toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Clima, S.; Govoreanu, B.; Jurczak, M.; Pourtois, G. pdf  doi
openurl 
  Title HfOx as RRAM material : first principles insights on the working principles Type A1 Journal article
  Year 2014 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume (down) 120 Issue Pages 13-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract First-principles simulations were employed to gain atomistic insights on the working principles of amorphous HfO2 based Resistive Random Access Memory stack: the nature of the defect responsible for the switching between the High and Low Resistive States has been unambiguously identified to be the substoichiometric Hf sites (commonly called oxygen vacancy-V-O) and the kinetics of the process have been investigated through the study of O diffusion. Also the role of each material layer in the TiN/HfO2/Hf/TiN RRAM stack and the impact of the deposition techniques have been examined: metallic Hf sputtering is needed to provide an oxygen exchange layer that plays the role of defect buffer. TiN shall be a good defect barrier for O but a bad defect buffer layer. A possible scenario to explain the device degradation (switching failure) mechanism has been proposed – the relaxation of the metastable amorphous phase towards crystalline structure leads to denser, more structured cluster that can increase the defect migration barriers. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000336697300004 Publication Date 2013-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 22 Open Access  
  Notes Approved Most recent IF: 1.806; 2014 IF: 1.197  
  Call Number UA @ lucian @ c:irua:117767 Serial 3535  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 120 Issue 120 Pages 472-477  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368562200057 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 3 Open Access  
  Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536  
  Call Number c:irua:130677 Serial 4002  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume (down) 120 Issue 120 Pages 085707  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Cu-based chalcogenides are promising materials for thin-film solar cells with more than 20% measured

cell efficiency. Using first-principles calculations based on density functional theory, the

optoelectronic properties of a group of Cu-based chalcogenides Cu2-II-IV-VI4 is studied. They are

then screened with the aim of identifying potential absorber materials for photovoltaic applications.

The spectroscopic limited maximum efficiency (SLME) introduced by Yu and Zunger [Phys. Rev.

Lett. 108, 068701 (2012)] is used as a metric for the screening. After constructing the currentvoltage

curve, the SLME is calculated from the maximum power output. The role of the nature of

the band gap, direct or indirect, and also of the absorptivity of the studied materials on the maximum

theoretical power conversion efficiency is studied. Our results show that Cu2II-GeSe4 with

II¼ Cd and Hg, and Cu2-II-SnS4 with II ¼ Cd, Hg, and Zn have a higher theoretical efficiency

compared with the materials currently used as absorber layer.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383913400074 Publication Date 2016-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 29 Open Access  
  Notes We acknowledge the financial support from the FWO-Vlaanderen through project G.0150.13N and a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), bothfunded by the FWO-Vlaanderen and the Flemish Government–department EWI. Approved Most recent IF: 2.068  
  Call Number c:irua:135089 Serial 4113  
Permanent link to this record
 

 
Author Sevik, C.; Çakir, D.; Gulseren, O.; Peeters, F.M. url  doi
openurl 
  Title Peculiar piezoelectric properties of soft two-dimensional materials Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 120 Issue 120 Pages 13948-13953  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Group II-VI semiconductor honeycomb monolayers have a noncentrosymmetric crystal structure and therefore are expected to be important for nano piezoelectric device applications. This motivated us to perform first principles calculations based on density functional theory to unveil the piezoelectric properties (i.e., piezoelectric stress (e(11)) and piezoelectric strain (d(11)) coefficients) of these monolayer materials with chemical formula MX (where M = Be, Mg, Ca, Sr, Ba, Zr, Cd and X = S, Se, Te). We found that these two-dimensional materials have peculiar piezoelectric properties with d(11) coefficients 1 order of magnitude larger than those of commercially utilized bulk materials. A clear trend in their piezoelectric properties emerges, which  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000379457000010 Publication Date 2016-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 39 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government and the Bilateral program FWO-TUBITAK between Flanders and Turkey. We acknowledge the support from the Scientific and Technological Research Council of Turkey (TUBITAK-115F024). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (Cal-cUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges the support from the Scientific and Technological Research Council of Turkey (TUBITAK-113F333) and the support from Anadolu University (BAP-1407F335, -1505F200), and the Turkish Academy of Sciences (TUBA-GEBIP). ; Approved Most recent IF: 4.536  
  Call Number UA @ lucian @ c:irua:134948 Serial 4222  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title How Oxygen Vacancies Activate CO2 Dissociation on TiO2 Anatase (001) Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 120 Issue 120 Pages 21659-21669  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption, dissociation, and diffusion of CO2 on the anatase (001) surface was studied using DFT by means of the generalized gradient approximation using the Perdew−Burcke−Ernzerhof (PBE)-functional and applying corrections for long-range dispersion interactions. Different stable adsorption configurations were identified for the fully oxidized surface. The most stable adsorption configuration is the monodentated carbonate-like structure. Small energy barriers were identified for the conversion of a physisorbed to a chemisorbed configuration.

CO2 dissociation is found to be unfeasible on the stoichiometric surface. The introduction of oxygen vacancy defects gives rise to new highly stable adsorption configurations with a stronger activation of the C−O bonds. This leads to the possibility of exothermic dissociation of CO2 with barriers up to 22.2 kcal/mol,

corresponding to chemical lifetimes of less than 4 s at 300 K. These reactions cause a CO molecule to be formed, which will easily desorb, and the reduced surface to become oxidized. It is clear that oxygen vacancy defects play a key role in the catalytic activity of an anatase (001) surface. Oxygen vacancies play an important role in the dissociation of CO2 on the anatase (001) surface, and will play a significant role in complex problems, such as the catalytic conversion of CO2 to value-added chemicals.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384626800055 Publication Date 2016-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 49 Open Access  
  Notes Stijn Huygh is funded as an aspirant of the Research Foundation Flanders (FWO, project number 11C0115N). This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:136164 Serial 4291  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Influence of the Material Dielectric Constant on Plasma Generation inside Catalyst Pores Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 120 Issue 120 Pages 25923-25934  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various environmental applications, but the crucial question is whether plasma can be created inside catalyst pores and under which conditions. In practice, various catalytic support materials are used, with various dielectric constants. We investigate here the influence of the dielectric constant on the plasma properties inside catalyst pores and in the sheath in front of the pores, for various pore sizes. The calculations are performed by a two-dimensional fluid model for an atmospheric pressure dielectric barrier discharge in helium. The electron impact ionization rate, electron temperature, electron and ion density, as well as the potential distribution and surface charge density, are analyzed for a better understanding of the discharge behavior inside catalyst pores. The results indicate that, in a 100 μm pore, the electron impact ionization in the pore, which is characteristic for the plasma generation inside the pore, is greatly enhanced for dielectric constants below 300. Smaller pore sizes only yield enhanced ionization for smaller dielectric constants, i.e., up to εr = 200, 150, and 50 for pore sizes of 50, 30, and 10 μm. Thus, the most common catalyst supports, i.e., Al2O3 and SiO2, which have dielectric constants around εr = 8−11 and 4.2, respectively, should allow more easily that microdischarges can be formed inside catalyst pores, even for smaller pore sizes. On the other hand, ferroelectric materials with dielectric constants above 300 never seem to yield plasma enhancement inside catalyst pores, not even for 100 μm pore sizes. Furthermore, it is clear that the dielectric constant of the material has a large effect on the extent of plasma enhancement inside the catalyst pores, especially in the range between εr = 4 and εr = 200. The obtained results are explained in detail based on the surface charge density at the pore walls,

and the potential distribution and electron temperature inside and above the pores. The results obtained with this model are

important for plasma catalysis, as the production plasma species in catalyst pores might affect the catalyst properties, and thus

improve the applications of plasma catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388429100029 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 34 Open Access  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant G.0217.14N), the National Natural Science Foundation of China (Grant 11405019), and the China Postdoctoral Science Foundation (Grant 2015T80244). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:138602 Serial 4319  
Permanent link to this record
 

 
Author Fatima; Oguz, I.C.; Çakir, D.; Hossain, S.; Mohottige, R.; Gulseren, O.; Oncel, N. url  doi
openurl 
  Title On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume (down) 120 Issue 120 Pages 095303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000383978100030 Publication Date 2016-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes ; We gratefully acknowledge the NSF (Grant No. DMR-1306101) for financial support. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:137132 Serial 4359  
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 120 Issue 120 Pages 25210-25224  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The hydrogenation of carbon dioxide in a dielectric barrier discharge plasma is studied with a one-dimensional fluid model. The spatially averaged densities of the most important end products formed in the CO2/H2 mixture are determined as a function of the initial gas mixing ratio. CO and H2O are found to be present at the highest densities and to a lower content also CH4, C2H6, CH2O, CH3OH, O2, and some other higher hydrocarbons and oxygenates. The main underlying reaction

pathways for the conversion of the inlet gases and the formation of CO, CH4, CH2O, and CH3OH are pointed out for various gas mixing ratios. The CO2 conversion and the production of value added products is found to be quite low, also in comparison to a CO2/CH4 mixture, and this can be explained by the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387737900007 Publication Date 2016-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 16 Open Access  
  Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:140082 c:irua:139167 Serial 4414  
Permanent link to this record
 

 
Author Mohammed, M.; Verhulst, A.S.; Verreck, D.; Van de Put, M.; Simoen, E.; Sorée, B.; Kaczer, B.; Degraeve, R.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. url  doi
openurl 
  Title Electric-field induced quantum broadening of the characteristic energy level of traps in semiconductors and oxides Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume (down) 120 Issue 120 Pages 245704  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The trap-assisted tunneling (TAT) current in tunnel field-effect transistors (TFETs) is one of the crucial factors degrading the sub-60 mV/dec sub-threshold swing. To correctly predict the TAT currents, an accurate description of the trap is required. Since electric fields in TFETs typically reach beyond 10(6) V/cm, there is a need to quantify the impact of such high field on the traps. We use a quantum mechanical implementation based on the modified transfer matrix method to obtain the trap energy level. We present the qualitative impact of electric field on different trap configurations, locations, and host materials, including both semiconductors and oxides. We determine that there is an electric-field related trap level shift and level broadening. We find that these electric-field induced quantum effects can enhance the trap emission rates. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000392174000028 Publication Date 2016-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes ; This work was supported by imec's Industrial Affiliation Program. D. Verreck acknowledges the support of a PhD stipend from IWT-Vlaanderen. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:141481 Serial 4593  
Permanent link to this record
 

 
Author Suffian, I.F.B.M.; Wang, J.T.-W.; Hodgins, N.O.; Klippstein, R.; Garcia-Maya, M.; Brown, P.; Nishimura, Y.; Heidari, H.; Bals, S.; Sosabowski, J.K.; Ogino, C.; Kondo, A.; Al-Jamal, K.T. url  doi
openurl 
  Title Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo Type A1 Journal article
  Year 2017 Publication Biomaterials Abbreviated Journal Biomaterials  
  Volume (down) 120 Issue 120 Pages 126-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hepatitis B Virus core (HBc) particles have been studied for their potential as drug delivery vehicles for cancer therapy. HBc particles are hollow nano-particles of 30-34 nm diameter and 7 nm thick envelopes, consisting of 180-240 units of 21 kDa core monomers. They have the capacity to assemble/dis-assemble in a controlled manner allowing encapsulation of various drugs and other biomolecules. Moreover, other functional motifs, i.e. receptors, receptor binding sequences, peptides and proteins can be expressed. This study focuses on the development of genetically modified HBc particles to specifically recognise and target human epidermal growth factor receptor-2 (HER2)-expressing cancer cells, in vitro and in vivo, for future cancer therapy. The non-specific binding capacity of wild type HBc particles was reduced by genetic deletion of the sequence encoding arginine-rich domains. A specific HER2-targeting was achieved by expressing the ZHER2 affibodies on the HBc particles surface. In vitro studies showed specific uptake of ZHER2-AHBc particles in HER2 expressing cancer cells. In vivo studies confirmed positive uptake of ZHER2-ABBc particles in HER2-expressing tumours, compared to non-targeted AHBc particles in intraperitoneal tumour-bearing mice models. The present results highlight the potential of these nanocarriers in targeting HER2-positive metastatic abdominal cancer following intra-peritoneal administration. (C) 2016 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Guildford Editor  
  Language Wos 000394398900012 Publication Date 2016-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9612 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.402 Times cited 20 Open Access OpenAccess  
  Notes ; The authors would like to thank Dr. Rafael T. M. de Rosales (King's College London) for useful discussion on the radiolabelling technique and Mr William Luckhurst (King's College London) on the technical help of AFM measurements. IFBMS would like to thank Public Service Department, Government of Malaysia for the Excellence Student Programme studentship. We acknowledge funding from Biotechnology and Biological Sciences Research Council (BBSRC; (BB/J008656/1)) and the EU FP7-ITN Marie-Curie Network programme RADDEL (290023). NH is a recipient of Graduate School King's Health Partner's scholarship. RIC is a Marie Curie Fellow. S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI. The authors declare that they have no competing interests. ; ecas_Sara Approved Most recent IF: 8.402  
  Call Number UA @ lucian @ c:irua:141984UA @ admin @ c:irua:141984 Serial 4654  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Mortazavi, B.; Ahzi, S.; Peeters, F.M.; Khraisheh, M.K. url  doi
openurl 
  Title Effect of straining graphene on nanopore creation using Si cluster bombardment: A reactive atomistic investigation Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume (down) 120 Issue 120 Pages 225108  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene nanosheets have recently received a revival of interest as a new class of ultrathin, high-flux, and energy-efficient sieving membranes because of their unique two-dimensional and atomically thin structure, good flexibility, and outstanding mechanical properties. However, for practical applications of graphene for advanced water purification and desalination technologies, the creation of well controlled, high-density, and subnanometer diameter pores becomes a key factor. Here, we conduct reactive force-field molecular dynamics simulations to study the effect of external strain on nanopore creation in the suspended graphene by bombardment with Si clusters. Depending on the size and energy of the clusters, different kinds of topography were observed in the graphene sheet. In all the considered conditions, tensile strain results in the creation of nanopores with regular shape and smooth edges. On the contrary, compressive strain increases the elastic response of graphene to irradiation that leads to the formation of net-like defective structures with predominantly carbon atom chains. Our findings show the possibility of creating controlled nanopores in strained graphene by bombardment with Si clusters. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000391535900022 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:141451 Serial 4554  
Permanent link to this record
 

 
Author Rios, P.L.; Perali, A.; Needs, R.J.; Neilson, D. doi  openurl
  Title Evidence from quantum Monte Carlo simulations of large-gap superfluidity and BCS-BEC crossover in double electron-hole layers Type A1 Journal article
  Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume (down) 120 Issue 17 Pages 177701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report quantum Monte Carlo evidence of the existence of large gap superfluidity in electron-hole double layers over wide density ranges. The superfluid parameters evolve from normal state to BEC with decreasing density, with the BCS state restricted to a tiny range of densities due to the strong screening of Coulomb interactions, which causes the gap to rapidly become large near the onset of superfluidity. The superfluid properties exhibit similarities to ultracold fermions and iron-based superconductors, suggesting an underlying universal behavior of BCS-BEC crossovers in pairing systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000430547800002 Publication Date 2018-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 11 Open Access  
  Notes ; The authors thank G. Baym, M. Bonitz, and G. Senatore for useful discussions. A. P. and D. N. acknowledge financial support from University of Camerino FAR project CESEMN and from the Italian MIUR through the PRIN 2015 program under Contract No. 2015C5SEJJ001. R. J. N. acknowledges financial support from the Engineering and Physical Sciences Research Council, U.K., under Grant No. EP/ P034616/1. P. L. R. acknowledges financial support from the Max-Planck Society. Computational resources have been provided by the High Performance Computing Service of the University of Cambridge and by the Max-Planck Institute for Solid State Research. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:150750UA @ admin @ c:irua:150750 Serial 4967  
Permanent link to this record
 

 
Author Maes, D.; Van Passel, S. pdf  doi
openurl 
  Title Effective bioeconomy policies for the uptake of innovative technologies under resource constraints Type A1 Journal article
  Year 2019 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume (down) 120 Issue 120 Pages 91-106  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The bioeconomy is a shared vision for a future European industry entirely based on organic matter. Authorities support this technological development with subsidies and policies stimulating R&D. One major limitation for the bioeconomy is that R&D and industrial growth require the continuous availability of biomass as a primary resource. This resource dependence is already present during the formative years of new biobased innovations and influences the pilot and demonstration phase of the development. Traditionally, it is assumed that public support for pilot and demonstration initiatives may overcome this hurdle. In this paper, we investigate how this resource constraint limits the effectiveness of bioeconomy policies. The future development of the biobased sector is simulated including the inherent dependence of industrial activity on biomass. We simulate the future growth and technological diversity of an emerging biotechnological sector: the sector of manure transformation in Belgium. The paper reports the evolutions for three policy scenarios. The model explicitly accounts for endogenous innovation and knowledge transfer mechanisms. The results show that policies may have an important impact on the sector structure in the long run, but the sector growth remains ultimately constrained by the availability of inputs. So bioeconomy policies to promote innovation will be less effective, unless mechanisms are included to alleviate the resource constraint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454887700011 Publication Date 2018-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.219 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 3.219  
  Call Number UA @ admin @ c:irua:156757 Serial 6191  
Permanent link to this record
 

 
Author Kleinhans, K.; Hallemans, M.; Huysveld, S.; Thomassen, G.; Ragaert, K.; Van Geem, K.M.; Roosen, M.; Mys, N.; Dewulf, J.; De Meester, S. pdf  doi
openurl 
  Title Development and application of a predictive modelling approach for household packaging waste flows in sorting facilities Type A1 Journal Article
  Year 2021 Publication Waste Management Abbreviated Journal Waste Management  
  Volume (down) 120 Issue Pages 290-302  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Household packaging waste sorting facilities consist of complex networks of processes to separate diverse waste streams. These facilities are a key first step to re-enter materials into the recycling chain. However, so far there are no general methods to predict the performance of such sorting facilities, i.e.

how efficiently the heterogeneous packaging waste is sorted into fractions with value for further recycling. In this paper, a model of the material flow in a sorting facility is presented, which allows changing the incoming waste composition, split factors on the sorting units as well as the setup of the sorting facility. The performance of the sorting facility is judged based on the purity of the output material (grade) and the recovery of the input material. A validation of the model was performed via a case study on Belgian post-consumer packaging waste with a selection of typical waste items that can be found in this stream. Moreover, the model was used to predict the possible sorting qualities of future Belgian postconsumer packaging waste after an extension of the allowed waste packaging items in the waste stream. Finally, a sensitivity analysis was performed on the split factors, which are a key data source in the model. Overall, the developed model is flexible and able to predict the performance of packaging waste sorting facilities as well as support waste management and design for recycling decisions, including future

design of packaging, to ensure proper sorting and separation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956053X ISBN Additional Links  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes We would like to thank Indaver (https://www.indaver.com/been/home/), especially Erik Huybrechts, Eric Goddaert, Eline Meyvis and Erik Moerman, for their great support on this research. Furthermore, we would like to acknowledge the help of Colruyt (https://www.colruyt.be/) and CEFLEX (https://ceflex.eu/) for the pre-studies for this research. Moreover, we would like to show our appreciation for the financial support by the Catalisti-ICON project (HBC.2018.0262) MATTER (Mechanical and Thermochemical Recycling of mixed plastic waste) funded by Flanders Innovation & Entrepreneurship (VLAIO). We also thank the Interreg 2 Seas program PlastiCity that is co-funded by the European Regional Development Fund under subsidy contract No. 2S05-021 and the province of East-Flanders for funding this research. Approved Most recent IF: NA  
  Call Number ENM @ enm @ Serial 6667  
Permanent link to this record
 

 
Author van Roy, W.; Struyf, H.; Kennis, P.; Van Vaeck, L.; Van Grieken, R.; Andrle, C. doi  openurl
  Title Assessment of local analysis by Fourier transform laser microprobe mass spectrometry with external ion source Type A1 Journal article
  Year 1995 Publication Microchimica acta Abbreviated Journal  
  Volume (down) 120 Issue Pages 121-137  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1995TH37000012 Publication Date 2005-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-3672; 1436-5073 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:12356 Serial 7507  
Permanent link to this record
 

 
Author Jambers, W.; de Bock, L.; Van Grieken, R. doi  openurl
  Title Recent advances in the analysis of individual environmental particles: a review Type A1 Journal article
  Year 1995 Publication The analyst Abbreviated Journal  
  Volume (down) 120 Issue Pages 681-692  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1995QP46100016 Publication Date 2004-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:12343 Serial 8458  
Permanent link to this record
 

 
Author Eltayeb, M.A.H.; van Espen, P.J.; Cafmeyer, J.; Van Grieken, R.E.; Maenhaut, W. doi  openurl
  Title Size-differentiated composition of aerosols in Khartoum, Sudan Type A1 Journal article
  Year 1992 Publication The science of the total environment Abbreviated Journal  
  Volume (down) 120 Issue Pages 281-299  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992JA65200008 Publication Date 2003-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:2834 Serial 8543  
Permanent link to this record
 

 
Author Huygh, S.; Neyts, E.C. pdf  url
doi  openurl
  Title Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 4908-4921  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption of C and CHx radicals on anatase (001) was studied using DFT within the generalized gradient approximation using the Perde-Burke-Ernzerhof (PBE) functional. We have studied the influence of oxygen vacancies in and at the surface on the adsorption properties of the radicals. For the oxygen vacancies in anatase (001), the most stable vacancy is located at the surface. For this vacancy, the maximal adsorption strength of C and CH decreases compared to the adsorption on the stoichiometric surface, but it increases for CH2 and CH3. If an oxygen vacancy is present in the first subsurface layer, the maximal adsorption strength increases for C, CH, CH2, and CH3. When the vacancy is present in the next subsurface layer, we find that only the CH3 adsorption is enhanced, while the maximal adsorption energies for the other radical species decrease. Not only does the precise location of the oxygen vacancy determine the maximal adsorption interaction, it also influences the adsorption strengths of the radicals at different surface configurations. This determines the probability of finding a certain adsorption configuration at the surface, which in turn influences the possible surface reactions. We find that C preferentially adsorbs far away from the oxygen vacancy, while CH2 and CH3 adsorb preferentially at the oxygen vacancy site. A fraction of CH partially adsorbs at the oxygen vacancy, and another fraction adsorbs further away from the vacancy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000350840700052 Publication Date 2015-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 13 Open Access  
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:124909 Serial 63  
Permanent link to this record
 

 
Author Quan Manh, P.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A. doi  openurl
  Title Atomic layer deposition of Ruthenium on Ruthenium surfaces : a theoretical study Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 6592-6603  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atomic, layer deposition,(ALD of ruthenium using two ruthenium precursors, i.e., Ru(C5H5)(2) (RuCp2) and Ru(C5H5)(C4H4N) (RuCpPy), is studied using density functional theory. By investigating the reaction mechanisms On bare ruthenium surfaces, i.e., (001), (101), and (100), and H-terminated surfaces, an atomistic insight in the Ru ALD is provided. The calculated results show that on the Ru surfaces both RuCp2 and RuCpPy an undergo dehydrogenation and ligand dissociation reactions. RuCpPy is more reactive than RuCp2. By forming a, strong, bond between N of Py and Ru of the surface, RuCpPy can easily chemisorb on the surfaces. The reactions of RuCp2,On the Surfaces are less favorable the adsorption is not strong enough This could be a,factor contributing to the higher growth-per-cycle of Ru using RuCpPy, as observed experimentally. By Studying, the adsorption on H-terminated Ru surfaces, We showed that H Can prevent the adsorption of the precursors, thus inhibiting the growth of Ru. Our calculations indicate that the H content on the surface can have an impact on the growth-per-cycle. Finally, our simulations also demonstrate large impacts of the surface structure on the reaction mechanisms. Of the three surfaces, the (100) surface, which is the less stable and has a zigzag surface structure, is also the most reactive one.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000351970800015 Publication Date 2015-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 10 Open Access  
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:125544 Serial 171  
Permanent link to this record
 

 
Author Lobato, I.; van Dyck, D. doi  openurl
  Title Improved multislice calculations for including higher-order Laue zones effects Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (down) 119 Issue Pages 63-71  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract A new method for including higher-order Laue zones (HOLZs) effects in an efficient way in electron scattering simulations has been developed and tested by detail calculations. The calculated results by the conventional multislice (CMS) method and the improved conventional multislice (ICMS) method using a large dynamical aperture to avoid numerical errors are compared with accurate results. We have found that the zero-order Laue zones (ZOLZs) reflection cannot be properly described only using the projected potential in the whole unit cell; in general, we need to subslice the electrostatic potential inside the unit cell. It is shown that the ICMS method has higher accuracy than the CMS method for the calculation of the ZOLZ, HOLZ and Pseudo-HOLZ reflections. Hence, ICMS method allows to use a larger slice thickness than the CMS method and reduces the calculation time. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308079200011 Publication Date 2012-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:101902 Serial 1567  
Permanent link to this record
 

 
Author Nistor, L.; Van Tendeloo, G.; Amelinckx, S.; Kahlenberg, V.; Böhm, H. doi  openurl
  Title In situ study of the phase transition in Bi2Ti4O11 Type A1 Journal article
  Year 1995 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume (down) 119 Issue Pages 281-288  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1995TC99800008 Publication Date 2003-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.133 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13325 Serial 1584  
Permanent link to this record
 

 
Author Kato, T.; Neyts, E.C.; Abiko, Y.; Akama, T.; Hatakeyama, R.; Kaneko, T. pdf  url
doi  openurl
  Title Kinetics of energy selective Cs encapsulation in single-walled carbon nanotubes for damage-free and position-selective doping Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 11903-11908  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A method has been developed for damage-free cesium (Cs) encapsulation within single-walled carbon nanotubes (SWNTs) with fine position selectivity. Precise energy tuning of Cs-ion irradiation revealed that there is a clear energy window (2060 eV) for the efficient encapsulation of Cs through the hexagonal network of SWNT sidewalls without causing significant damage. This minimum energy threshold of Cs-ion encapsulation (∼20 eV) matches well with the value obtained by ab initio simulation (∼22 eV). Furthermore, position-selective Cs encapsulation was carried out, resulting in the successful formation of pn-junction SWNT thin films with excellent environmental stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000355495600072 Publication Date 2015-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 3 Open Access  
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:125928 Serial 1760  
Permanent link to this record
 

 
Author Vasiliev, A.L.; Stepantsov, E.A.; Ivanov, Z.G.; Verbist, K.; Van Tendeloo, G.; Olsson, E. openurl 
  Title The microstructure and interfaces of intermediate layers in sapphire bicrystals Type A1 Journal article
  Year 1997 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume (down) 119 Issue Pages 215-218  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1997YC74900006 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.387; 1997 IF: 0.873  
  Call Number UA @ lucian @ c:irua:21450 Serial 2055  
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A. pdf  url
doi  openurl
  Title The Dominant Pathways for the Conversion of Methane into Oxygenates and Syngas in an Atmospheric Pressure Dielectric Barrier Discharge Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 22331-22350  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A one-dimensional fluid model for a dielectric barrier discharge in CH4/O2 and CH4/CO2 gas mixtures is developed. The model describes the gas-phase chemistry for partial oxidation and for dry reforming of methane. The spatially averaged densities of the various plasma species are presented as a function of time and initial gas mixing ratio. Besides, the conversion of the inlet gases and the selectivities of the reaction products are calculated. Syngas, higher hydrocarbons, and higher oxygenates are typically found to be important reaction products. Furthermore, the main underlying reaction pathways for the formation of syngas, methanol, formaldehyde, and other higher oxygenates are determined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362385700010 Publication Date 2015-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 46 Open Access  
  Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. The authors also acknowledge financial support from the IAP/7 (Interuniversity Attraction Pole) program “PSI-Physical Chemistry of Plasma- Surface Interactions” by the Belgian Federal Office for Science Policy (BELSPO) and from the Fund for Scientific Research Flanders (FWO). Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:128774 Serial 3960  
Permanent link to this record
 

 
Author Nicholls, D.; Li, R.R.; Ware, B.; Pansegrau, C.; Çakir, D.; Hoffmann, M.R.; Oncel, N. doi  openurl
  Title Scanning tunneling microscopy and density functional theory study on zinc(II)-phthalocyanine tetrasulfonic acid on bilayer epitaxial graphene on silicon carbide(0001) Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 9845-9850  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Zinc(II)-phthalocyanine tetrasulfonic acid (Zn-PcS) molecules physisorbed on bilayer epitaxial graphene on silicon carbide (SiC(0001)) were studied by using scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT). Two different methods were used to deposit Zn-PcS molecules and regardless of the method being used, the surface coverage stayed very low indicating the weakness of surface-molecule interaction. STS measurements revealed that derivative of tunneling current with respect to voltage (dI/dV) measured on Zn-PcS molecules did not exhibit the characteristic dip observed on dI/dV curves of pristine bilayer epitaxial graphene. DFT calculations show that the energy of the lowest unoccupied molecular orbital (LUMO) of the Zn-PcS molecule is below the Dirac point of graphene which enhances local density of states (LDOS). We attribute the disappearance of the dip in the dI/dV curves measured on the Zn-PcS/bilayer system to the LUMO of Zn-PcS. Charge density calculations along Zn-PcS/graphene interface reveal that there is a small charge transfer from graphene to the molecule. Calculated adsorption energy (3.13 eV) of the molecule is notably low and is consistent with the observed low surface coverage at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354339000020 Publication Date 2015-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 3 Open Access  
  Notes ; We gratefully acknowledge the NSF (Grant Nos.: DMR-1306101, EPS-814442, and EPS-1354366) for financial support. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126370 Serial 2947  
Permanent link to this record
 

 
Author Esfahani; Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Structural transitions in monolayer MOS2 by lithium adsorption Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 10602-10609  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Based on first-principles calculations, we study the structural stability of the H and T phases of monolayer MoS2 upon Li doping. Our calculations demonstrate that it is possible to stabilize a distorted T phase of MoS2 over the H phase through adsorption of Li atoms on the MoS2 surface. Through molecular dynamics and phonon calculations, we show that the T phase of MoS2 is dynamically unstable and undergoes considerable distortions. The type of distortion depends on the concentration of adsorbed Li atoms and changes from zigzag-like to diamond-like when increasing the Li doping. There exists a substantial energy barrier to transform the stable H phase to the distorted T phases, which is considerably reduced by increasing the concentration of Li atoms. We show that it is necessary that the Li atoms adsorb on both sides of the MoS2 monolayer to reduce the barrier sufficiently. Two processes are examined that allow for such two-sided adsorption, namely, penetration through the MoS2 layer and diffusion over the MoS2 surface. We show that while there is only a small barrier of 0.24 eV for surface diffusion, the amount of energy needed to pass through a pure MoS2 layer is of the order of similar or equal to 2 eV. However, when the MoS2 layer is covered with Li atoms the amount of energy that Li atoms should gain to penetrate the layer is drastically reduced and penetration becomes feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354912200051 Publication Date 2015-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 96 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem program of the Flemish government. H. S is supported by an FWO Pegasus-Long Marie Curie fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government department EWI. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126409 Serial 3270  
Permanent link to this record
 

 
Author Heijkers, S.; Snoeckx, R.; Kozák, T.; Silva, T.; Godfroid, T.; Britun, N.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2 conversion in a microwave plasma reactor in the presence of N2 : elucidating the role of vibrational levels Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 12815-12828  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A chemical kinetics model is developed for a CO2/N2 microwave plasma, focusing especially on the vibrational levels of both CO2 and N2. The model is used to calculate the CO2 and N2 conversion as well as the energy efficiency of CO2 conversion for different power densities and for N2 fractions in the CO2/N2 gas mixture ranging from 0 to 90%. The calculation results are compared with measurements, and agreements within 23% and 33% are generally found for the CO2 conversion and N2 conversion, respectively. To explain the observed trends, the destruction and formation processes of both CO2 and N2 are analyzed, as well as the vibrational distribution functions of both CO2 and N2. The results indicate that N2 contributes in populating the lower asymmetric levels of CO2, leading to a higher absolute CO2 conversion upon increasing N2 fraction. However, the effective CO2 conversion drops because there is less CO2 initially present in the gas mixture; thus, the energy efficiency also drops with rising N2 fraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000356317500005 Publication Date 2015-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 56 Open Access  
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126325 Serial 3523  
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M. doi  openurl
  Title Tuning carrier confinement in the MoS2/WS2 lateral heterostructure Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 9580-9586  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract To determine and control the spatial confinement of charge carriers is of importance for nanoscale optoelectronic device applications. Using first-principles calculations, we investigate the tunability of band alignment and Charge localization in lateral and combined lateral vertical heterostructures of MoS2 and WS2. First, we Show that a type-II to type-I band alignment transition takes place when tensile strain is applied on the WS2 region. This band alignment transition is a result of the different response of the band edge states with strain and is caused by their different wave function characters. Then we show that the presence of the grain boundary introduces localized in-gap states. The boundary at the armchair interface significantly modifies the charge distribution of the valence band maximum (VBM) state, whereas in a heterostructure with tilt grain domains both conducation band maximum (CBM) and VBM are found to be localized around the grain boundary. We also found that the thickness of the constituents in a lateral heterostructure also determines how the electrons and holes are confined. Creating combined lateral vertical heterostructures of MOS2/WS2 provides another way cif tuning the charge confinement. These results provide possible ways to tune the carrier confinement in MoS2/WS2 heterostructures, which are interesting for its practical: applications in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000353930700066 Publication Date 2015-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 73 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship and J.K. by a FWO Pegasus Marie Curie-short Fellowship. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126381 Serial 3747  
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M. doi  openurl
  Title Vacancy formation and oxidation characteristics of single layer TiS3 Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 10709-10715  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The structural, electronic, and magnetic properties of pristine, defective, and oxidized monolayer TiS3 are investigated using first-principles calculations in the framework of density functional theory. We found that a single layer of TiS3 is a direct band gap semiconductor, and the bonding nature of the crystal is fundamentally different from other transition metal chalcogenides. The negatively charged surfaces of single layer TiS3 makes this crystal a promising material for lubrication applications. The formation energies of possible vacancies, i.e. S, Ti, TiS, and double S, are investigated via total energy optimization calculations. We found that the formation of a single S vacancy was the most likely one among the considered vacancy types. While a single S vacancy results in a nonmagnetic, semiconducting character with an enhanced band gap, other vacancy types induce metallic behavior with spin polarization of 0.3-0.8 mu(B). The reactivity of pristine and defective TiS3 crystals against oxidation was investigated using conjugate gradient calculations where we considered the interaction with atomic O, O-2, and O-3. While O-2 has the lowest binding energy with 0.05-0.07 eV, O-3 forms strong bonds stable even at moderate temperatures. The strong interaction (3.9-4.0 eV) between atomic O and TiS3 results in dissociative adsorption of some O-containing molecules. In addition, the presence of S-vacancies enhances the reactivity of the surface with atomic O, whereas it had a negative effect on the reactivity with O-2 and O-3 molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354912200063 Publication Date 2015-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 51 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. RI., H.S., and R.T.S. acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126410 Serial 3829  
Permanent link to this record
 

 
Author Alyörük, M.M.; Aierken, Y.; Çakır, D.; Peeters, F.M.; Sevik, C. pdf  url
doi  openurl
  Title Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume (down) 119 Issue 119 Pages 23231-23237  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Piezoelectricity is a unique material property that allows one to convert mechanical energy into electrical one or vice versa. Transition metal dichalcogenides (TMDC) and transition metal dioxides (TMDO) are expected to have great potential for piezoelectric device applications due to their noncentrosymmetric and two-dimensional crystal structure. A detailed theoretical investigation of the piezoelectric stress (e 11 ) and piezoelectric strain (d 11 ) coefficients of single layer TMDCs and TMDOs with chemical formula MX 2 (where M= Cr, Mo, W, Ti, Zr, Hf, Sn and X = O, S, Se, Te) is presented by using first-principles calculations based on density func- tional theory. We predict that not only the Mo- and W-based members of this family but also the other materials with M= Cr, Ti, Zr and Sn exhibit highly promising piezoelectric properties. CrTe 2 has the largest e 11 and d 11 coefficients among the group VI elements (i.e., Cr, Mo, and W). In addition, the relaxed-ion e 11 and d 11 coefficients of SnS 2 are almost the same as those of CrTe 2 . Furthermore, TiO 2 and ZrO 2 pose comparable or even larger e 11 coefficients as compared to Mo- and W-based TMDCs and TMDOs. Our calculations reveal that TMDC and TMDO structures are strong candidates for future atomically thin piezoelectric applications such as transducers, sensors, and energy harvesting devices due to their piezoelectric coefficients that are comparable (even larger) to currently used bulk piezoelectric materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362702100054 Publication Date 2015-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 134 Open Access  
  Notes M.M.A and C.S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK- 113F333). C.S. acknowledges support from Anadolu University (BAP-1407F335, -1505F200), and Turkish Academy of Sciences (TUBA-GEBIP). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:129418 Serial 4035  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: