toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Smeulders, G.; van Oers, C.; Van Havenbergh, K.; Houthoofd, K.; Mertens, M.; Martens, J.A.; Bals, S.; Maes, B.U.W.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
  Year (up) 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 175 Issue Pages 585-591  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)  
  Abstract In this study the effects of the heating rate and heating time on the formation of crystal-like benzene bridged periodic mesoporous organosilicas (PMOs) are investigated. The time needed to heat up an autoclave during the hydrothermal treatment has shown to be crucial in the synthesis of PMOs, while the total duration of heating gave rise to only minor differences. By choosing a smart heating profile, superior PMO materials can be obtained in a short time. Different heating profiles in a range from one minute to one hour are adopted by microwave equipment and compared with conventional heating methods. The heating rate has a large influence on the porosity characteristics and the uniformity of the obtained particles. Moreover, two new alternative synthetic strategies to adopt the smart heating profile are presented, in order to give some possible solutions for the expensive microwave equipment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000297875900069 Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 7 Open Access  
  Notes Fwo; Goa-Bof Approved Most recent IF: 6.216; 2011 IF: 3.461  
  Call Number UA @ lucian @ c:irua:93630 Serial 3044  
Permanent link to this record
 

 
Author Bals, S.; Casavola, M.; van Huis, M.A.; Van Aert, S.; Batenburg, K.J.; Van Tendeloo, G.; Vanmaekelbergh, D. pdf  url
doi  openurl
  Title Three-dimensional atomic imaging of colloidal core-shell nanocrystals Type A1 Journal article
  Year (up) 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 11 Issue 8 Pages 3420-3424  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Colloidal coreshell semiconductor nanocrystals form an important class of optoelectronic materials, in which the exciton wave functions can be tailored by the atomic configuration of the core, the interfacial layers, and the shell. Here, we provide a trustful 3D characterization at the atomic scale of a free-standing PbSe(core)CdSe(shell) nanocrystal by combining electron microscopy and discrete tomography. Our results yield unique insights for understanding the process of cation exchange, which is widely employed in the synthesis of coreshell nanocrystals. The study that we present is generally applicable to the broad range of colloidal heteronanocrystals that currently emerge as a new class of materials with technological importance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000293665600062 Publication Date 2011-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 121 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:91263 Serial 3643  
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Van Aert, S.; Roelandts, T.; Sijbers, J. url  doi
openurl 
  Title Ultra-high resolution electron tomography for materials science : a roadmap Type A1 Journal article
  Year (up) 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 17 Issue S:2 Pages 934-935  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891; 2011 IF: 3.007  
  Call Number UA @ lucian @ c:irua:96554 Serial 3792  
Permanent link to this record
 

 
Author Leroux, O.; Leroux, F.; Bagniewska-Zadworna,.; Knox, J.P.; Claeys, M.; Bals, S.; Viane, R.L.L. pdf  doi
openurl 
  Title Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales) Type A1 Journal article
  Year (up) 2011 Publication Micron Abbreviated Journal Micron  
  Volume 42 Issue 8 Pages 863-870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Cell wall appositions (CWAs), formed by the deposition of extra wall material at the contact site with microbial organisms, are an integral part of the response of plants to microbial challenge. Detailed histological studies of CWAs in fern roots do not exist. Using light and electron microscopy we examined the (ultra)structure of CWAs in the outer layers of roots of Asplenium species. All cell walls studded with CWAs were impregnated with yellow-brown pigments. CWAs had different shapes, ranging from warts to elongated branched structures, as observed with scanning and transmission electron microscopy. Ultrastructural study further showed that infecting fungi grow intramurally and that they are immobilized by CWAs when attempting to penetrate intracellularly. Immunolabelling experiments using monoclonal antibodies indicated pectic homogalacturonan, xyloglucan, mannan and cellulose in the CWAs, but tests for lignins and callose were negative. We conclude that these appositions are defense-related structures made of a non-lignified polysaccharide matrix on which phenolic compounds are deposited in order to create a barrier protecting the root against infections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000294942600013 Publication Date 2011-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 20 Open Access  
  Notes Fwo Approved Most recent IF: 1.98; 2011 IF: 1.527  
  Call Number UA @ lucian @ c:irua:92540 Serial 3798  
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Yang, X.-Y.; Goris, B.; Verbeeck, J.; Bals, S.; Colson, P.; Cloots, R.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties Type A1 Journal article
  Year (up) 2011 Publication Small Abbreviated Journal Small  
  Volume 7 Issue 4 Pages 475-483  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Very uniform and well shaped Mn3O4 nano-octahedra are synthesized using a simple hydrothermal method under the help of polyethylene glycol (PEG200) as a reductant and shape-directing agent. The nano-octahedra formation mechanism is monitored. The shape and crystal orientation of the nanoparticles is reconstructed by scanning electron microscopy and electron tomography, which reveals that the nano-octahedra only selectively expose {101} facets at the external surfaces. The magnetic testing demonstrates that the Mn3O4 nano-octahedra exhibit anomalous magnetic properties: the Mn3O4 nano-octahedra around 150 nm show a similar Curie temperature and blocking temperature to Mn3O4 nanoparticles with 10 nm size because of the vertical axis of [001] plane and the exposed {101} facets. With these Mn3O4 nano-octahedra as a catalyst, the photodecomposition of rhodamine B is evaluated and it is found that the photodecomposition activity of Mn3O4 nano-octahedra is much superior to that of commercial Mn3O4 powders. The anomalous magnetic properties and high superior photodecomposition activity of well shaped Mn3O4 nano-octahedra should be related to the special shape of the nanoparticles and the abundantly exposed {101} facets at the external surfaces. Therefore, the shape preference can largely broaden the application of the Mn3O4 nano-octahedra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000288080400008 Publication Date 2011-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 131 Open Access  
  Notes This work was realized in the frame of an Interuniversity Attraction Poles Program (Inanomat-P6/17)-Belgian State-Belgian Science Policy and the project “Redugaz”, financially supported by the European community and the Wallon government in the frame of Interreg IV (France-Wallonie). B. L. S. acknowledges the Chinese Central Government for an “Expert of the State” position in the program of “Thousand talents” and the Chinese Ministry of Education for a Changjiang Scholar position at the Wuhan University of Technology. H. T. acknowledges the financial support from FWO-Vlaanderen (Project nr. G.0147.06). J.V. thanks the financial support from the European Union under Framework 6 program for Integrated Infrastructure Initiative, Reference 026019 ESTEEM. Approved Most recent IF: 8.643; 2011 IF: 8.349  
  Call Number UA @ lucian @ c:irua:87908 Serial 3914  
Permanent link to this record
 

 
Author Roelandts, T.; Batenburg, K.J.; Biermans, E.; Kübel, C.; Bals, S.; Sijbers, J. pdf  doi
openurl 
  Title Accurate segmentation of dense nanoparticles by partially discrete electron tomography Type A1 Journal article
  Year (up) 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 114 Issue Pages 96-105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in electron tomography. Due to artifacts related to image series acquisition and reconstruction, global thresholding of reconstructions computed by established algorithms, such as weighted backprojection or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense nanoparticles of constant composition. The particles are segmented directly by the reconstruction algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As no properties are assumed for the other compositions of the sample, the technique can be applied to any sample where dense nanoparticles must be segmented, regardless of the surrounding compositions. For both experimental and simulated data, it is shown that PDART yields significantly more accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000301954300011 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 34 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:97710 Serial 52  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year (up) 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Casavola, M.; van Huis, M.A.; Bals, S.; Lambert, K.; Hens, Z.; Vanmaekelbergh, D. pdf  doi
openurl 
  Title Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry Type A1 Journal article
  Year (up) 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 2 Pages 294-302  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a study of Cd2+-for-Pb2+ exchange in PbSe nanocrystals (NCs) with cube, star, and rod shapes. Prolonged temperature-activated cation exchange results in PbSe/CdSe heterostructured nanocrystals (HNCs) that preserve their specific overall shape, whereas the PbSe core is strongly faceted with dominance of {111} facets. Hence, cation exchange proceeds while the Se anion lattice is preserved, and well-defined {111}/{111} PbSe/CdSe interfaces develop. Interestingly, by quenching the reaction at different stages of the cation exchange new structures have been isolated, such as coreshell nanorods, CdSe rods that contain one or two separated PbSe dots and fully zinc blende CdSe nanorods. The crystallographically anisotropic cation exchange has been characterized by a combined HRTEM/HAADF-STEM study of heterointerface evolution over reaction time and temperature. Strikingly, Pb and Cd are only intermixed at the PbSe/CdSe interface. We propose a plausible model for the cation exchange based on a layer-by-layer replacement of Pb2+ by Cd2+ enabled by a vacancy-assisted cation migration mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000299367500008 Publication Date 2011-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 136 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:94211 Serial 124  
Permanent link to this record
 

 
Author Goris, B.; Bals, S.; van den Broek, W.; Carbó-Argibay, E.; Gómez-Graña, S.; Liz-Marzán, L.M.; Van Tendeloo, G. url  doi
openurl 
  Title Atomic-scale determination of surface facets in gold nanorods Type A1 Journal article
  Year (up) 2012 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 11 Issue 11 Pages 930-935  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is widely accepted that the physical properties of nanostructures depend on the type of surface facets1, 2. For Au nanorods, the surface facets have a major influence on crucial effects such as reactivity and ligand adsorption and there has been controversy regarding facet indexing3, 4. Aberration-corrected electron microscopy is the ideal technique to study the atomic structure of nanomaterials5, 6. However, these images correspond to two-dimensional (2D) projections of 3D nano-objects, leading to an incomplete characterization. Recently, much progress was achieved in the field of atomic-resolution electron tomography, but it is still far from being a routinely used technique. Here we propose a methodology to measure the 3D atomic structure of free-standing nanoparticles, which we apply to characterize the surface facets of Au nanorods. This methodology is applicable to a broad range of nanocrystals, leading to unique insights concerning the connection between the structure and properties of nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000310434600015 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 261 Open Access  
  Notes 262348 ESMI; Hercules 3; 24691 COUNTATOMS; 267867 PLASMAQUO Approved Most recent IF: 39.737; 2012 IF: 35.749  
  Call Number UA @ lucian @ c:irua:101778 Serial 182  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yuecelen, E.; Lievens, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale dynamics of ultrasmall germanium clusters Type A1 Journal article
  Year (up) 2012 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 3 Issue 897 Pages 897  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306099900024 Publication Date 2012-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 90 Open Access  
  Notes Fwo; Iap; Iwt Approved Most recent IF: 12.124; 2012 IF: 10.015  
  Call Number UA @ lucian @ c:irua:100340 Serial 183  
Permanent link to this record
 

 
Author van den Broek, W.; Rosenauer, A.; Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title Correction of non-linear thickness effects in HAADF STEM electron tomography Type A1 Journal article
  Year (up) 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 116 Issue Pages 8-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000304473700002 Publication Date 2012-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 67 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:96558 Serial 518  
Permanent link to this record
 

 
Author Verheyen, E.; Joos, L.; Van Havenbergh, K.; Breynaert, E.; Kasian, N.; Gobechiya, E.; Houthoofd, K.; Martineau, C.; Hinterstein, M.; Taulelle, F.; Van Speybroeck, V.; Waroquier, M.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Design of zeolite by inverse sigma transformation Type A1 Journal article
  Year (up) 2012 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 11 Issue 12 Pages 1059-1064  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although the search for new zeolites has traditionally been based on trial and error, more rational methods are now available. The theoretical concept of inverse transformation of a zeolite framework to generate a new structure by removal of a layer of framework atoms and contraction has for the first time been achieved experimentally. The reactivity of framework germanium atoms in strong mineral acid was exploited to selectively remove germanium-containing four-ring units from an UTL type germanosilicate zeolite. Annealing of the leached framework through calcination led to the new all-silica COK-14 zeolite with intersecting 12- and 10-membered ring channel systems. An intermediate stage of this inverse transformation with dislodged germanate four-rings still residing in the pores could be demonstrated. Inverse transformation involving elimination of germanium-containing structural units opens perspectives for the synthesis of many more zeolites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311432600025 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 140 Open Access  
  Notes Fwo Approved Most recent IF: 39.737; 2012 IF: 35.749  
  Call Number UA @ lucian @ c:irua:101783 Serial 661  
Permanent link to this record
 

 
Author Bertoni, G.; Grillo, V.; Brescia, R.; Ke, X.; Bals, S.; Catellani, A.; Li, H.; Manna, L. doi  openurl
  Title Direct determination of polarity, faceting, and core location in colloidal core/shell wurtzite semiconductor nanocrystals Type A1 Journal article
  Year (up) 2012 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 6 Issue 7 Pages 6453-6461  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The ability to determine the atomic arrangement and termination of various facets of surfactant-coated nanocrystals is of great importance for understanding their growth mechanism and their surface properties and represents a critical piece of information that can be coupled to other experimental techniques and to calculations. This is especially appealing in the study of nanocrystals that can be grown in strongly anisotropic shapes, for which the relative growth rates of various facets can be influenced under varying reaction conditions. Here we show that in two representative cases of rod-shaped nanocrystals in the wurtzite phase (CdSe(core)/CdS(shell) and ZnSe(core)/ZnS(shell) nanorods) the terminations of the polar facets can be resolved unambiguously by combining advanced electron microscopy techniques, such as aberration-corrected HRTEM with exit wave reconstruction or aberration-corrected HAADF-STEM. The [0001] and [000-1] polar directions of these rods, which grow preferentially along their c-axis, are revealed clearly, with one side consisting of the Cd (or Zn)-terminated (0001) facet and the other side with a pronounced faceting due to Cd (or Zn)-terminated {10-1-1} facets. The lateral faceting of the rods is instead dominated by three nonpolar {10-10} facets. The core buried in the nanostructure can be localized in both the exit wave phase and HAADF-STEM images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306673800079 Publication Date 2012-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 63 Open Access  
  Notes The authors gratefully acknowledge funding from the European Research Council under grant number 240111 (NANO-ARCH) and the financial support from the Flemish Hercules 3 Programme for large infrastructures. G.B. and V.G. thank E. Rotunno for his help with STEM_CELL and IWFR. Approved Most recent IF: 13.942; 2012 IF: 12.062  
  Call Number UA @ lucian @ c:irua:101138 Serial 710  
Permanent link to this record
 

 
Author He, Z.; Ke, X.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections Type A1 Journal article
  Year (up) 2012 Publication Carbon Abbreviated Journal Carbon  
  Volume 50 Issue 7 Pages 2524-2529  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon nanotubes (CNTs) with a polygonal cross-section have been paid increasing attention since their three-dimensional structure is related to specific physical properties, which are found to be different in comparison to CNTs with a circular cross-section. Here, we report the existence of novel multi-walled CNTs yielding walls with a rounded-hexagonal configuration. This structure was directly confirmed for the first time by both cross-sectional transmission electron microscopy and electron tomography. The morphology of the Fe catalytic particle also exhibits hexagonal characteristics, and is proposed as the origin of the formation of the rounded-hexagonal walls of the CNT. This observation is of great importance with respect to the design of polygonal (such as pentagonal or hexagonal) cross-sectional CNTs. By controlling the morphology of the catalytic nanoparticles it will be possible to grow CNTs with desired electronic and mechanical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000303038400015 Publication Date 2012-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 6.337; 2012 IF: 5.868  
  Call Number UA @ lucian @ c:irua:96956 Serial 711  
Permanent link to this record
 

 
Author Goris, B.; van den Broek, W.; Batenburg, K.J.; Heidari Mezerji, H.; Bals, S. pdf  doi
openurl 
  Title Electron tomography based on a total variation minimization reconstruction technique Type A1 Journal article
  Year (up) 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 113 Issue Pages 120-130  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The 3D reconstruction of a tilt series for electron tomography is mostly carried out using the weighted backprojection (WBP) algorithm or using one of the iterative algorithms such as the simultaneous iterative reconstruction technique (SIRT). However, it is known that these reconstruction algorithms cannot compensate for the missing wedge. Here, we apply a new reconstruction algorithm for electron tomography, which is based on compressive sensing. This is a field in image processing specialized in finding a sparse solution or a solution with a sparse gradient to a set of ill-posed linear equations. Therefore, it can be applied to electron tomography where the reconstructed objects often have a sparse gradient at the nanoscale. Using a combination of different simulated and experimental datasets, it is shown that missing wedge artefacts are reduced in the final reconstruction. Moreover, it seems that the reconstructed datasets have a higher fidelity and are easier to segment in comparison to reconstructions obtained by more conventional iterative algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300554400006 Publication Date 2011-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 171 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:93637 Serial 987  
Permanent link to this record
 

 
Author Filippov, S.K.; Sedlacek, O.; Bogomolova, A.; Vetrik, M.; Jirak, D.; Kovar, J.; Kucka, J.; Bals, S.; Turner, S.; Stepanek, P.; Hruby, M.; pdf  doi
openurl 
  Title Glycogen as a biodegradable construction nanomaterial for in vivo use Type A1 Journal article
  Year (up) 2012 Publication Macromolecular bioscience Abbreviated Journal Macromol Biosci  
  Volume 12 Issue 12 Pages 1731-1738  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is demonstrated that glycogen as a biodegradable and inexpensive material coming from renewable resources can be used as a carrier for the construction of in vivo imaging nanoagents. The model system considered is composed of glycogen modified with gadolinium and fluorescent labels. Systematic studies of properties of these nanocarriers by a variety of physical methods and results of in vivo tests of biodegradability are reported. This represents, to the authors' best knowledge, the first such use of glycogen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000312242600016 Publication Date 2012-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-5187; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.238 Times cited 22 Open Access  
  Notes 262348 ESMI; FWO; Hercules Approved Most recent IF: 3.238; 2012 IF: 3.742  
  Call Number UA @ lucian @ c:irua:105286 Serial 1354  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Grzelczak, M.; Altantzis, T.; Goris, B.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Donaldson, S.H.; Chmelka, B.F.; Israelachvili, J.N.; Liz-Marzán, L.M.; pdf  doi
openurl 
  Title Hydrophobic interactions modulate self-assembly of nanoparticles Type A1 Journal article
  Year (up) 2012 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 6 Issue 12 Pages 11059-11065  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hydrophobic interactions constitute one of the most important types of nonspecific interactions in biological systems, which emerge when water molecules rearrange as two hydrophobic species come close to each other. The prediction of hydrophobic interactions at the level of nanoparticles (Brownian objects) remains challenging because of uncontrolled diffusive motion of the particles. We describe here a general methodology for solvent-induced, reversible self-assembly of gold nanoparticles into 3D clusters with well-controlled sizes. A theoretical description of the process confirmed that hydrophobic interactions are the main driving force behind nanoparticle aggregation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000312563600070 Publication Date 2012-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 311 Open Access  
  Notes 267867 Plasma Quo; 246791 Countatoms; 262348 Esmi Approved Most recent IF: 13.942; 2012 IF: 12.062  
  Call Number UA @ lucian @ c:irua:105292 Serial 1538  
Permanent link to this record
 

 
Author Justo, Y.; Goris, B.; Sundar Kamal, J.; Geiregat, P.; Bals, S.; Hens, Z. pdf  doi
openurl 
  Title Multiple dot-in-rod PbS/CdS heterostructures with high photoluminescence quantum yield in the near-infrared Type A1 Journal article
  Year (up) 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 12 Pages 5484-5487  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb cations in PbS quantum rods made from CdS quantum rods by successive complete cationic exchange reactions are partially re-exchanged for Cd cations. Using STEM-HAADF, we show that this leads to the formation of unique multiple dot-in-rod PbS/CdS heteronanostructures, with a photoluminescence quantum yield of 4555%. We argue that the formation of multiple dot-in-rods is related to the initial polycrystallinity of the PbS quantum rods, where each PbS crystallite transforms in a separate PbS/CdS dot-in-dot. Effective mass modeling indicates that electronic coupling between the different PbS conduction band states is feasible for the multiple dot-in-rod geometries obtained, while the hole states remain largely uncoupled.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000302489500015 Publication Date 2012-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 41 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:96957 Serial 2226  
Permanent link to this record
 

 
Author Ustarroz, J.; Ke, X.; Hubin, A.; Bals, S.; Terryn, H. pdf  doi
openurl 
  Title New insights into the early stages of nanoparticle electrodeposition Type A1 Journal article
  Year (up) 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 3 Pages 2322-2329  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000299584400037 Publication Date 2011-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 104 Open Access  
  Notes Fwo Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:96225 Serial 2316  
Permanent link to this record
 

 
Author Boschker, H.; Verbeeck, J.; Egoavil, R.; Bals, S.; Van Tendeloo, G.; Huijben, M.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G. pdf  doi
openurl 
  Title Preventing the reconstruction of the polar discontinuity at oxide heterointerfaces Type A1 Journal article
  Year (up) 2012 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 22 Issue 11 Pages 2235-2240  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite oxide heteroepitaxy receives much attention because of the possibility to combine the diverse functionalities of perovskite oxide building blocks. A general boundary condition for the epitaxy is the presence of polar discontinuities at heterointerfaces. These polar discontinuities result in reconstructions, often creating new functionalities at the interface. However, for a significant number of materials these reconstructions are unwanted as they alter the intrinsic materials properties at the interface. Therefore, a strategy to eliminate this reconstruction of the polar discontinuity at the interfaces is required. We show that the use of compositional interface engineering can prevent the reconstruction at the La0.67Sr0.33MnO3/SrTiO3 (LSMO/STO) interface. The polar discontinuity at this interface can be removed by the insertion of a single La0.33Sr0.67O layer, resulting in improved interface magnetization and electrical conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000304749600002 Publication Date 2012-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 72 Open Access  
  Notes We wish to acknowledge the financial support of the Dutch Science Foundation (NWO) and the Dutch Nanotechnology program NanoNed. S. B. acknowledges the financial support from the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. J. V. and G. V. T. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC grant N246791 – COUNTATOMS. R. E. acknowledges funding by the European Union Council under the 7th Framework Program (FP7) grant NNMP3-LA-2010-246102 IFOX. We thank Sandra Van Aert for stimulating discussions. Approved Most recent IF: 12.124; 2012 IF: 9.765  
  Call Number UA @ lucian @ c:irua:98907UA @ admin @ c:irua:98907 Serial 2712  
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Kooi, B.; Bals, S.; Van Tendeloo, G.; Rudolf, P.; Prato, M. pdf  doi
openurl 
  Title Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin Type A1 Journal article
  Year (up) 2012 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 48 Issue 100 Pages 12159-12161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Under ultrasonication, the production of high quality graphene layers by exfoliation of graphite was achieved via addition of tiopronin as an antioxidant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311411100003 Publication Date 2012-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 39 Open Access  
  Notes This work was financially supported by the University of Trieste, INSTM, Italian Ministry of Education MIUR (cofin Prot. 20085M27SS) and by the "Graphene-based electronics'' research program of the Foundation for Fundamental Research on Matter (FOM). Part of this work was supported by funding from the ERC grant No 246791COUNTATOMS. MQ acknowledges the financial support from CONACyT CB-2011-01-166914 and FAI-UASLP. Approved Most recent IF: 6.319; 2012 IF: 6.378  
  Call Number UA @ lucian @ c:irua:105230 Serial 2724  
Permanent link to this record
 

 
Author Angelomé, P.C.; Heidari Mezerji, H.; Goris, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M. pdf  doi
openurl 
  Title Seedless synthesis of single crystalline Au nanoparticles with unusual shapes and tunable LSPR in the near-IR Type A1 Journal article
  Year (up) 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 7 Pages 1393-1399  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The plasmonic properties of metal nanoparticles have acquired great importance because of their potential applications in very diverse fields. Metal nanoparticles with localized surface plasmon resonances (LSPR) in the near-infrared (NIR, 7501300 nm) are of particular interest because tissues, blood, and water display low absorption in this spectral range, thus facilitating biomedical applications. Cetyltrimethylammonium chloride (CTAC) was used to induce the seedless formation of highly anisotropic, twisted single crystalline Au nanoparticles in a single step. The LSPR of the obtained particles can be tuned from 600 nm up to 1400 nm by simply changing the reaction temperature or the reagents concentrations. The tunability of the LSPR is closely associated with significant changes in the final particle morphology, which was studied by advanced electron microscopy techniques (3D Tomography and HAADF-STEM). Kinetic experiments were carried out to establish the growth mechanism, suggesting that slow kinetics together with the complexation of the gold salt precursor to CTAC are key factors favoring the formation of these anisotropic particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000302487500020 Publication Date 2012-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 42 Open Access  
  Notes Fwo Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:97388 Serial 2959  
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Calvaresi, M.; Bals, S.; Kooi, B.; Van Tendeloo, G.; Rudolf, P.; Zerbetto, F.; Prato, M. doi  openurl
  Title A simple road for the transformation of few-layer graphene into MWNTs Type A1 Journal article
  Year (up) 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 32 Pages 13310-13315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the direct formation of multiwalled carbon nanotubes (MWNT) by ultrasonication of graphite in dimethylformamide (DMF) upon addition of ferrocene aldehyde (Fc-CHO). The tubular structures appear exclusively at the edges of graphene layers and contain Fe clusters. Pc in conjunction with benzyl aldehyde, or other Fc derivatives, does not induce formation of NT. Higher amounts of Fc-CHO added to the dispersion do not increase significantly MWNT formation. Increasing the temperature reduces the amount of formation of MWNTs and shows the key role of ultrasound-induced cavitation energy. It is concluded that Fc-CHO first reduces the concentration of radical reactive species that slice graphene into small moieties, localizes itself at the edges of graphene, templates the rolling up of a sheet to form a nanoscroll, where it remains trapped, and finally accepts and donates unpaired electron to the graphene edges and converts the less stable scroll into a MWNT. This new methodology matches the long held notion that CNTs are rolled up graphene layers. The proposed mechanism is general and will lead to control the production of carbon nanostructures by simple ultrasonication treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000307487200034 Publication Date 2012-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 56 Open Access  
  Notes This work was supported by the University of Trieste, the Italian Ministry of Education MIUR (cofin Prot. 20085M27SS), the European Union through the ERC grant No. 246791 – COUNTATOMS, the grant agreement for an Integrated Infrastructure Initiative N. 262348 ESMI, and the “Graphene-based electronics” research program of the Foundation for Fundamental Research on Matter (FOM). Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:101109 Serial 3003  
Permanent link to this record
 

 
Author Grzelczak, M.; Sánchez-Iglesias, A.; Heidari Mezerji, H.; Bals, S.; Pérez-Juste, J.; Liz-Marzán, L.M. pdf  doi
openurl 
  Title Steric hindrance induces crosslike self-assembly of gold nanodumbbells Type A1 Journal article
  Year (up) 2012 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 12 Issue 8 Pages 4380-4384  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the formation of colloidal molecules, directional interactions are crucial for controlling the spatial distribution of the building blocks. Anisotropic nanoparticles facilitate directional clustering via steric constraints imposed by each specific shape, thereby restricting assembly along certain directions. We show in this Letter that the combination of patchiness (attraction) and shape (steric hindrance) allows assembling gold nanodumbbell building blocks into crosslike dimers with well-controlled interparticle distance and relative orientation. Steric hindrance between interacting dumbbell-like particles opens up a new synthetic approach toward low-symmetry plasmonic clusters, which may significantly contribute to understand complex plasmonic phenomena.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000307211000081 Publication Date 2012-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 85 Open Access  
  Notes Nanodirect 213948-2; 262348 Esmi Approved Most recent IF: 12.712; 2012 IF: 13.025  
  Call Number UA @ lucian @ c:irua:101900 Serial 3161  
Permanent link to this record
 

 
Author Ribbens, S.; Beyers, E.; Schellens, K.; Mertens, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title Systematic evaluation of thermal and mechanical stability of different commercial and synthetic photocatalysts in relation to their photocatalytic activity Type A1 Journal article
  Year (up) 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 156 Issue Pages 62-72  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The effect of thermal treatment and mechanical stress on the structural and photocatalytic properties of eight different (synthetic and commercial) photocatalysts has been thoroughly investigated. Different mesoporous Ti-based materials were prepared via surfactant based synthesis routes (e.g. Pluronic 123, CTMABr = Cetyltrimethylammonium bromide) or via template-free synthesis routes (e.g. trititanate nanotubes). Also, the stabilizing effect of the NaOH/NH4OH post-treatment on the templated mesoporous materials and their photocatalytic activity was investigated. Furthermore, the thermal and mechanical properties of commercially available titanium dioxides such as P25 Evonik® and Millenium PC500® were studied. The various photocatalysts were analyzed with N2-sorption, X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) to obtain information concerning the specific surface area, pore volume, crystal structure, morphology, phase transitions, etc. In general, results show that the NaOH post-treatment leads to an increased control of the crystallization process during calcination resulting in a higher thermal stability, but at the same time diminishes the photocatalytic activity. Mesoporous materials in which pre-synthesized nanoparticles are used as titania source have the best mechanical stability whereas the mechanical stability of the nanotubes is the most limited. At increased temperatures and pressures, the tested commercial titanium dioxides lose their superior photocatalytic activity caused by a decreased accessibility of the active sites. The observed changes in adsorption capacities and photocatalytic activities cannot be assigned to one single phenomenon. In this respect, it shows the need to define a general/standard method to compare different photocatalysts. Furthermore, it is shown that the photocatalytic properties do not necessarily deteriorate under thermal stress, but can be improved due to crystallization, even though the initial material is (partially) destroyed. It is shown that the usefulness of a specific type of photocatalyst strongly depends on the application and the temperature/pressure to which it needs to resist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000303625200010 Publication Date 2012-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365  
  Call Number UA @ lucian @ c:irua:96910 Serial 3466  
Permanent link to this record
 

 
Author Goris, B.; van Huis, M.A.; Bals, S.; Zandbergen, H.W.; Manna, L.; Van Tendeloo, G. pdf  doi
openurl 
  Title Thermally induced structural and morphological changes of CdSe/CdS octapods Type A1 Journal article
  Year (up) 2012 Publication Small Abbreviated Journal Small  
  Volume 8 Issue 6 Pages 937-942  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Branched nanostructures are of great interest because of their promising optical and electronic properties. For successful and reliable integration in applications such as photovoltaic devices, the thermal stability of the nanostructures is of major importance. Here the different domains (CdSe cores, CdS pods) of the heterogeneous octapods are shown to have different thermal stabilities, and heating is shown to induce specific shape changes. The octapods are heated from room temperature to 700 °C, and investigated using (analytical and tomographic) transmission electron microscopy (TEM). At low annealing temperatures, pure Cd segregates in droplets at the outside of the octapods, indicating non-stochiometric composition of the octapods. Furthermore, the tips of the pods lose their faceting and become rounded. Further heating to temperatures just below the sublimation temperature induces growth of the zinc blende core at the expense of the wurtzite pods. At higher temperatures, (500700 °C), sublimation of the octapods is observed in real time in the TEM. Three-dimensional tomographic reconstructions reveal that the four pods pointing into the vacuum have a lower thermal stability than the four pods that are in contact with the support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000301718800021 Publication Date 2012-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 20 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 8.643; 2012 IF: 7.823  
  Call Number UA @ lucian @ c:irua:95040 Serial 3633  
Permanent link to this record
 

 
Author Wang, H.; Cuppens, J.; Biermans, E.; Bals, S.; Fernandez-Ballester, L.; Kvashnina, K.O.; Bras, W.; van Bael, M.J.; Temst, K.; Vantomme, A. pdf  doi
openurl 
  Title Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si Type A1 Journal article
  Year (up) 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue 3 Pages 035301-035301,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The size and lattice constant evolution of Pb nanoparticles (NPs) synthesized by high fluence implantation in crystalline Si have been studied with a variety of experimental techniques. Results obtained from small-angle x-ray scattering showed that the Pb NPs grow with increasing implantation fluence and annealing duration. The theory of NP growth kinetics can be applied to qualitatively explain the size evolution of the Pb NPs during the implantation and annealing processes. Moreover, the lattice constant of the Pb NPs was evaluated by conventional x-ray diffraction. The lattice dilatation was observed to decrease with increasing size of the Pb NPs. Such lattice constant tuning can be attributed to the pseudomorphism caused by the lattice mismatch between the Pb NPs and the Si matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000299308400008 Publication Date 2011-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 5 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:94208 Serial 3754  
Permanent link to this record
 

 
Author Dendooven, J.; Goris, B.; Devloo-Casier, K.; Levrau, E.; Biermans, E.; Baklanov, M.R.; Ludwig, K.F.; van der Voort, P.; Bals, S.; Detavernier, C. pdf  doi
openurl 
  Title Tuning the pore size of ink-bottle mesopores by atomic layer deposition Type A1 Journal article
  Year (up) 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 11 Pages 1992-1994  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600002 Publication Date 2012-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 52 Open Access  
  Notes Fwo Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99078 Serial 3760  
Permanent link to this record
 

 
Author Goris, B.; Roelandts, T.; Batenburg, K.J.; Heidari Mezerji, H.; Bals, S. pdf  url
doi  openurl
  Title Advanced reconstruction algorithms for electron tomography : from comparison to combination Type A1 Journal article
  Year (up) 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 127 Issue Pages 40-47  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this work, the simultaneous iterative reconstruction technique (SIRT), the total variation minimization (TVM) reconstruction technique and the discrete algebraic reconstruction technique (DART) for electron tomography are compared and the advantages and disadvantages are discussed. Furthermore, we describe how the result of a three dimensional (3D) reconstruction based on TVM can provide objective information that is needed as the input for a DART reconstruction. This approach results in a tomographic reconstruction of which the segmentation is carried out in an objective manner.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000316659100007 Publication Date 2012-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 63 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2013 IF: 2.745  
  Call Number UA @ lucian @ c:irua:101217 Serial 72  
Permanent link to this record
 

 
Author Leroux, F.; Bladt, E.; Timmermans, J.-P.; Van Tendeloo, G.; Bals, S. doi  openurl
  Title Annular dark-field transmission electron microscopy for low contrast materials Type A1 Journal article
  Year (up) 2013 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 19 Issue 3 Pages 629-634  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Imaging soft matter by transmission electron microscopy (TEM) is anything but straightforward. Recently, interest has grown in developing alternative imaging modes that generate contrast without additional staining. Here, we present a dark-field TEM technique based on the use of an annular objective aperture. Our experiments demonstrate an increase in both contrast and signal-to-noise ratio in comparison to conventional bright-field TEM. The proposed technique is easy to implement and offers an alternative imaging mode to investigate soft matter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000319126300014 Publication Date 2013-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 5 Open Access  
  Notes 262348 Esmi; Fwo G002410n G018008 Approved Most recent IF: 1.891; 2013 IF: 2.161  
  Call Number UA @ lucian @ c:irua:108712 Serial 133  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: