toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M. pdf  doi
openurl 
  Title Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume (down) 56 Issue 15 Pages 8782-8792  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000407405500026 Publication Date 2017-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access  
  Notes ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:145727 Serial 4744  
Permanent link to this record
 

 
Author Tong, Y.; Bohn, B.J.; Bladt, E.; Wang, K.; Mueller-Buschbaum, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. pdf  url
doi  openurl
  Title From precursor powders to CsPbX3 perovskite nanowires : one-pot synthesis, growth mechanism, and oriented self-assembly Type A1 Journal article
  Year 2017 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume (down) 56 Issue 56 Pages 13887-13892  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The colloidal synthesis and assembly of semiconductor nanowires continues to attract a great deal of interest. Herein, we describe the single-step ligand-mediated synthesis of single-crystalline CsPbBr3 perovskite nanowires (NWs) directly from the precursor powders. Studies of the reaction process and the morphological evolution revealed that the initially formed CsPbBr3 nanocubes are transformed into NWs through an oriented-attachment mechanism. The optical properties of the NWs can be tuned across the entire visible range by varying the halide (Cl, Br, and I) composition through subsequent halide ion exchange. Single-particle studies showed that these NWs exhibit strongly polarized emission with a polarization anisotropy of 0.36. More importantly, the NWs can self-assemble in a quasi-oriented fashion at an air/liquid interface. This process should also be easily applicable to perovskite nanocrystals of different morphologies for their integration into nanoscale optoelectronic devices.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000413314800065 Publication Date 2017-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 223 Open Access OpenAccess  
  Notes ; This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go hybrid (SolTech)”, the China Scholarship Council (Y.T. and K.W.), the Alexander von Humboldt Stiftung (L.P.), and the Flemish Fund for Scientific Research (FWO Vlaanderen; E.B.). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant 335078-COLOURATOMS). ; ecas_sara Approved Most recent IF: 11.994  
  Call Number UA @ lucian @ c:irua:147434UA @ admin @ c:irua:147434 Serial 4876  
Permanent link to this record
 

 
Author Mosquera, J.; Wang, D.; Bals, S.; Liz-Marzan, L.M. url  doi
openurl 
  Title Surfactant layers on gold nanorods Type A1 Journal article
  Year 2023 Publication Accounts of chemical research Abbreviated Journal  
  Volume (down) 56 Issue 10 Pages 1204-1212  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold nanorods (Au NRs) are an exceptionally promising tool in nanotechnology due to three key factors: (i) their strong interaction with electromagnetic radiation, stemming from their plasmonic nature, (ii) the ease with which the resonance frequency of their longitudinal plasmon mode can be tuned from the visible to the near-infrared region of the electromagnetic spect r u m based on their aspect ratio, and (iii) their simple and cost-effective preparation through seed-mediated chemical growth. In this synthetic method, surfactants play a critical role in controlling the size, shape, and colloidal stabi l i t y of Au NRs. For example, surfactants can stabilize specific crystallographic facets during the formation of Au NRs, leading to t h e formation of NRs with specific morphologies. The process of surfactant adsorption onto the NR surface may result in various assemblies of surfactant molecules, such as spherical micelles, elongated micelles, or bilayers. Again, the assembly mode is critical toward determining the further availabi l i t y of the Au NR surface to the surrounding medium. Despite its importance and a great deal of research effort, the interaction between Au NPs and surfactants remains insufficiently understood, because the assembly process is influenced by numerous factors, including the chemical nature of the surfactant, the surface morphology of Au NPs, and solution parameters. Therefore, gaining a more comprehensive understanding of these interactions is essential to unlock the full potential of the seed-mediated growth method and the applications of plasmonic NPs. A plethora of characterization techniques have been applied to reach such an understanding , but many open questions remain. In this Account, we review the current knowledge on the interactions between surfactants and Au NRs. We briefly introduce the state-of-the-art methods for synthesizing Au NRs and highlight the crucial role of cationic surfactants during this process. The self-assembly and organization of surfactants on the Au NR surface is then discussed to better understand their role in seed-mediated growth. Subsequently, we provide examples and elucidate how chemical additives can be used to modulate micellar assemblies, in turn allowing for a finer control over the growth of Au NRs, including chiral NRs. Next, we review the main experimental characterization and computational modeling techniques that have been applied to shed light on the arrangement of surfactants on Au NRs and summarize the advantages and disadvantages for each technique. The Account ends with a “Conclusions and Outlook” section, outlining promising future research directions and developments that we consider are sti l l required, mostly related to the application of electron microscopy in liquid and in 3D. Finally, we remark on the potential of exploiting machine learning techniques to predict synthetic routes for NPs with predefined structures and properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986447000001 Publication Date 2023-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 18.3 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) , from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M. and Grants RYC2019-027842-I , PID2020-117885GA-I00 to J.M.) , and by Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (No. 2017B030301007) , National Center for International Research on Green Optoelectronics (No. 2016B01018) , MOE Interna-tional Laboratory for Optical Information Technologies, and the 111 projects. Approved Most recent IF: 18.3; 2023 IF: 20.268  
  Call Number UA @ admin @ c:irua:196768 Serial 8940  
Permanent link to this record
 

 
Author Panin, R.V.; Khasanova, N.R.; Abakumov, A.M.; Schnelle, W.; Hadermann, J.; Antipov, E.V. doi  openurl
  Title Crystal structure and properties of the Na1-xRu2O4 phase Type A1 Journal article
  Year 2006 Publication Russian chemical bulletin Abbreviated Journal Russ Chem B+  
  Volume (down) 55 Issue 10 Pages 1717-1722  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000245091400003 Publication Date 2007-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.529 Times cited 5 Open Access  
  Notes Approved Most recent IF: 0.529; 2006 IF: 0.505  
  Call Number UA @ lucian @ c:irua:63810 Serial 566  
Permanent link to this record
 

 
Author Rotaru, G.-M.; Tirry, W.; Sittner, P.; van Humbeeck, J.; Schryvers, D. pdf  doi
openurl 
  Title Microstructural study of equiatomic PtTi martensite and the discovery of a new long-period structure Type A1 Journal article
  Year 2007 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume (down) 55 Issue 13 Pages 4447-4454  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000248436400021 Publication Date 2007-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 7 Open Access  
  Notes Fwo G.0465.05; Multimat Approved Most recent IF: 5.301; 2007 IF: 3.624  
  Call Number UA @ lucian @ c:irua:65849 Serial 2047  
Permanent link to this record
 

 
Author Abakumov, A.M.; Shpanchenko, R.V.; Lebedev, O.I.; Van Tendeloo, G.; Amelinckx, S.; Antipov, E.V. doi  openurl
  Title The phase transition and crystal structures of Ba3RM2O7.5 complex oxides (R=rare-earth elements, M = Al,Ga) Type A1 Journal article
  Year 1999 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A  
  Volume (down) 55 Issue Pages 828-839  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000082727000006 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.725 Times cited 7 Open Access  
  Notes Approved Most recent IF: 5.725; 1999 IF: 1.601  
  Call Number UA @ lucian @ c:irua:29716 Serial 2591  
Permanent link to this record
 

 
Author Rodewald, M.; Rodewald, K.; De Meulenaere, P.; Van Tendeloo, G. url  doi
openurl 
  Title Real-space characterization of short-range order in Cu-Pd alloys Type A1 Journal article
  Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume (down) 55 Issue 21 Pages 14173-14181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Cu-Pd alloys containing 10, 20, 30, 40, and 50 at. % Pd and quenched from a temperature just above the ordering temperature T-c are investigated by electron diffraction and high-resolution electron microscopy (HREM). The results show diffuse electron diffraction intensities at {100} and {110} positions for the alloy with 10 at. % Pd, but with a characteristic twofold and fourfold splitting for the alloys with more than 10 at. % Pd. High-resolution images show the formation of microdomains best developed between 20 and 30 at. % Pd. A real-space characterization has been performed by applying videographic real-structure simulations revealing that the splitting of the diffuse maxima depends on the average distance between microdomains of Cu3Au type in antiphase with each other. By applying image processing routines on the HREM images, correlation vectors are identified which correspond to correlations between microdomains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1997XE37100036 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.836; 1997 IF: NA  
  Call Number UA @ lucian @ c:irua:21439 Serial 2828  
Permanent link to this record
 

 
Author Richard, O.; Schuddinck, W.; Van Tendeloo, G.; Millange, F.; Hervieu, M.; Caignaert, C.; Raveau, B. doi  openurl
  Title Room temperature and low-temperature structure of Nd1-xCaxMnO3 (0.3*x*0.5) Type A1 Journal article
  Year 1999 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A  
  Volume (down) 55 Issue Pages 704-718  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000081697500013 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.725 Times cited 24 Open Access  
  Notes Approved Most recent IF: 5.725; 1999 IF: 1.601  
  Call Number UA @ lucian @ c:irua:29715 Serial 2929  
Permanent link to this record
 

 
Author Zhang, X.F.; Zhang, X.B.; Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.; van Landuyt, J.; Werner, H. pdf  doi
openurl 
  Title A simple preparation method for air-sensitive specimens for transmission electron microscopy demonstrated by Rb6C60 Type A1 Journal article
  Year 1994 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (down) 55 Issue Pages 25-30  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper a particularly simple but efficient method is presented by which samples of alkali-doped C-60 materials or other air-sensitive materials can be prepared and transferred into a transmission electron microscope for direct observations and investigations. Flexible, transparent glove bags are used which are filled to a slight overpressure with dry nitrogen. Under this protective atmosphere, the air-sensitive sample is mounted in the specimen holder and inserted in the vacuum of the electron microscope. Rb6C60 which is prepared and transferred into the microscope in this way has been investigated by transmission electron microscopy (TEM). The results confirm the bcc structure and especially the location of the rubidium atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1994PE30800005 Publication Date 2002-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.436 Times cited 2 Open Access  
  Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #  
  Call Number UA @ lucian @ c:irua:10007 Serial 3002  
Permanent link to this record
 

 
Author Milants, K.; Hendrickx, P.; Verheyden, J.; Barancira, T.; Deweerd, W.; Pattyn, H.; Bukshpan, S.; Vermeiren, F.; Van Tendeloo, G. openurl 
  Title 133Xe(Cs) Mössbauer measurements on Ar, Ne, Kr, Xe, Rb, and Cs inclusions in W and Mo Type A1 Journal article
  Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume (down) 55 Issue 5 Pages 2831-2839  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1997WG88600034 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.836; 1997 IF: NA  
  Call Number UA @ lucian @ c:irua:21422 Serial 3512  
Permanent link to this record
 

 
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume (down) 55 Issue 55 Pages 1245-1257  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.  
  Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369356800031 Publication Date 2016-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access  
  Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857  
  Call Number c:irua:132247 Serial 4073  
Permanent link to this record
 

 
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
  Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res  
  Volume (down) 55 Issue 55 Pages 5911-5922  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000376825300013 Publication Date 2016-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 26 Open Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:134214 Serial 4158  
Permanent link to this record
 

 
Author Retuerto, M.; Skiadopoulou, S.; Li, M.R.; Abakumov, A.M.; Croft, M.; Ignatov, A.; Sarkar, T.; Abbett, B.M.; Pokorný, J.; Savinov, M.; Nuzhnyy, D.; Prokleška, J.; Abeykoon, M.; Stephens, P.W.; Hodges, J.P.; Vaněk, P.; Fennie, C.J.; Rabe, K.M.; Kamba, S.; Greenblatt, M.; pdf  doi
openurl 
  Title Pb2MnTeO6 double perovskite : an antipolar anti-ferromagnet Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume (down) 55 Issue 55 Pages 4320-4329  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb2MnTeO6, a new double perovskite, was synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction. Pb2MnTeO6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to similar to 120 K it undergoes a phase transition from I2/m to C2/c structure. This transition is accompanied by a displacement of the Pb atoms from the center of their polyhedra due to the 6s2 lone-pair electrons, together with a surprising off-centering of Mn2+ (d5) magnetic cations. This strong first-order phase transition is also evidenced by specific heat, dielectric, Raman, and infrared spectroscopy measurements. The magnetic characterizations indicate an anti-ferromagnetic (AFM) order below TN approximate to 20 K; analysis of powder neutron diffraction data confirms the magnetic structure with propagation vector k = (0 1 0) and collinear AFM spins. The observed jump in dielectric permittivity near similar to 150 K implies possible anti-ferroelectric behavior; however, the absence of switching suggests that Pb2MnTeO6 can only be antipolar. First-principle calculations confirmed that the crystal and magnetic structures determined are locally stable and that anti-ferroelectric switching is unlikely to be observed in Pb2MnTeO6.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000375519700027 Publication Date 2016-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 9 Open Access  
  Notes Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:134219 Serial 4258  
Permanent link to this record
 

 
Author Mikhailova, D.; Karakulina, O.M.; Batuk, D.; Hadermann, J.; Abakumov, A.M.; Herklotz, M.; Tsirlin, A.A.; Oswald, S.; Giebeler, L.; Schmidt, M.; Eckert, J.; Knapp, M.; Ehrenberg, H. pdf  url
doi  openurl
  Title Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2upon Li Extraction and Insertion Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume (down) 55 Issue 55 Pages 7079-7089  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li(M,Li)O2 (where M is a transition metal) ordered rock-salt-type structures are used in advanced metal-ion batteries as one of the best hosts for the reversible intercalation of Li ions. Besides the conventional redox reaction involving oxidation/reduction of the M cation upon Li extraction/insertion, creating oxygen-located holes because of the partial oxygen oxidation increases capacity while maintaining the oxidized oxygen species in the lattice through high covalency of the M–O bonding. Typical degradation mechanism of the Li(M,Li)O2 electrodes involves partially irreversible M cation migration toward the Li positions, resulting in gradual capacity/voltage fade. Here, using LiRhO2 as a model system (isostructural and isoelectronic to LiCoO2), for the first time, we demonstrate an intimate coupling between the oxygen redox and M cation migration. A formation of the oxidized oxygen species upon electrochemical Li extraction coincides with transformation of the layered Li1–xRhO2 structure into the γ-MnO2-type rutile–ramsdellite intergrowth LiyRh3O6 structure with rutile-like [1 × 1] channels along with bigger ramsdellite-like [2 × 1] tunnels through massive and concerted Rh migration toward the empty positions in the Li layers. The oxidized oxygen dimers with the O–O distances as short as 2.26 Å are stabilized in this structure via the local Rh–O configuration reminiscent to that in the μ-peroxo-μ-hydroxo Rh complexes. The LiyRh3O6 structure is remarkably stable upon electrochemical cycling illustrating that proper structural implementation of the oxidized oxygen species can open a pathway toward deliberate employment of the anion redox chemistry in high-capacity/high-voltage positive electrodes for metal-ion batteries. Upon chemical or electrochemical oxidation, layered LiRhO2 shows a unique structural transformation that involves both cation migration and oxidation of oxygen resulting in a stable tunnel-like rutile−ramsdellite intergrowth LiyRh3O6 structure. This structure demonstrates excellent performance with the steady and reversible capacity of ∼200 mAh/g. The stability of LiyRh3O6 is rooted in the accommodation of partially oxidized oxygen species through the formation of short O−O distances that are compatible with the connectivity of RhO6 octahedra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380181400035 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 12 Open Access  
  Notes Bundesministerium fur Bildung und Forschung, 03SF0477B ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:140848 Serial 4424  
Permanent link to this record
 

 
Author Tong, Y.; Bladt, E.; Aygüler, M.F.; Manzi, A.; Milowska, K.Z.; Hintermayr, V.A.; Docampo, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. pdf  url
doi  openurl
  Title Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication Type A1 Journal article
  Year 2016 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume (down) 55 Issue 55 Pages 13887-13892  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We describe the simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387024200040 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 549 Open Access Not_Open_Access  
  Notes This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, by the China Scholarship Council (Y.T.) and by the Alexander von Humboldt-Stiftung (L.P.). P.D. acknowledges support from the European Union through the award of a Marie Curie Intra-European Fellowship. M.A. acknowledges the Scientific and Technological Research Council of Turkey. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994  
  Call Number EMAT @ emat @ c:irua:138215 Serial 4327  
Permanent link to this record
 

 
Author Li, M.-R.; Deng, Z.; Lapidus, S.H.; Stephens, P.W.; Segre, C.U.; Croft, M.; Sena, R.P.; Hadermann, J.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9: in Search of Jahn-Teller Distorted Cr(II) Oxide Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume (down) 55 Issue 55 Pages 10135-10142  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel 6H-type hexagonal perovskite Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 was prepared at high pressure (6 GPa) and temperature (1773 K). Both transmission electron microscopy and synchrotron powder X-ray diffraction data demonstrate that Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 crystallizes in P6(3)/mmc with face-shared (Cr0.97(1)Te0.03(1))O-6 octahedral pairs interconnected with TeO6 octahedra via corner-sharing. Structure analysis shows a mixed Cr2+/Cr3+ valence state with similar to 10% Cr2+. The existence of Cr2+ in Ba-3(Cr0.10(1)2+Cr0.87(1)3+Te0.036+)(2)TeO9 is further evidenced by X-ray absorption near-edge spectroscopy. Magnetic properties measurements show a paramagnetic response down to 4 K and a small glassy-state curvature at low temperature. In this work, the octahedral Cr2+O6 component is stabilized in an oxide material for the first time; the expected Jahn-Teller distortion of high-spin (d(4)) Cr2+ is not found, which is attributed to the small proportion of Cr2+ (similar to 10%) and the face-sharing arrangement of CrO6 octahedral pairs, which structurally disfavor axial distortion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000385785700026 Publication Date 2016-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:140313 Serial 4440  
Permanent link to this record
 

 
Author Lamoen, D.; Ballone, P.; Parrinello, M. openurl 
  Title Electronic structure, screening and charging effects at a metal/organic tunneling junction: a first principles study Type A1 Journal article
  Year 1996 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume (down) 54 Issue Pages 5097  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996VE48800102 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 33 Open Access  
  Notes Approved PHYSICS, CONDENSED MATTER 16/67 Q1 #  
  Call Number UA @ lucian @ c:irua:15820 Serial 1018  
Permanent link to this record
 

 
Author Retuerto, M.; Yin, Z.; Emge, T.J.; Stephens, P.W.; Li, M.R.; Sarkar, T.; Croft, M.C.; Ignatov, A.; Yuan, Z.; Zhang, S.J.; Jin, C.; Paria Sena, R.; Hadermann, J.; Kotliar, G.; Greenblatt, M.; pdf  url
doi  openurl
  Title Hole doping and structural transformation in CsTl1-xHgxCl3 Type A1 Journal article
  Year 2015 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume (down) 54 Issue 54 Pages 1066-1075  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract CsTlCl3 and CsTlF3 perovskites have been theoretically predicted to be superconductors when properly hole-doped. Both compounds have been previously prepared as pure compounds: CsTlCl3 in a tetragonal (I4/m) and a cubic (Fm3̅m) perovskite polymorph and CsTlF3 as a cubic perovskite (Fm3̅m). In this work, substitution of Tl in CsTlCl3 with Hg is reported, in an attempt to hole-dope the system and induce superconductivity. The whole series CsTl1xHgxCl3 (x = 0.0, 0.1, 0.2, 0.4, 0.6, and 0.8) was prepared. CsTl0.9Hg0.1Cl3 is tetragonal as the more stable phase of CsTlCl3. However, CsTl0.8Hg0.2Cl3 is already cubic with the space group Fm3̅m and with two different positions for Tl+ and Tl3+. For x = 0.4 and 0.5, solid solutions could not be formed. For x ≥ 0.6, the samples are primitive cubic perovskites with one crystallographic position for Tl+, Tl3+, and Hg2+. All of the samples formed are insulating, and there is no signature of superconductivity. X-ray absorption spectroscopy indicates that all of the samples have a mixed-valence state of Tl+ and Tl3+. Raman spectroscopy shows the presence of the active TlClTl stretching mode over the whole series and the intensity of the TlClHg mode increases with increasing Hg content. First-principle calculations confirmed that the phases are insulators in their ground state and that Hg is not a good dopant in the search for superconductivity in this system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000348887400048 Publication Date 2014-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 5 Open Access  
  Notes Approved Most recent IF: 4.857; 2015 IF: 4.762  
  Call Number c:irua:124420 Serial 1476  
Permanent link to this record
 

 
Author Hiroi, Z.; Amelinckx, S.; Van Tendeloo, G.; Kobayashi, N. doi  openurl
  Title Microscopic origin of dimerization in the CuO2 chains in Sr14Cu24O41 Type A1 Journal article
  Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume (down) 54 Issue 22 Pages 849-855  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996VX71800045 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 33 Open Access  
  Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #  
  Call Number UA @ lucian @ c:irua:16871 Serial 2030  
Permanent link to this record
 

 
Author Viart, N.; Sayed Hassan, R.; Ulhaq-Bouillet, C.; Meny, C.; Panissod, P.; Loison, J.L.; Versini, G.; Huber, F.; Pourroy, G.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Oxidation processes at the metal/oxide interface in CoFe2/CoFe2O4 bilayers deposited by pulsed laser deposition Type A1 Journal article
  Year 2006 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume (down) 54 Issue 1 Pages 191-196  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract CoFe2/CoFe2O4 bilayers were made by pulsed laser ablation of a CoFe2 target on Si(I 0 0) substrates. The metallic layer was deposited first, in vacuum. The oxide was then deposited in an oxidizing O-2:N-2 (20:80) atmosphere. Two different procedures were used for the introduction of the oxidizing atmosphere in the deposition chamber: the laser ablation of the target was either stopped (discontinuous deposition process) or maintained (continuous deposition process) during the 20 min necessary for the establishment of the desired O-2:N-2 pressure. In both cases, the different electronegativities of Fe and Co cause an important modification of the Fe/Co ratio at the metal/oxide interface, with a depletion of Fe in the metal region and of Co in the oxide region. In the continuous procedure, the combination of the kinetic energy given by the ablation process to the Fe and Co adatoms with the one they get from their different affinity towards oxidation allows the formation of a low roughness metal/oxide interface with a high (111) preferred orientation of the CoFe2O4 layer, an induced re-crystallisation of the metal layer underneath and an unusual antiferromagnetic metal/oxide magnetic coupling. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000233784500021 Publication Date 2005-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 5 Open Access  
  Notes Approved Most recent IF: 5.301; 2006 IF: 3.549  
  Call Number UA @ lucian @ c:irua:56043UA @ admin @ c:irua:56043 Serial 2540  
Permanent link to this record
 

 
Author Zhang, X.B.; Zhang, X.F.; Amelinckx, S.; Van Tendeloo, G.; van Landuyt, J. doi  openurl
  Title The reciprocal space of carbon tubes: a detailed interpretation of the electron diffraction effects Type A1 Journal article
  Year 1994 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (down) 54 Issue Pages 237-249  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1994PA59800016 Publication Date 2002-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.436 Times cited 59 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:10006 Serial 2844  
Permanent link to this record
 

 
Author Matthai, C.C.; Lamoen, D.; March, N.H. pdf  url
doi  openurl
  Title Melting temperatures and possible precursor plastic phases of CCl4and GeI4as a function of pressure Type A1 Journal article
  Year 2016 Publication Physics and chemistry of liquids Abbreviated Journal Phys Chem Liq  
  Volume (down) 54 Issue 54 Pages 130-134  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The motivation for the present study is to be found in the recent experiments of Fuchizaki and Hamaya on GeI4. They observed a rapid increase in the melting temperature Tm in going from atmospheric pressure to p ~ 2.6 GPa. Tm was found to be largely independent of pressure above this value. In this paper, heuristic arguments are presented to support the idea that until some critical pressure, a crystalline phase of SnI4, CCl4 and GeI4 molecular solids melts into a low density liquid. However, at this critical pressure, a phase boundary intersects Tm(p), separating a low density liquid phase from a high density liquid. The new phase boundary is between the crystal and an amorphous molecular solid with increasing polymerisation as the pressure is increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365724100012 Publication Date 2015-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9104 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.145 Times cited Open Access  
  Notes NHM wishes to thank Professors D. Lamoen and C. Van Alsenoy for making possible the continuing affiliation of Approved Most recent IF: 1.145  
  Call Number c:irua:130190 Serial 4029  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M. pdf  url
doi  openurl
  Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume (down) 54 Issue 54 Pages 14787-14790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.  
  Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367723400031 Publication Date 2015-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 3 Open Access  
  Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number c:irua:131104 Serial 4080  
Permanent link to this record
 

 
Author Li, M.R.; Retuerto, M.; Deng, Z.; Stephens, P.W.; Croft, M.; Huang, Q.; Wu, H.; Deng, X.; Kotliar, G.; Sánchez-Benítez, J.; Hadermann, J.; Walker, D.; Greenblatt, M.; pdf  doi
openurl 
  Title Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume (down) 54 Issue 54 Pages 12069-12073  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The first transition-metal-only double perovskite compound, Mn2+ Fe-2(3+) Re5+ O-6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520K and a giant positive magnetoresistance of up to 220% at 5K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000363396000031 Publication Date 2015-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited Open Access  
  Notes Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ lucian @ c:irua:129457 Serial 4186  
Permanent link to this record
 

 
Author Ding, L.; Orekhov, A.; Weng, Y.; Jia, Z.; Idrissi, H.; Schryvers, D.; Muraishi, S.; Hao, L.; Liu, Q. pdf  doi
openurl 
  Title Study of the Q′ (Q)-phase precipitation in Al–Mg–Si–Cu alloys by quantification of atomic-resolution transmission electron microscopy images and atom probe tomography Type A1 Journal article
  Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume (down) 54 Issue 10 Pages 7943-7952  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The precipitation mechanism of the Q phase in Al-Mg-Si-Cu alloys has long been the subject of ambiguity and debate since its metastable phase (Q 0) has the same crystal structure and similar lattice parameters as its equilibrium counterparts. In the present work, the evolution of the Q 0 (Q) phase during aging is studied by combination of quantitative atomic-resolution scanning transmission electron microscopy and atom probe tomography. It was found that the transformation from the Q 0 to the Q phase involves changes of the occupancy of Al atoms in atomic columns of the Q 0 (Q) phase. The Al atoms incorporated in the Cu, Si and Mg columns are gradually released into the Al matrix, while mixing between Cu and Si atoms occurs in the Si columns. This transformation process is mainly attributed to the low lattice misfit of the equilibrium Q phase. Besides, the formation of various compositions of the Q phase is due to the different occupancy in the atomic columns of the Q phase. The occupancy changes in the columns of the Q phase are kinetically controlled and are strongly influenced by the alloy composition and aging temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460069500043 Publication Date 2019-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 1 Open Access Not_Open_Access  
  Notes Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing, cstc2017zdcy-zdzxX0006 ; Fundamental Research Funds for the Central Universities of China, 2018CDGFCL0002 106112017CDJQJ308822 ; Belgian National Fund for Scientific Research; the National Natural Science Foundation of China, 51871035 ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant No. cstc2017zdcyzdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDGFCL0002), the National Natural Science Foundation of China (Grant No. 51871035) and the Foundation for Innovative Research Groups J Mater Sci National Natural Science Foundation of China (Grant No. 51421001). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 2.599  
  Call Number EMAT @ emat @UA @ admin @ c:irua:158112 Serial 5158  
Permanent link to this record
 

 
Author Albrecht, W.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope Type A1 Journal article
  Year 2021 Publication Accounts Of Chemical Research Abbreviated Journal Accounts Chem Res  
  Volume (down) 54 Issue 5 Pages 1189-1199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626269900011 Publication Date 2021-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 12 Open Access OpenAccess  
  Notes The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128–REALNANO and No. 770887–PICOMETRICS), the Research Foundation Flanders (FWO, G.0267.18N), and the European Commission (EUSMI). The authors furthermore acknowledge funding from the European Union’s Horizon 2020 research and innovation program, ESTEEM3. The authors also acknowledge contributions from all co-workers that have contributed over the years: Thomas Altantzis, Annick De Backer, Joost Batenburg and co-workers, Armand Béché, Eva Bladt, Lewys Jones and co-workers, Luis Liz-Marzán and co-workers, Ivan Lobato, Thais Milagres de Oliveira, Peter Nellist and co-workers, Hugo Pérez Garza and co-workers, Alexander Skorikov, Sara Skrabalak and co-workers, Sandra Van Aert, Alfons van Blaaderen and co-workers, Hans Vanrompay, Staf Van Tendeloo, and Johan Verbeeck.; sygmaSB; Approved Most recent IF: 20.268  
  Call Number EMAT @ emat @c:irua:177644 Serial 6752  
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume (down) 53 Issue 4 Pages 2171-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000332144100039 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:113507 Serial 198  
Permanent link to this record
 

 
Author Abakumov, A.M.; Morozov, V.A.; Tsirlin, A.A.; Verbeeck, J.; Hadermann, J. pdf  doi
openurl 
  Title Cation ordering and flexibility of the BO42- tetrahedra in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume (down) 53 Issue 17 Pages 9407-9415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The factors mediating cation ordering in the scheelite-based molybdates and tungstates are discussed on the basis of the incommensurately modulated crystal structures of the CaEu2(BO4)(4) (B = Mo, W) red phosphors solved from high-resolution synchrotron powder X-ray diffraction data. Monoclinic CaEu2(WO4)(4) adopts a (3 + 1)-dimensionally modulated structure [superspace group I2/b(alpha beta 0)00, a = 5.238 73(1)A, b = 5.266 35(1) A, c = 11.463 19(9) A, gamma = 91.1511(2)degrees, q = 0.56153(6)a* + 0.7708(9)b*, R-F = 0.050, R-p = 0.069], whereas tetragonal CaEu2(MoO4)(4) is (3 + 2)-dimensionally modulated [superspace group I4(1)/ a(alpha beta 0)00(-beta alpha 0)00, a = 5.238 672(7) A, c = 11.548 43(2) A, q(1) = 035331(8)a* + 0.82068(9)b*, q(2) = -0.82068(9)a* + 0.55331(8)b*, R-F = 0.061, R-p = 0.082]. In both cases the modulation arises from the ordering of the Ca/Eu cations and the cation vacancies at the A-sublattice of the parent scheelite ABO(4) structure. The cation ordering is incomplete and better described with harmonic rather than with steplike occupational modulation functions. The structures respond to the variation of the effective charge and cation size at the A-position through the flexible geometry of the MoO42- and WO42- tetrahedra demonstrating an alternation of stretching the B-O bond lengths and bending the O-B-O bond angles. The tendency towards A-site cation ordering in scheelites is rationalized using the difference in ionic radii and concentration of the A-site vacancies as parameters and presented in the form of a structure map.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000341229600068 Publication Date 2014-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 48 Open Access  
  Notes Fwo G039211n Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:119292UA @ admin @ c:irua:119292 Serial 297  
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume (down) 53 Issue 15 Pages 3970-3974  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333634800036 Publication Date 2014-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access OpenAccess  
  Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:117186 Serial 1251  
Permanent link to this record
 

 
Author Lueangchaichaweng, W.; Brooks, N.R.; Fiorilli, S.; Gobechiya, E.; Lin, K.; Li, L.; Parres-Esclapez, S.; Javon, E.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A.; Jacobs, P.A.; Pescarmona, P.P.; pdf  url
doi  openurl
  Title Gallium oxide nanorods : novel, template-free synthesis and high catalytic activity in epoxidation reactions Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume (down) 53 Issue 6 Pages 1585-1589  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330558400021 Publication Date 2014-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 61 Open Access OpenAccess  
  Notes START 1; Methusalem; Prodex; IAP-PAI; and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:115726 Serial 1314  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: