toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
  Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 262 Issue Pages 1-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347577700001 Publication Date 2014-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 30 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved Most recent IF: 6.216; 2015 IF: 4.321  
  Call Number UA @ admin @ c:irua:119724 Serial 5927  
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.(K.) pdf  url
doi  openurl
  Title Nanoscale thermodynamic aspects of plasma catalysis Type A1 Journal article
  Year 2015 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 256 Issue 256 Pages 23-28  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis continues to gain increasing scientific interest, both in established fields like toxic waste abatement and emerging fields like greenhouse gas conversion into value-added chemicals. Attention is typically focused on the obtained conversion process selectivity, rates and energy efficiency. Much less attention is usually paid to the underlying mechanistic aspects of the processes that occur. In this contribution, we critically examine a number of fundamentally important nanoscale thermodynamic aspects of plasma catalysis, which are very relevant to these processes but so far have been overlooked or insufficiently covered in the plasma catalysis literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000360085300004 Publication Date 2015-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 14 Open Access  
  Notes Approved Most recent IF: 4.636; 2015 IF: 3.893  
  Call Number c:irua:127409 Serial 2274  
Permanent link to this record
 

 
Author Brault, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering Type A1 Journal article
  Year 2015 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 256 Issue 256 Pages 3-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Magnetron sputtering is a widely used physical vapor deposition technique for deposition and formation of nanocatalyst thin films and clusters. Nevertheless, so far only few studies investigated this formation process at the fundamental level. We here review atomic scale molecular dynamics simulations aimed at elucidating the nanocatalyst growth process through magnetron sputtering. We first introduce the basic magnetron sputtering background and machinery of molecular dynamics simulations, and then describe the studies conducted in this field so far. We also present a perspective view on how the field may be developed further.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000360085300002 Publication Date 2015-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 18 Open Access  
  Notes Approved Most recent IF: 4.636; 2015 IF: 3.893  
  Call Number c:irua:127408 Serial 2174  
Permanent link to this record
 

 
Author Cabana, L.; Ke, X.; Kepić, D.; Oro-Solé, J.; Tobías-Rossell, E.; Van Tendeloo, G.; Tobias, G. pdf  url
doi  openurl
  Title The role of steam treatment on the structure, purity and length distribution of multi-walled carbon nanotubes Type A1 Journal article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume 93 Issue 93 Pages 1059-1067  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Purification and shortening of carbon nanotubes have attracted a great deal of attention to increase the biocompatibility and performance of the material in several applications. Steam treatment has been employed to afford both purification and shortening of multi-walled carbon nanotubes (MWCNTs). Steam removes the amorphous carbon and the graphitic particles that sheath catalytic nanoparticles, facilitating their removal by a subsequent acidic wash. The amount of metal impurities can be reduced in this manner below 0.01 wt.%. The length distribution of MWCNTs after different steam treatment times (from 1 h to 15 h) was assessed by box plot analysis of the electron microscopy data. Samples with a median length of 0.57 μm have been prepared with the reported methodology while preserving the integrity of the tubular wall structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000360292100108 Publication Date 2015-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 17 Open Access  
  Notes 312483 Esteem2; 290023 Raddel; esteem2_ta Approved Most recent IF: 6.337; 2015 IF: 6.196  
  Call Number c:irua:127691 c:irua:127691 Serial 2921  
Permanent link to this record
 

 
Author Borhani, A.H.; Berghmans, H.; Trashin, S.; De Wael, K.; Fago, A.; Moens, L.; Habibi-Rezaei, M.; Dewilde, S. url  doi
openurl 
  Title Kinetic properties and heme pocket structure of two domains of the polymeric hemoglobin of Artemia in comparison with the native molecule Type A1 Journal article
  Year 2015 Publication Biochimica et biophysica acta : proteins and proteomics Abbreviated Journal Bba-Proteins Proteom  
  Volume 1854 Issue 10a Pages 1307-1316  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this project, we studied some physicochemical properties of two different globin domains of the polymeric hemoglobin of the brine shrimp Artemia salina and compared them with those of the native molecule. Two domains (AsHbC1D1 and AsHbC1D5) were cloned and expressed in BL21(DE3)pLysS strain of Escherichiacoli. The recombinant proteins as well as the native hemoglobin (AfHb) were purified from bacteria and frozen Artemia, respectively by standard chromatographic methods and assessed by SDS-PAGE. The heme environment of these proteins was studied by optical spectroscopy and ligand-binding kinetics (e.g. CO association and O2 binding affinity) were measured for the two recombinant proteins and the native hemoglobin. This indicates that the CO association rate for AsHbC1D1 is higher than that of AsHbC1D5 and AfHb, while the calculated P50 value for AsHbC1D1 is lower than that of AsHbC1D5 and AfHb. The geminate and bimolecular rebinding parameters indicate a significant difference between both domains. Moreover, EPR results showed that the heme pocket in AfHb is in a more closed conformation than the heme pocket in myoglobin. Finally, the reduction potential of − 0.13 V versus the standard hydrogen electrode was determined for AfHb by direct electrochemical measurements. It is about 0.06 V higher than the potential of the single domain AsHbC1D5. This work shows that each domain in the hemoglobin of Artemia has different characteristics of ligand binding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362307500008 Publication Date 2015-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-9639 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.773 Times cited Open Access  
  Notes ; This work was supported by the general grant for visiting scholar of the Ministry of Science, Research and Technology of I. R. Iran and by the University of Antwerp. ; Approved Most recent IF: 2.773; 2015 IF: 2.747  
  Call Number UA @ admin @ c:irua:125909 Serial 5683  
Permanent link to this record
 

 
Author Sheng, X.; Daems, N.; Geboes, B.; Kurttepeli, M.; Bals, S.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P. pdf  url
doi  openurl
  Title N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2 Type A1 Journal article
  Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 176-177 Issue 176-177 Pages 212-224  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A new, two-step nanocasting method was developed to prepare N-doped ordered mesoporous carbon (NOMC) electrocatalysts for the reduction of O2 to H2O2. Our strategy involves the sequential pyrolysis of two inexpensive and readily available N and C precursors, i.e. aniline and dihydroxynaphthalene (DHN), inside the pores of a SBA-15 hard silica template to obtain N-doped graphitic carbon materials with well-ordered pores and high surface areas (764 and 877 m2g−1). By tuning the ratio of carbon sources to silica template, it was possible to achieve an optimal filling of the pores of the SBA-15 silica and to minimise carbon species outside the pores. These NOMC materials displayed outstanding electrocatalytic activity in the oxygen reduction reaction, achieving a remarkably enhanced kinetic current density compared to state-of-the-art N-doped carbon materials (−16.7 mA cm−2 at −0.35 V vs. Ag/AgCl in a 0.1 M KOH solution as electrolyte). The NOMC electrocatalysts showed high selectivity toward the two-electron reduction of oxygen to hydrogen peroxide and excellent long-term stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000356549200022 Publication Date 2015-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 111 Open Access OpenAccess  
  Notes 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2015 IF: 7.435  
  Call Number c:irua:125370 Serial 2246  
Permanent link to this record
 

 
Author Zhang, F.; Vanmeensel, K.; Batuk, M.; Hadermann, J.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J. pdf  url
doi  openurl
  Title Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation Type A1 Journal article
  Year 2015 Publication Acta biomaterialia Abbreviated Journal Acta Biomater  
  Volume 16 Issue 16 Pages 215-222  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr4+, exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.10.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000351978600021 Publication Date 2015-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-7061; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 54 Open Access  
  Notes Fwo G043110n Approved Most recent IF: 6.319; 2015 IF: 6.025  
  Call Number c:irua:124421 Serial 1473  
Permanent link to this record
 

 
Author Pollefeyt, G.; Meledin, A.; Pop, C.; Ricart, S.; Hühne, R.; Van Tendeloo, G.; Van Driessche, I. pdf  url
doi  openurl
  Title Chemical stability of YBiO3 buffer layers for implementation in YBa2Cu3O7-δ coated conductors Type A1 Journal article
  Year 2015 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 100 Issue 100 Pages 224-231  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this work, the chemical and microstructural stability of YBiO3 buffer layers during the growth of YBa2Cu3O7-δ (YBCO) was studied. The superconducting YBCO films were deposited via both Pulsed Laser Deposition as well as Chemical Solution Deposition. Although excellent superconducting properties are obtained in both cases, self-field critical current densities of 3.6 and 1.2 MA/cm2 respectively, chemical instability of the YBiO3 buffer layer is observed. An elaborate transmission electron microscopy study showed that in the case of vacuum deposited YBCO, the YBiO3 becomes unstable and Bi2O3 sublimates out of the architecture. Due to this structural instability, an intermediate Y2O3 layer is obtained which maintains it microstructural orientation relation with the substrate and acts as growth template for YBCO. For chemical solution deposited YBCO, reaction of YBCO with the YBiO3 buffer layer is observed, leading to large grains of YBa2BiO6 which are pushed towards the surface of the films and strongly reduce the superconducting properties. Upon using high growth temperatures for the superconducting layer, these secondary phases decompose, which subsequently leads to Bi2O3 sublimation and a textured YBCO film which directly nucleated onto the LaAlO3 single crystal substrate. Hence, this electron microscopy study indicates that bismuth-based buffer layers systems are not suitable for implementation in coated conductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362616400023 Publication Date 2015-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.301 Times cited Open Access  
  Notes One of the authors (G.P.) would like to thank the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT) for funding. Part of this work was performed within the framework of the EuroTapes project (FP7-NMP.2011.2.2-1 Grant No. 280438), funded by the European Union. Approved Most recent IF: 5.301; 2015 IF: 4.465  
  Call Number c:irua:128757 Serial 3953  
Permanent link to this record
 

 
Author Schryvers, D. pdf  url
doi  openurl
  Title Advanced electron microscopy characterisation of important precipitation and ordering phenomena in shape memory systems Type A1 Journal article
  Year 2015 Publication Shape memory and superelasticity Abbreviated Journal  
  Volume 1 Issue 1 Pages 78-84  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present paper discusses some important aspects of precipitation and ordering in alloy systems that show a martensitic transformation and can or are used as shape memory or superelastic metallic systems. The precipitates are investigated by a variety of conventional and advanced electron microscopy techniques, including atomic resolution, 3D slice-and-view, energy loss spectroscopy etc. Depending on the system, such secondary phases can decrease the probability of a displacive transformation by changing the phase stability in the system, such as in the case of NiAl or NiTiPd, or can mechanically hinder the passage of the transformation interface, as in NiTiNb. On the other hand, properly controlling the nucleation and growth of some precipitates can strongly improve the properties of some types of materials, as is the case for the well-known Ni4Ti3 precipitates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432420400008 Publication Date 2015-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-384X;2199-3858; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Fwo Approved Most recent IF: NA  
  Call Number c:irua:127684 Serial 69  
Permanent link to this record
 

 
Author Caretti, I.; Keulemans, M.; Verbruggen, S.W.; Lenaerts, S.; Van Doorslaer, S. pdf  url
doi  openurl
  Title Light-induced processes in plasmonic Gold/TiO2 photocatalysts studied by electron paramagnetic resonance Type A1 Journal article
  Year 2015 Publication Topics in catalysis Abbreviated Journal Top Catal  
  Volume 58 Issue 12 Pages 776-782  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract X-band and W-band continuous-wave (CW) electron paramagnetic resonance (EPR) was used to study in situ light-induced (LI) mechanisms in commercial P90 titania (90 % anatase/10 % rutile) compared to plasmon-enhanced Au-P90 photocatalyst. These materials were excited using UV and 532 nm visible light to generate different excitation states and distinguish pure charge separation from plasmon-assisted resonance processes. Up to nine different photoinduced species of trapped electrons and holes were identified. LI CW EPR of P90 is presented for the first time, showing a UV excitation response similar to the well-known mixed-phase P25 titania. It is shown that incorporation of Au nanoparticles in Au-P90 and formation of a Schottky junction affects the charge separation state of the catalyst under UV light. Moreover, Au impregnation activated P90 through plasmon hot electron injection under visible light excitation (plasmonic sensitization effect). In general, EPR proved to be crucial to determine the different photoexciation paths and reactions that regulate plasmonic photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360011200008 Publication Date 2015-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1022-5528 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.486 Times cited 22 Open Access  
  Notes ; IC and SVD acknowledge the Research Foundation-Flanders (FWO) for financial support (Grant G.0687.13). SV thanks FWO for financial support through a postdoctoral fellowship and MK acknowledges the agency for Innovation by Science and Technology in Flanders (IWT) for financial support (Ph.D. Grant). ; Approved Most recent IF: 2.486; 2015 IF: 2.365  
  Call Number UA @ admin @ c:irua:127413 Serial 5968  
Permanent link to this record
 

 
Author Vandenbroucke, A.M.; Aerts, R.; Van Gaens, W.; De Geyter, N.; Leys, C.; Morent, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge Type A1 Journal article
  Year 2015 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 35 Issue 35 Pages 217-230  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, we study the abatement of dilute trichloroethylene (TCE) in air with a negative direct current corona discharge. A numerical model is used to theoretically investigate the underlying plasma chemistry for the removal of TCE, and a reaction pathway for the abatement of TCE is proposed. The Cl atom, mainly produced by dissociation of COCl, is one of the controlling species in the TCE destruction chemistry and contributes to the production of chlorine containing by-products. The effect of humidity on the removal efficiency is studied and a good agreement is found between experiments and the model for both dry (5 % relative humidity (RH)) and humid air (50 % RH). An increase of the relative humidity from 5 % to 50 % has a negative effect on the removal efficiency, decreasing by ±15 % in humid air. The main loss reactions for TCE are with ClO·, O· and CHCl2. Finally, the by-products and energy cost of TCE abatement are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000347285800014 Publication Date 2014-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324;1572-8986; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.355 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.355; 2015 IF: 2.056  
  Call Number c:irua:118882 Serial 2108  
Permanent link to this record
 

 
Author Papageorgiou, D.G.; Filippousi, M.; Pavlidou, E.; Chrissafis, K.; Van Tendeloo, G.; Bikiaris, D. pdf  url
doi  openurl
  Title Effect of clay modification on structureproperty relationships and thermal degradation kinetics of \beta-polypropylene/clay composite materials Type A1 Journal article
  Year 2015 Publication Journal of thermal analysis and calorimetry Abbreviated Journal J Therm Anal Calorim  
  Volume 122 Issue 122 Pages 393-406  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The influence of neat and organically modified montmorillonite on the structureproperty relationships of a β-nucleated polypropylene matrix has been thoroughly investigated. High-angle annular dark field scanning transmission electron microscopy revealed that the organic modification of clay facilitated the dispersion of the clay, while X-ray diffractograms showed the α-nucleating effect of the clays on the β-nucleated matrix. The results from tensile tests showed that the organic modification of MMT affected profoundly only the tensile strength at yield and at break. The effect of the organic modification of the clay on the thermal stability of the composites was finally evaluated by thermogravimetric analysis, where the samples filled with oMMT decomposed faster than the ones filled with neat MMT, due to the decomposition of the organic salts that were initially used for the modification of MMT. A kinetics study of the thermal degradation of the composites was also performed, in order to export additional conclusions on the activation energy of the samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000361431200042 Publication Date 2015-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-6150;1588-2926; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.953 Times cited 7 Open Access  
  Notes 262348 Esmi Approved Most recent IF: 1.953; 2015 IF: 2.042  
  Call Number c:irua:127492 Serial 805  
Permanent link to this record
 

 
Author Trentelman, K.; Janssens, K.; van der Snickt, G.; Szafran, Y.; Woollett, A.T.; Dik, J. url  doi
openurl 
  Title Rembrandt's An Old Man in Military Costume: the underlying image re-examined Type A1 Journal article
  Year 2015 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater  
  Volume 121 Issue 3 Pages 801-811  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The painting An Old Man in Military Costume in the J. Paul Getty Museum, by Rembrandt Harmensz van Rijn, was studied using two complementary, element-specific imaging techniques-neutron activation autoradiography (NAAR) and macro-X-ray fluorescence (MA-XRF) mapping-to reveal the second, hidden painting. NAAR provided a strong image of the face and cloak of the underlying figure, along with an indication of the chemical composition. The single-element distribution maps produced by MA-XRF mapping provided additional details into the shape of the underlying image and the composition of the pigments used. The underlying figure's face is richer in mercury, indicative of the pigment vermilion, than the face of the figure on the surface. Likewise, the cloak of the underlying figure is richer in copper than the surface figure though the identity of the copper-containing pigment cannot be determined from these data. The use of iron earth pigments, specifically Si-rich umbers, is indicated through the complementary information provided by the NAAR and MA-XRF maps. These data are used to create a false color digital reconstruction, yielding the most detailed representation of the underlying painting to date.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000364914100003 Publication Date 2015-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.455 Times cited 22 Open Access  
  Notes ; The authors gratefully acknowledge the assistance of all those who aided in the examination of this painting over the decades, that has culminated in the work presented here. Particular thanks go to Mark Leonard (former head of Paintings Conservation at the J. Paul Getty Museum) and Henry Prask (NIST) for carrying out the NAAR analysis; John Twilley (former GCI Scientist) for early investigations; Andrea Sartorius (former JPGM Paintings intern) for creating a mock-up painting used in earlier phases of this work; Peter Reishig (former GCI intern) for compiling the NAAR data; Catherine Patterson, Lynn Lee, and David Carson (GCI Science) and Gene Karraker (JPGM Paintings Conservation) for helping with the setup and operation of the M6 Jetstream; and Giacomo Chiari (former head of GCI Science) for performing the XRD analysis. Koen Janssens and Geert van der Snickt acknowledge the Fund Inbev-Baillet Latour for financial support. Joris Dik acknowledges the help of the Netherlands Organization for Scientific Research (NWO) in the form of a VIDI grant in the Innovational Research Incentive Scheme. ; Approved Most recent IF: 1.455; 2015 IF: 1.704  
  Call Number UA @ admin @ c:irua:130289 Serial 5812  
Permanent link to this record
 

 
Author Wang, Y.; Belén Serrano, A.; Sentosun, K.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Stabilization and encapsulation of gold nanostars mediated by dithiols Type A1 Journal article
  Year 2015 Publication Small Abbreviated Journal Small  
  Volume 11 Issue 11 Pages 4314-4320  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface chemistry plays a pivotal role in regulating the morphology of nanoparticles, maintaining colloidal stability, and mediating the interaction with target analytes toward practical applications such as surface-enhanced Raman scattering (SERS)-based sensing and imaging. The use of a binary ligand mixture composed of 1,4-benzenedithiol (BDT) and hexadecyltrimethylammonium chloride (CTAC) to provide gold nanostars with long-term stability is reported. This is despite BDT being a bifunctional ligand, which usually leads to bridging and loss of colloidal stability. It is found however that neither BDT nor CTAC alone are able to provide sufficient colloidal and chemical stability. BDT-coated Au nanostars are additionally used as seeds to direct the encapsulation with a gold outer shell, leading to the formation of unusual nanostructures including semishell-coated gold nanostars, which are characterized by high-resolution electron microscopy and electron tomography. Finally, BDT is exploited as a probe to reveal the enhanced local electric fields in the different nanostructures, showing that the semishell configuration provides significantly high SERS signals as compared to other coreshell configurations obtained during seeded growth, including full shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000360852900009 Publication Date 2015-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 36 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643; 2015 IF: 8.368  
  Call Number c:irua:127571 Serial 3136  
Permanent link to this record
 

 
Author Sentosun, K.; Sanz Ortiz, M.N.; Batenburg, K.J.; Liz-Marzán, L.M.; Bals, S. pdf  url
doi  openurl
  Title Combination of HAADF-STEM and ADF-STEM Tomography for Core-Shell Hybrid Materials Type A1 Journal article
  Year 2015 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 32 Issue 32 Pages 1063-1067  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Characterization of core-shell type nanoparticles in 3D by transmission electron microscopy (TEM) can be very challenging. Especially when both heavy and light elements co-exist within the same nanostructure, artefacts in the 3D reconstruction are often present. A representative example would be a particle comprising an anisotropic metallic (Au) nanoparticle coated with a (mesoporous) silica shell. To obtain a reliable 3D characterization of such an object, we propose a dose-efficient strategy to simultaneously acquire high angle annular dark field scanning TEM and annular dark field tilt series for tomography. The 3D reconstruction is further improved by applying an advanced masking and interpolation approach to the acquired data. This new methodology enables us to obtain high quality reconstructions from which also quantitative information can be extracted. This approach is broadly applicable to investigate hybrid core-shell materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368446800003 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 13 Open Access OpenAccess  
  Notes S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant #335078-COLOURATOM). L.M. acknowledges funding from the EU, Grant# 310651-2 Self-Assembly in Confined Space (SACS). K.J.B acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO), project number 639.072.005 and NWO CW 700.57.026. Networking support was provided by COST Action MP1207. The authors acknowledge the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 for financial support.; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.474; 2015 IF: 3.081  
  Call Number c:irua:129590 c:irua:129590 Serial 3967  
Permanent link to this record
 

 
Author Ramakers, M.; Michielsen, I.; Aerts, R.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 755-763  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper demonstrates that the CO2 conversion in a dielectric barrier discharge rises drastically upon addition of Ar or He, and the effect is more pronounced for Ar than for He. The effective CO2 conversion, on the other hand, drops upon addition of Ar or He, which is logical due to the lower CO2 content in the gas mixture, and the same is true for the energy efficiency, because a considerable fraction of the energy is then consumed into ionization/excitation of Ar or He atoms. The higher absolute CO2 conversion upon addition of Ar or He can be explained by studying in detail the Lissajous plots and the current profiles. The breakdown voltage is lower in the CO2/Ar and CO2/He mixtures, and the discharge gap is more filled with plasma, which enhances the possibility for CO2 conversion. The rates of electron impact excitationdissociation of CO2, estimated from the electron densities and mean electron energies, are indeed higher in the CO2/Ar and (to a lower extent) in the CO2/He mixtures, compared to the pure CO2 plasma. Moreover, charge transfer between Ar+ or Ar2+ ions and CO2, followed by electron-ion dissociative recombination of the CO2+ ions, might also contribute to, or even be dominant for the CO2 dissociation. All these effects can explain the higher CO2 conversion, especially upon addition of Ar, but also upon addition of He.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000359672400007 Publication Date 2015-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 63 Open Access  
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:126822 Serial 799  
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 162-171  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000350275400005 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:123540 Serial 1589  
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Driesen, K.; Bridel, J.-S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Solidelectrolyte interphase evolution of carbon-coated silicon nanoparticles for lithium-ion batteries monitored by transmission electron microscopy and impedance spectroscopy Type A1 Journal article
  Year 2015 Publication Energy technology Abbreviated Journal Energy Technol-Ger  
  Volume 3 Issue 3 Pages 699-708  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The main drawbacks of silicon as the most promising anode material for lithium-ion batteries (theoretical capacity=3572 mAh g−1) are lithiation-induced volume changes and the continuous formation of a solidelectrolyte interphase (SEI) upon cycling. A recent strategy is to focus on the influence of coatings and composite materials. To this end, the evolution of the SEI, as well as an applied carbon coating, on nanosilicon electrodes during the first electrochemical cycles is monitored. Two specific techniques are combined: Transmission Electron Microscopy (TEM) is used to study the surface evolution of the nanoparticles on a very local scale, whereas electrochemical impedance spectroscopy (EIS) provides information on the electrode level. A TEMEELS fingerprint signal of carbonate structures from the SEI is discovered, which can be used to differentiate between the SEI and a graphitic carbon matrix. Furthermore, the shielding effect of the carbon coating and the thickness evolution of the SEI are described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357869100003 Publication Date 2015-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4288; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.789 Times cited Open Access  
  Notes IWT Flanders Approved Most recent IF: 2.789; 2015 IF: 2.824  
  Call Number c:irua:126676 Serial 3051  
Permanent link to this record
 

 
Author Shi, P.-J.; Xu, Q.; Sandhu, H.S.; Gielis, J.; Ding, Y.-L.; Li, H.-R.; Dong, X.-B. url  doi
openurl 
  Title Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant Type A1 Journal article
  Year 2015 Publication Ecology and evolution Abbreviated Journal  
  Volume 5 Issue 20 Pages 4578-4589  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a −3/2 power between average biomass and density or a −1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363731500008 Publication Date 2015-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:128662 Serial 7691  
Permanent link to this record
 

 
Author Aerts, R.; Somers, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
  Year 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 8 Issue 8 Pages 702-716  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000349954400019 Publication Date 2015-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 131 Open Access  
  Notes Approved Most recent IF: 7.226; 2015 IF: 7.657  
  Call Number c:irua:123930 Serial 279  
Permanent link to this record
 

 
Author Guerrero, A.; Heidari, H.; Ripolles, T.S.; Kovalenko, A.; Pfannmöller, M.; Bals, S.; Kauffmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G. pdf  url
doi  openurl
  Title Shelf life degradation of bulk heterojunction solar cells : intrinsic evolution of charge transfer complex Type A1 Journal article
  Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater  
  Volume 5 Issue 5 Pages 1401997  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Achievement of long-term stability of organic photovoltaics is currently one of the major topics for this technology to reach maturity. Most of the techniques used to reveal degradation pathways are destructive and/or do not allow for real-time measurements in operating devices. Here, three different, nondestructive techniques able to provide real-time information, namely, film absorbance, capacitance-voltage (C-V), and impedance spectroscopy (IS), are combined over a period of 1 year using non-accelerated intrinsic degradation conditions. It is discerned between chemical modifications in the active layer, physical processes taking place in the bulk of the blend from those at the active layer/contact interfaces. In particular, it is observed that during the ageing experiment, the main source for device performance degradation is the formation of donor-acceptor charge-transfer complex (P3HT(center dot+)-PCBM center dot-) that acts as an exciton quencher. Generation of these radical species diminishes photocurrent and reduces open-circuit voltage by the creation of electronic defect states. Conclusions extracted from absorption, C-V, and IS measurements will be further supported by a range of other techniques such as atomic force microscopy, X-ray diffraction, and dark-field imaging of scanning transmission electron microscopy on ultrathin cross-sections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000352708600013 Publication Date 2014-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 30 Open Access OpenAccess  
  Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 16.721; 2015 IF: 16.146  
  Call Number c:irua:126000 Serial 2994  
Permanent link to this record
 

 
Author Huijben, M.; Liu, Y.; Boschker, H.; Lauter, V.; Egoavil, R.; Verbeeck, J.; te Velthuis, S.G.E.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Enhanced local magnetization by interface engineering in perovskite-type correlated oxide heterostructures Type A1 Journal article
  Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 2 Issue 2 Pages 1400416  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349916000001 Publication Date 2015-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 30 Open Access  
  Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 4.279; 2015 IF: NA  
  Call Number c:irua:125333 c:irua:125333UA @ admin @ c:irua:125333 Serial 1052  
Permanent link to this record
 

 
Author Rehor, I.; Lee, K.L.; Chen, K.; Hajek, M.; Havlik, J.; Lokajova, J.; Masat, M.; Slegerova, J.; Shukla, S.; Heidari, H.; Bals, S.; Steinmetz, N.F.; Cigler, P. pdf  url
doi  openurl
  Title Plasmonic nanodiamonds : targeted coreshell type nanoparticles for cancer cell thermoablation Type A1 Journal article
  Year 2015 Publication Advanced healthcare materials Abbreviated Journal Adv Healthc Mater  
  Volume 4 Issue 4 Pages 460-468  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, coreshell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349961600014 Publication Date 2015-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2192-2640; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.11 Times cited 30 Open Access OpenAccess  
  Notes 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 5.11; 2015 IF: 5.797  
  Call Number c:irua:125375 Serial 2647  
Permanent link to this record
 

 
Author Van Aelst, J.; Verboekend, D.; Philippaerts, A.; Nuttens, N.; Kurttepeli, M.; Gobechiya, E.; Haouas, M.; Sree, S.P.; Denayer, J.F.M.; Martens, J.A.; Kirschhock, C.E.A.; Taulelle, F.; Bals, S.; Baron, G.V.; Jacobs, P.A.; Sels, B.F. pdf  url
doi  openurl
  Title Catalyst design by NH4OH treatment of USY zeolite Type A1 Journal article
  Year 2015 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 25 Issue 25 Pages 7130-7144  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hierarchical zeolites are a class of superior catalysts which couples the intrinsic zeolitic properties to enhanced accessibility and intracrystalline mass transport to and from the active sites. The design of hierarchical USY (Ultra-Stable Y) catalysts is achieved using a sustainable postsynthetic room temperature treatment with mildly alkaline NH4OH ( 0.02(M)) solutions. Starting from a commercial dealuminated USY zeolite (Si/Al = 47), a hierarchical material is obtained by selective and tuneable creation of interconnected and accessible small mesopores (2- 6 nm). In addition, the treatment immediately yields the NH4+ form without the need for additional ion exchange. After NH4OH modification, the crystal morphology is retained, whereas the microporosity and relative crystallinity are decreased. The gradual formation of dense amorphous phases throughout the crystal without significant framework atom leaching rationalizes the very high material yields (>90%). The superior catalytic performance of the developed hierarchical zeolites is demonstrated in the acid-catalyzed isomerization of alpha-pinene and the metal-catalyzed conjugation of safflower oil. Significant improvements in activity and selectivity are attained, as well as a lowered susceptibility to deactivation. The catalytic performance is intimately related to the introduced mesopores, hence enhanced mass transport capacity, and the retained intrinsic zeolitic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000366503700003 Publication Date 2015-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 64 Open Access OpenAccess  
  Notes ; The authors thank Dr. M. Thommes and Dr. K. Cychosz for numerous and helpful discussions on the correct evaluation of the Ar isotherms. I. Cuppens is acknowledged for ICP-AES analyses. Research was funded through a PhD grant to J.V.A. of the Agency for Innovation by Science and Technology in Flanders (IWT). D.V. and A.P. acknowledge F.W.O.-Vlaanderen (Research Foundation Flanders) for a postdoctoral fellowship. N.N. thanks the KU Leuven for financial support (FLOF). E.G., C.K., and J.M. acknowledge the long-term structural funding by the Flemish Government (Methusalem). S.B. acknowledges the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 335078-COLOURATOMS. The authors are grateful for financial support by the Belgian government through Interuniversity Attraction Poles (IAP-PAI). They also thank Oleon NV for supplying safflower oil. ; ecas_Sara Approved Most recent IF: 12.124; 2015 IF: 11.805  
  Call Number UA @ lucian @ c:irua:130214 Serial 4147  
Permanent link to this record
 

 
Author Chen, Z.; Tan, Z.; Ji, G.; Schryvers, D.; Ouyang, Q.; Li, Z. pdf  url
doi  openurl
  Title Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites Type A1 Journal article
  Year 2015 Publication Advanced engineering materials Abbreviated Journal Adv Eng Mater  
  Volume 17 Issue 17 Pages 1076-1084  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The SiC/Al composites have been fabricated by a vacuum hot pressing (VHP) process in order to study the effect of interface evolution on the global thermal conductivity (TC). By optimizing the VHP parameters of sintering temperature and time, the three different kinds of SiC/Al interface configurations, that is, non-bonded, diffusion-bonded, and reaction-bonded interfaces, are formed and identified by measurement of relative density, X-ray diffraction, scanning and (high-resolution) transmission electron microscopy. The VHPed composite sintered at 655 °C for 60 min is fully dense and presents a tightly-adhered and clean SiC/Al interface at the nanoscale, the ideal diffusion-bonded interface being the most favorable for minimizing interfacial thermal resistance, which in turn results in the highest TC of around 270 W/mK.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000357680700019 Publication Date 2015-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1438-1656; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.319 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.319; 2015 IF: 1.758  
  Call Number c:irua:123000 Serial 818  
Permanent link to this record
 

 
Author Cabana, L.; Gonzalez-Campo, A.; Ke, X.; Van Tendeloo, G.; Nunez, R.; Tobias, G. pdf  url
doi  openurl
  Title Efficient Chemical Modification of Carbon Nanotubes with Metallacarboranes Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 21 Issue 21 Pages 16792-16795  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to pi-pi interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.  
  Address Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de la UAB. 08193, Bellaterra (Spain). gerard.tobias@icmab.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366501600011 Publication Date 2015-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 5 Open Access  
  Notes The research leading to these results received financial support from MINECO (MAT2014-53500-R; CTQ2013-44670-R), Generalitat de Catalunya (2014/SGR/149), and from the European Commission under the FP7 ITN Marie-Curie Network programme RADDEL (grant agreement 290023), the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure (ESMI) and the European Research Council, ERC Grant No 246791-COUNTATOMS. A.G.C. thanks the CSIC for the JAE-DOC grant. Approved Most recent IF: 5.317; 2015 IF: 5.731  
  Call Number c:irua:129215 Serial 3964  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M. pdf  url
doi  openurl
  Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 54 Pages 14787-14790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.  
  Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367723400031 Publication Date 2015-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 3 Open Access  
  Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number c:irua:131104 Serial 4080  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Kaunisto, K.; Sada, C.; Turner, S.; Gönüllü, Y.; Ruoko, T.-P.; Borgese, L.; Bontempi, E.; Van Tendeloo, G.; Lemmetyinen, H.; Mathur, S. pdf  url
doi  openurl
  Title Fe2O3-TiO2Nano-heterostructure Photoanodes for Highly Efficient Solar Water Oxidation Type A1 Journal article
  Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 2 Issue 2 Pages 1500313  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Harnessing solar energy for the production of clean hydrogen by photo­electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3–TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one-sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α-Fe2O3) nanostructures fabricated by plasma enhanced-chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3–TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico-physical investigation, as well as by the study of photo­generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large-scale generation of renewable energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368914700011 Publication Date 2015-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 56 Open Access  
  Notes The authors kindly acknowledge the fi nancial support under the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2014 projects, Grant No. CPDR132937/13 (SOLLEONE), and Regione Lombardia-INSTM ATLANTE projects. S.T. acknowledges the FWO Flanders for a postdoctoral scholarship. Approved Most recent IF: 4.279; 2015 IF: NA  
  Call Number c:irua:129201 Serial 3957  
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M. pdf  url
doi  openurl
  Title Strain engineering of the electronic properties of bilayer graphene quantum dots: Strain engineering of the electronic properties of bilayer graphene quantum dots Type A1 Journal article
  Year 2015 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R  
  Volume 10 Issue 10 Pages 39-45  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the effect of mechanical deformations on the elec- tronic properties of hexagonal flakes of bilayer graphene. The behavior of electrons induced by triaxial strain can be de- scribed by an effective pseudo-magnetic field which is homo- geneous in the center of the flake. We find that in-plane strain, applied to both layers equally, can break the layer symmetry leading to different behavior in the top and bottom layers of graphene. At low energy, just one of the layers feels

the pseudo-magnetic field: the zero-energy pseudo-Landau level is missing in the second layer, thus creating a gap be- tween the lowest non-zero levels. While the layer asymmetry is most significant at zero energy, interaction with the edges of the flake extends the effect to higher pseudo-Landau lev- els. The behavior of the top and bottom layers may be re- versed by rotating the triaxial strain by 60°.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368814500005 Publication Date 2015-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.032 Times cited 9 Open Access  
  Notes This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government. Approved Most recent IF: 3.032; 2015 IF: 2.142  
  Call Number c:irua:129592 Serial 3970  
Permanent link to this record
 

 
Author Amin-Ahmadi, B. url  openurl
  Title Adanced TEM investigation of the elementary plsticity mechanisms in palladium thin films at the nano scale Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:125236 Serial 56  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: