toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Viart, N.; Sayed Hassan, R.; Ulhaq-Bouillet, C.; Meny, C.; Panissod, P.; Loison, J.L.; Versini, G.; Huber, F.; Pourroy, G.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Oxidation processes at the metal/oxide interface in CoFe2/CoFe2O4 bilayers deposited by pulsed laser deposition Type A1 Journal article
  Year (down) 2006 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 54 Issue 1 Pages 191-196  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract CoFe2/CoFe2O4 bilayers were made by pulsed laser ablation of a CoFe2 target on Si(I 0 0) substrates. The metallic layer was deposited first, in vacuum. The oxide was then deposited in an oxidizing O-2:N-2 (20:80) atmosphere. Two different procedures were used for the introduction of the oxidizing atmosphere in the deposition chamber: the laser ablation of the target was either stopped (discontinuous deposition process) or maintained (continuous deposition process) during the 20 min necessary for the establishment of the desired O-2:N-2 pressure. In both cases, the different electronegativities of Fe and Co cause an important modification of the Fe/Co ratio at the metal/oxide interface, with a depletion of Fe in the metal region and of Co in the oxide region. In the continuous procedure, the combination of the kinetic energy given by the ablation process to the Fe and Co adatoms with the one they get from their different affinity towards oxidation allows the formation of a low roughness metal/oxide interface with a high (111) preferred orientation of the CoFe2O4 layer, an induced re-crystallisation of the metal layer underneath and an unusual antiferromagnetic metal/oxide magnetic coupling. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000233784500021 Publication Date 2005-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 5 Open Access  
  Notes Approved Most recent IF: 5.301; 2006 IF: 3.549  
  Call Number UA @ lucian @ c:irua:56043UA @ admin @ c:irua:56043 Serial 2540  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: