. Additional discussions on subtleties and nuances involved at each stage of pretreating and modifying gold-sputtered microelectrodes are included to present a robust, well-founded protocol. It was evident that the insights on cleaning polycrystalline gold disk electrodes with a benchmark electrode surface for DNA sensors, cannot be transferred to clean these miniature gold-sputtered microelectrodes. Therefore, a comparison between five different cleaning protocols was made to find the optimal one for gold-sputtered microelectrodes. Additionally, two principally different immobilization techniques for gold-sputtered microelectrode modification with thiolated ssDNA were compared i.e., immobilization through passive chemisorption and potential perturbation were compared in terms of thiol-specific attachment and thiol-unspecific adsorption through nitrogenous bases. The hybridization performance of these prepared electrodes was characterized by their sensitive complementary DNA capturing ability, detected by a standard alkaline phosphatase assay. Immobilization through passive chemisorption proved to be efficient in capturing the complementary target DNA with a detection limit of 0.14 nM and sensitivity of 9.38 A M−1 cm2. In general, this work presents a comprehensive understanding of cleaning, modification and performance of gold-sputtered microelectrodes with built-in gold reference and counter electrodes for both fundamental investigations and practical DNA sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592315100017 Publication Date 2020-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.2 Times cited Open Access  
  Notes Approved Most recent IF: 4.2; 2020 IF: 3.885  
  Call Number UA @ admin @ c:irua:172447 Serial 6527  
Permanent link to this record
 

 
Author De Jong, M. openurl 
  Title A highly accurate portable electrochemical sensor for cocaine : from methodology to testing in the field Type Doctoral thesis
  Year (up) 2020 Publication Abbreviated Journal  
  Volume Issue Pages 263 p.  
  Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:170912 Serial 6538  
Permanent link to this record
 

 
Author Mendonça, C.D.; Rahemi, V.; Hereijgers, J.; Breugelmans, T.; Machado, S.A.S.; De Wael, K. url  doi
openurl 
  Title Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide Type A1 Journal article
  Year (up) 2020 Publication Electrochemistry Communications Abbreviated Journal Electrochem Commun  
  Volume 117 Issue Pages 106767-5  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The photoelectrochemical quantification of phenolic compounds such as hydroquinone (HQ) and 4-aminophenol (4-AP) is accomplished by integrating a photoelectrochemical cell into a flow injection analysis (FIA) setup. It is a well-known fact that during the electroanalysis of phenolic compounds, the electrode surface is susceptible to poisoning. However, electrode fouling can be reduced significantly by using the FIA system with periodic washing of the electrode. Reactive oxygen species (ROS), which are generated on the surface of TiO2 under UV light, can oxidize phenolic compounds such as 4-AP. The oxidized form of 4-AP is reduced back at the electrode surface, generating a measurable signal proportional to its concentration. The factors influencing the perfor-mance of the sensor, such as flow rate, applied potential for back reduction and pH, are investigated in detail. In the concentration range 0.0125-1.0 mu M, a linear correlation between the photocurrent and the concentration of 4-AP was observed with a sensitivity of 0.6 A M-1 cm(-2) and a limit of detection of 18 nM. A straightforward analytical methodology for the on-site, highly sensitive and low-cost quantification of phenolic compounds is presented, based on the use of TiO2 in a photoelectrochemical flow cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000552618700004 Publication Date 2020-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited 1 Open Access  
  Notes ; The authors thank FAPESP funding for the fellowship to Camila D. Mendonca (Grant #2018/13724-0) and FWO funding (grant 12T4219N and 28761) for the postdoctoral fellowship to Dr. Vanoushe Rahemi and Dr. Jonas Hereijgers. ; Approved Most recent IF: 5.4; 2020 IF: 4.396  
  Call Number UA @ admin @ c:irua:169924 Serial 6547  
Permanent link to this record
 

 
Author Sciutto, G.; Legrand, S.; Catelli, E.; Prati, S.; Malegori, C.; Oliveri, P.; Janssens, K.; Mazzeo, R. pdf  url
doi  openurl
  Title Macroscopic mid-FTIR mapping and clustering-based automated data-reduction : an advanced diagnostic tool for in situ investigations of artworks Type A1 Journal article
  Year (up) 2020 Publication Talanta Abbreviated Journal Talanta  
  Volume 209 Issue Pages 120575-120577  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The present study describes a multivariate strategy that can be used for automatic on-site processing of reflection mode macro FTIR mapping (MA-rFTIR) data obtained during investigation of artworks. The chemometric strategy is based on the integration of principal component analysis (PCA) with a clustering approach in the space subtended by the three lowest-order principal components and allows to automatically identify the regions of interest (ROIs) of the area scanned and to extract the average FTIR spectra related to each ROI. Thanks to the automatic data management, in-field HSI (hyperspectral imaging)-based analyses may be performed even by staff lacking specific advanced chemometric expertise, as it is sometimes the case for conservation scientists or conservators with a scientific background. MA-rFTIR was only recently introduced in the conservation field and, in this work the technique was employed to characterize the surface of metallic artefacts. The analytical protocol was employed as part of a rapid procedure to evaluate the conservation state and the performance of cleaning methods on bronze objects. Both activities are commonly part of restoration campaigns of bronzes and require an on-site analytical procedure for efficient and effective diagnosis. The performance of the method was first evaluated on aged standard samples (bronzes with a layer of green basic copper hydroxysulphate, treated with different organic coatings) and then scrutinized in situ on areas of the 16th century Neptune fountain statue (Piazza del Nettuno, Bologna, Italy) by Gianbologna.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000509632900088 Publication Date 2019-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 6.1; 2020 IF: 4.162  
  Call Number UA @ admin @ c:irua:166476 Serial 6557  
Permanent link to this record
 

 
Author Rowenczyk, L.; Dazzi, A.; Deniset-Besseau, A.; Beltran, V.; Goudounèche, D.; Wong-Wah-Chung, P.; Boyron, O.; George, M.; Fabre, P.; Roux, C.; Mingotaud, A.F.; ter Halle, A. pdf  doi
openurl 
  Title Microstructure characterization of oceanic polyethylene debris Type A1 Journal article
  Year (up) 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 7 Pages 4102-4109  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Plastic pollution has become a worldwide concern. It was demonstrated that plastic breaks down to nanoscale particles in the environment, forming so-called nanoplastics. It is important to understand their ecological impact, but their structure is not elucidated. In this original work, we characterize the microstructure of oceanic polyethylene debris and compare it to the nonweathered objects. Cross sections are analyzed by several emergent mapping techniques. We highlight deep modifications of the debris within a layer a few hundred micrometers thick. The most intense modifications are macromolecule oxidation and a considerable decrease in the molecular weight. The adsorption of organic pollutants and trace metals is also confined to this outer layer. Fragmentation of the oxidized layer of the plastic debris is the most likely source of nanoplastics. Consequently the nanoplastic chemical nature differs greatly from plastics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526418000041 Publication Date 2020-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 3 Open Access  
  Notes ; Foundation and The French National Reaserch Program for Environmental and Occupational Health of Anses (EST/2017/1/219). We thank the 7th Continent Expedition Association, as well as the staff and crew, for the sea sampling campaign. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:172890 Serial 6560  
Permanent link to this record
 

 
Author Dooley, K.A.; Chieli, A.; Romani, A.; Legrand, S.; Miliani, C.; Janssens, K.; Delaney, J.K. pdf  url
doi  openurl
  Title Molecular fluorescence imaging spectroscopy for mapping low concentrations of red lake pigments : Van Gogh's painting The Olive Orchard Type A1 Journal article
  Year (up) 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit  
  Volume Issue Pages  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Vincent van Gogh used fugitive red lake pigments that have faded in some paintings. Mapping their distribution is key to understanding how his paintings have changed with time. While red lake pigments can be identified from microsamples, in situ identification and mapping remain challenging. This paper explores the ability of molecular fluorescence imaging spectroscopy to identify and, more importantly, map residual non-degraded red lakes. The high sensitivity of this method enabled identification of the emission spectra of eosin (tetrabromine fluorescein) lake mixed with lead or zinc white at lower concentrations than elemental X-ray fluorescence (XRF) spectroscopy used on account of bromine. The molecular fluorescence mapping of residual eosin and two carmine red lakes in van Gogh's The Olive Orchard is demonstrated and compared with XRF imaging spectroscopy. The red lakes are consistent with the composition of paint tubes known to have been used by van Gogh.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512477200001 Publication Date 2020-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 2 Open Access  
  Notes ; We thank Damon Conover and Roxanne Radpour for help with the fluorescence self-absorption correction, and Ella Hendricks for discussions about van Gogh~s letters and materials. K.J. and S.L. thank the Research Council of the University of Antwerp for financial support (ID grant 25805 to S.L. and GOA project SolarPaint). Also FWO, Brussels provided financial support (grants G056619N and G054719N). The European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (Grant agreement n. 654028) is also acknowledged. ; Approved Most recent IF: 16.6; 2020 IF: 11.994  
  Call Number UA @ admin @ c:irua:166490 Serial 6563  
Permanent link to this record
 

 
Author Dubinina, T.V.; Moiseeva, E.O.; Astvatsaturov, D.A.; Borisova, N.E.; Tarakanov, P.A.; Trashin, S.A.; De Wael, K.; Tomilova, L.G. pdf  url
doi  openurl
  Title Novel 2-naphthyl substituted zinc naphthalocyanine : synthesis, optical, electrochemical and spectroelectrochemical properties Type A1 Journal article
  Year (up) 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 44 Issue 19 Pages 7849-7857  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract New zinc naphthalocyanine with bulky 2-naphthyl groups was obtained. Aggregation drastically influences its optical and electrochemical behavior. Spectroelectrochemistry helps to establish the oxidation potential and reveals unusual color change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536157700023 Publication Date 2020-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 1 Open Access  
  Notes ; Synthesis, identification and optical studies of target compounds were supported by the Russian Science Foundation Grant No 19-73-00099. Electrochemical and spectroelectrochemical measurements were supported by ERA.Net RUS Plus Plasmon Electrolight and FWO funding (RFBR No 18-53-76006 ERA). Fluorescence studies were supported by the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grant MD-3847.2019.3). The NMR spectroscopic measurements were carried out in the Laboratory of Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine of Moscow State University. ; Approved Most recent IF: 3.3; 2020 IF: 3.269  
  Call Number UA @ admin @ c:irua:168952 Serial 6570  
Permanent link to this record
 

 
Author Monico, L.; Cartechini, L.; Rosi, F.; Chieli, A.; Grazia, C.; De Meyer, S.; Nuyts, G.; Vanmeert, F.; Janssens, K.; Cotte, M.; De Nolf, W.; Falkenberg, G.; Sandu, I.C.A.; Tveit, E.S.; Mass, J.; De Freitas, R.P.; Romani, A.; Miliani, C. url  doi
openurl 
  Title Probing the chemistry of CdS paints in The Scream by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques Type A1 Journal article
  Year (up) 2020 Publication Science Advances Abbreviated Journal  
  Volume 6 Issue 20 Pages eaay3514  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The degradation of cadmium sulfide (CdS)-based oil paints is a phenomenon potentially threatening the iconic painting The Scream (ca. 1910) by Edvard Munch (Munch Museum, Oslo) that is still poorly understood. Here, we provide evidence for the presence of cadmium sulfate and sulfites as alteration products of the original CdS-based paint and explore the external circumstances and internal factors causing this transformation. Macroscale in situ noninvasive spectroscopy studies of the painting in combination with synchrotron-radiation x-ray microspectroscopy investigations of a microsample and artificially aged mock-ups show that moisture and mobile chlorine compounds are key factors for promoting the oxidation of CdS, while light (photodegradation) plays a less important role. Furthermore, under exposure to humidity, parallel/secondary reactions involving dissolution, migration through the paint, and recrystallization of water-soluble phases of the paint are associated with the formation of cadmium sulfates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000533573300009 Publication Date 2020-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited 4 Open Access  
  Notes ; The research was financially supported by the European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (grant agreement no. 654028); the project AMIS, within the program Dipartimenti di Eccellenza 2018-2022 (funded by MIUR and University of Perugia); and the program “Ricerca di Base 2017” (funded by University of Perugia). S.D.M. and K.J. acknowledge the GOA Project SolarPaint from the University of Antwerp Research Council and projects G056619N and G054719N from FWO (Brussels). F.V. and K.J. acknowledge support from Interreg Project Smart*Light and thank BELSPO (Brussels) for financial support via FED-tWIN mandate PRF055. L.M. acknowledges the Erasmus+ program (Staff Mobility for training, A. Y. 2018 to 2019) of the European Commission. In situ noninvasive analyses were performed using the European MOLAB platform, which is financially supported by the European project IPERION-CH. For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiment nos. HG32, HG64, and HG95), DESY-P06 beamline, a member of the Helmholtz Association HGF (experiment nos. I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. ; Approved Most recent IF: 13.6; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169519 Serial 6585  
Permanent link to this record
 

 
Author Eliaerts, J. openurl 
  Title Qualitative and quantitative determination of cocaine using mid-infrared spectroscopy and chemometrics Type Doctoral thesis
  Year (up) 2020 Publication Abbreviated Journal  
  Volume Issue Pages 184 p.  
  Keywords Doctoral thesis; Law; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169398 Serial 6589  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: