toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ferreira, W.P.; Carvalho, J.C.N.; Oliveira, P.W.S.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title (up) Structural and dynamical properties of a quasi-one-dimensional classical binary system Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue 1 Pages 014112,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000252862200028 Publication Date 2008-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:67816 Serial 3194  
Permanent link to this record
 

 
Author Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R.T.; Birer, O.; Peeters, F.M.; Zareie, H.M. pdf  doi
openurl 
  Title (up) Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 335601  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000383780500012 Publication Date 2016-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 2 Open Access  
  Notes ; The authors acknowledge financial support from TUBITAK (PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:137155 Serial 4363  
Permanent link to this record
 

 
Author Galvan Moya, J.E.; Nelissen, K.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Structural ordering of self-assembled clusters with competing interactions : transition from faceted to spherical clusters Type A1 Journal article
  Year 2015 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 31 Issue 31 Pages 917-924  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The self-assembly of nanoparticles into clusters and the effect of the different parameters of the competing interaction potential on it are investigated. For a small number of particles, the structural organization of the clusters is almost unaffected by the attractive part of the potential, and for an intermediate number of particles the configuration strongly depends on the strength of it. The cluster size is controlled by the range of the interaction potential, and the structural arrangement is guided by the strength of the potential: i.e., the self-assembled cluster transforms from a faceted configuration at low strength to a spherical shell-like structure at high strength. Nonmonotonic behavior of the cluster size is found by increasing the interaction range. An approximate analytical expression is obtained that predicts the smallest cluster for a specific set of potential parameters. A Mendeleev-like table is constructed for different values of the strength and range of the attractive part of the potential in order to understand the structural ordering of the ground-state configuration of the self-assembled clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000348689700005 Publication Date 2014-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.833; 2015 IF: 4.457  
  Call Number c:irua:125292 Serial 3243  
Permanent link to this record
 

 
Author Ferreira, W.P.; Partoens, B.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title (up) Structural phase transitions and unusual melting behavior in a classical two-dimensional Coulomb bound cluster Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 71 Issue Pages 021501,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000228245700023 Publication Date 2005-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62445 Serial 3251  
Permanent link to this record
 

 
Author Piacente, G.; Schweigert, I.V.; Betouras, J.J.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Structural properties and melting of a quasi-one dimensional classical Wigner crystal Type A1 Journal article
  Year 2003 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 128 Issue 2-3 Pages 57-61  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural and melting properties of a quasi-one dimensional system of charged particles, interacting through a screened Coulomb potential are investigated. Depending on the density and the screening length, the system crystallizes in different lattice structures. The structural phase transitions between them are of first or second order. The melting of the system is studied through Monte Carlo simulations and reentrant behavior as a function of density is observed as well as evidence of anisotropic melting. (C) 2003 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000185533100004 Publication Date 2003-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 9 Open Access  
  Notes Approved Most recent IF: 1.554; 2003 IF: 1.602  
  Call Number UA @ lucian @ c:irua:102790 Serial 3253  
Permanent link to this record
 

 
Author Euan-Diaz, E.; Herrera-Velarde, S.; Misko, V.R.; Peeters, F.M.; Castaneda-Priego, R. doi  openurl
  Title (up) Structural transitions and long-time self-diffusion of interacting colloids confined by a parabolic potential Type A1 Journal article
  Year 2015 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 142 Issue 142 Pages 024902  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report on the ordering and dynamics of interacting colloidal particles confined by a parabolic potential. By means of Brownian dynamics simulations, we find that by varying the magnitude of the trap stiffness, it is possible to control the dimension of the system and, thus, explore both the structural transitions and the long-time self-diffusion coefficient as a function of the degree of confinement. We particularly study the structural ordering in the directions perpendicular and parallel to the confinement. Further analysis of the local distribution of the first-neighbors layer allows us to identify the different structural phases induced by the parabolic potential. These results are summarized in a structural state diagram that describes the way in which the colloidal suspension undergoes a structural re-ordering while increasing the confinement. To fully understand the particle dynamics, we take into account hydrodynamic interactions between colloids; the parabolic potential constricts the available space for the colloids, but it does not act on the solvent. Our findings show a non-linear behavior of the long-time self-diffusion coefficient that is associated to the structural transitions induced by the external field. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000348129700053 Publication Date 2015-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 7 Open Access  
  Notes ; This work was partially supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), PIFI 3.4 – PROMEP, and CONACyT (Grant Nos. 61418/2007, 102339/2008, Ph.D. scholarship 230171/2010). R.C.-P. also acknowledges financial support provided by the Marcos Moshinsky fellowship 2013-2014. The authors also thank to the General Coordination of Information and Communications Technologies (CGSTIC) at Cinvestav for providing HPC resources on the Hybrid Cluster Super-computer Xiuhcoatl, which have contributed partially to the research results reported in this paper. ; Approved Most recent IF: 2.965; 2015 IF: 2.952  
  Call Number c:irua:123832 Serial 3267  
Permanent link to this record
 

 
Author Ferreira, W.P.; Farias, G.A.; Carmona, H.A.; Peeters, F.M. doi  openurl
  Title (up) Structural transitions in a classical two-dimensional molecule system Type A1 Journal article
  Year 2002 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 122 Issue 12 Pages 665-669  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The ground state of a classical two-dimensional (2D) system with a finite number of charge particles, trapped by two positive impurity charges localized at a distance (z(0)) from the. 2D plane and separated from each other by a distance chi(p) are obtained. The impurities are allowed to carry more than one positive charge. This classical system can form a 2D-like classical molecule that exhibits structural transitions and spontaneous symmetry breaking as function of the separation between the positive charges before it transforms into two 2D-like classical atoms. We also observe structural transitions as a function of the dielectric constant of the substrate which supports the charged particles, in addition to broken symmetry states and unbinding of particles. (C) 2002 Elsevier Science Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000177129500008 Publication Date 2002-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.554; 2002 IF: 1.671  
  Call Number UA @ lucian @ c:irua:95137 Serial 3268  
Permanent link to this record
 

 
Author Farias, G.A.; Peeters, F.M. doi  openurl
  Title (up) Structural transitions in a finite classical two-dimensional system Type A1 Journal article
  Year 1996 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 100 Issue Pages 711-715  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1996VU47000008 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 25 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:15788 Serial 3269  
Permanent link to this record
 

 
Author Esfahani; Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title (up) Structural transitions in monolayer MOS2 by lithium adsorption Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 10602-10609  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Based on first-principles calculations, we study the structural stability of the H and T phases of monolayer MoS2 upon Li doping. Our calculations demonstrate that it is possible to stabilize a distorted T phase of MoS2 over the H phase through adsorption of Li atoms on the MoS2 surface. Through molecular dynamics and phonon calculations, we show that the T phase of MoS2 is dynamically unstable and undergoes considerable distortions. The type of distortion depends on the concentration of adsorbed Li atoms and changes from zigzag-like to diamond-like when increasing the Li doping. There exists a substantial energy barrier to transform the stable H phase to the distorted T phases, which is considerably reduced by increasing the concentration of Li atoms. We show that it is necessary that the Li atoms adsorb on both sides of the MoS2 monolayer to reduce the barrier sufficiently. Two processes are examined that allow for such two-sided adsorption, namely, penetration through the MoS2 layer and diffusion over the MoS2 surface. We show that while there is only a small barrier of 0.24 eV for surface diffusion, the amount of energy needed to pass through a pure MoS2 layer is of the order of similar or equal to 2 eV. However, when the MoS2 layer is covered with Li atoms the amount of energy that Li atoms should gain to penetrate the layer is drastically reduced and penetration becomes feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354912200051 Publication Date 2015-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 96 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem program of the Flemish government. H. S is supported by an FWO Pegasus-Long Marie Curie fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government department EWI. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126409 Serial 3270  
Permanent link to this record
 

 
Author Galván Moya, J.E.; Nelissen, K.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Structural transitions in vertically and horizontally coupled parabolic channels of Wigner crystals Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 18 Pages 184102-184109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural phase transitions in two vertically or horizontally coupled channels of strongly interacting particles are investigated. The particles are free to move in the x direction but are confined by a parabolic potential in the y direction. They interact with each other through a screened power-law potential (r(-n)e(-r/lambda)). In vertically coupled systems, the channels are stacked above each other in the direction perpendicular to the (x, y) plane, while in horizontally coupled systems both channels are aligned in the confinement direction. Using Monte Carlo (MC) simulations we obtain the ground-state configurations and the structural transitions as a function of the linear particle density and the separation between the channels. At zero temperature, the vertically coupled system exhibits a rich phase diagram with continuous and discontinuous transitions. On the other hand, the horizontally coupled system exhibits only a very limited number of phase transitions due to its symmetry. Further, we calculated the normal modes for the Wigner crystals in both cases. From MC simulations, we found that in the case of vertically coupled systems, the zigzag transition is only possible for low densities. A Ginzburg-Landau theory for the zigzag transition is presented, which predicts correctly the behavior of this transition from which we interpret the structural phase transition of the Wigner crystal through the reduction of the Brillouin zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310683600002 Publication Date 2012-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:105150 Serial 3271  
Permanent link to this record
 

 
Author Kong, M.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title (up) Structural, dynamical and melting properties of two-dimensional clusters of complex plasmas Type A1 Journal article
  Year 2003 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 5 Issue Pages 23,1-17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000181548000008 Publication Date 2003-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 67 Open Access  
  Notes Approved Most recent IF: 3.786; 2003 IF: 2.480  
  Call Number UA @ lucian @ c:irua:62452 Serial 3232  
Permanent link to this record
 

 
Author Horzum, S.; Torun, E.; Serin, T.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Structural, electronic and optical properties of Cu-doped ZnO : experimental and theoretical investigation Type A1 Journal article
  Year 2016 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 96 Issue 96 Pages 1743-1756  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/G(0)W(0) method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376076500002 Publication Date 2016-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 29 Open Access  
  Notes ; Theoretical part of this work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Experimental part of this work was supported by Ankara University BAP under Project Number [14B0443001]. ; Approved Most recent IF: 1.505  
  Call Number UA @ lucian @ c:irua:134161 Serial 4254  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Rivera-Julio, J.; Peeters, F.M.; Mendoza-Estrada, V.; Gonzalez-Hernandez, R. pdf  doi
openurl 
  Title (up) Structural, mechanical and electronic properties of two-dimensional structure of III-arsenide (111) binary compounds: An ab-initio study Type A1 Journal article
  Year 2018 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 144 Issue 144 Pages 285-293  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural, mechanical and electronic properties of two-dimensional single-layer hexagonal structures in the (111) crystal plane of IIIAs-ZnS systems (III = B, Ga and In) are studied by first-principles calculations based on density functional theory (DFT). Elastic and phonon dispersion relation display that 2D h-IIIAs systems (III = B, Ga and In) are both mechanical and dynamically stable. Electronic structures analysis show that the semiconducting nature of the 3D-IIIAs compounds is retained by their 2D single layer counterpart. Furthermore, density of states reveals the influence of sigma and pi bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Calculations of elastic constants show that the Young's modulus, bulk modulus and shear modulus decrease for 2D h-IIIAs binary compounds as we move down on the group of elements of the periodic table. In addition, as the bond length between the neighboring cation-anion atoms increases, the 2D h-IIIAs binary compounds display less stiffness and more plasticity. Our findings can be used to understand the contribution of the r and p bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Structural and electronic properties of h-IIIAs systems as a function of the number of layers have been also studied. It is shown that h-BAs keeps its planar geometry while both h-GAs and h-InAs retained their buckled ones obtained by their single layers. Bilayer h-IIIAs present the same bandgap nature of their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap width for layered h-IIIAs decreases until they become semimetal or metal. Interestingly, these results are different to those found for layered h-GaN. The results presented in this study for single and few-layer h-IIIAs structures could give some physical insights for further theoretical and experimental studies of 2D h-IIIV-like systems. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424902300036 Publication Date 2017-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 3 Open Access  
  Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712 – Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.292  
  Call Number UA @ lucian @ c:irua:149897UA @ admin @ c:irua:149897 Serial 4949  
Permanent link to this record
 

 
Author Ferreira, W.P.; Matulis, A.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title (up) Structure and correlations in two-dimensional classical artificial atoms confined by a Coulomb potential Type A1 Journal article
  Year 2003 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 67 Issue 4Part 2 Pages 046601-46608  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The ordering of N equally charged particles (-e) moving in two dimensions and confined by a Coulomb potential, resulting from a displaced positive charge Ze is discussed. This is a classical model system for atoms. We obtain the configurations of charged particles which, depending on the value of N and Z, may result in ring structures, hexagonal-type configurations, and for N/Z approximate to 1 in an inner structure of particles which is separated by an outer ring of particles. For N/Z << 1, the Hamiltonian of the parabolic confinement case is recovered. For N/Z approximate to 1, the configurations are very different from those found in the case of a parabolic confinement potential. A hydrodynamic analysis is presented in order to highlight the correlations effects.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000182825400087 Publication Date 2003-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 14 Open Access  
  Notes Approved Most recent IF: 2.366; 2003 IF: 2.202  
  Call Number UA @ lucian @ c:irua:104123 Serial 3273  
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 10 Pages 3258-3266  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES)  
  Abstract Chemisorption of hydrogen on graphene is studied using atomistic simulations with the second generation of reactive empirical bond order Brenner inter-atomic potential. The lowest energy adsorption sites and the most important metastable sites are determined. The H concentration is varied from a single H atom, to clusters of H atoms up to full coverage. We found that when two or more H atoms are present, the most stable configurations of H chemisorption on a single graphene layer are ortho hydrogen pairs adsorbed on one side or on both sides of the graphene sheet. The latter has the highest hydrogen binding energy. The next stable configuration is the orthopara pair combination, and then para hydrogen pairs. The structural changes of graphene caused by chemisorbed hydrogen are discussed and are compared with existing experimental data and other theoretical calculations. The obtained results will be useful for nanoengineering of graphene by hydrogenation and for hydrogen storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000291959300014 Publication Date 2011-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 46 Open Access  
  Notes ; A.D. thanks M.W. Zhao for a useful correspondence. This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:90877 Serial 3275  
Permanent link to this record
 

 
Author de Araujo, J.L.B.; Munarin, F.F.; Farias, G.A.; Peeters, F.M.; Ferreira, W.P. url  doi
openurl 
  Title (up) Structure and reentrant percolation in an inverse patchy colloidal system Type A1 Journal article
  Year 2017 Publication Physical Review E Abbreviated Journal  
  Volume 95 Issue 6 Pages 062606  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional systems of inverse patchy colloids modeled as disks with a central charge and having their surface decorated with oppositely pointlike charged patches are investigated using molecular dynamics simulations. The self-assembly of the patchy colloids leads to diverse ground state configurations ranging from crystalline arrangements of monomers to linear clusters, ramified linear clusters and to percolated configurations. Two structural phase diagrams are constructed: (1) as a function of the net charge and area fraction, and (2) as a function of the net charge and the range of the pair interaction potential. An interesting reentrant percolation transition is obtained as a function of the net charge of the colloids. We identify distinct mechanisms that lead to the percolation transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404545700005 Publication Date 2017-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152628 Serial 8587  
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title (up) Structure and spectrum of anisotropically confined two-dimensional clusters with logarithmic interaction Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 72 Issue Pages 046122,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We studied the structural and spectral properties of a classical system consisting of a finite number of particles, moving in two dimensions, and interacting through a repulsive logarithmic potential and held together by an anisotropic harmonic potential. Increasing the anisotropy of the confinement potential can drive the system from a two-dimensional (2D) to a one-dimensional (1D) configuration. This change occurs through a sequence of structural transitions of first and second order which are reflected in the normal mode frequencies. Our results of the ground state configurations are compared with recent experiments and we obtained a satisfactory agreement. The transition from the 1D line structure to the 2D structure occurs through a zigzag transition which is of second order. We found analytical expressions for the eigenfrequencies before the zigzag transition, which allowed us to obtain an analytical expression for the anisotropy parameter at which the zigzag transition occurs as a function of the number of particles in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000232931200034 Publication Date 2005-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 22 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62448 Serial 3295  
Permanent link to this record
 

 
Author Cândido, L.; Rino, J.-P.; Studart, N.; Peeters, F.M. doi  openurl
  Title (up) Structure and spectrum of the anisotropically confined two-dimensional Yukawa system Type A1 Journal article
  Year 1998 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 10 Issue Pages 11627-11644  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000077882400004 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 69 Open Access  
  Notes Approved Most recent IF: 2.649; 1998 IF: 1.645  
  Call Number UA @ lucian @ c:irua:24174 Serial 3297  
Permanent link to this record
 

 
Author Kong, M.; Partoens, B.; Matulis, A.; Peeters, F.M. url  doi
openurl 
  Title (up) Structure and spectrum of two-dimensional clusters confined in a hard wall potential Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 69 Issue Pages 036412,1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220729400077 Publication Date 2004-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 42 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:62442 Serial 3298  
Permanent link to this record
 

 
Author Yang, W.; Nelissen, K.; Kong, M.; Zeng, Z.; Peeters, F.M. url  doi
openurl 
  Title (up) Structure of binary colloidal systems confined in a quasi-one-dimensional channel Type A1 Journal article
  Year 2009 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 79 Issue 4 Pages 041406,1-041406,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural properties of a binary colloidal quasi-one-dimensional system confined in a narrow channel are investigated through modified Monte Carlo simulations. Two species of particles with different magnetic moment interact through a repulsive dipole-dipole force are confined in a quasi-one-dimensional channel. The impact of three decisive parameters (the density of particles, the magnetic-moment ratio, and the fraction between the two species) on the transition from disordered phase to crystal-like phases and the transitions among the different mixed phases are summarized in a phase diagram.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265941300077 Publication Date 2009-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.366; 2009 IF: 2.400  
  Call Number UA @ lucian @ c:irua:77021 Serial 3308  
Permanent link to this record
 

 
Author Ferreira, W.P.; Munarin, F.F.; Nelissen, K.; Costa, R.N.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title (up) Structure, normal mode spectra, and mixing of a binary system of charged particles confined in a parabolic trap Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 72 Issue 2 Part 1 Pages 021406-21413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the mixing of two different kinds of particles, having different charge and/or mass, interacting through a pure Coulomb potential, and confined in a parabolic trap. The structure of the cluster and its normal mode spectrum are analyzed as a function of the ratio of the charges (mass ratio) of the two types of particles. We show that particles are not always arranged in a shell structure. Mixing of the particles goes hand in hand with a large number of metastable states. The normal modes of the system are obtained, and we find that some of the special modes can be tuned by varying the ratio between the charges (masses) of the two species. The degree of mixing of the two type of particles is summarized in a phase diagram, and an order parameter that describes quantitatively the mixing between particles is defined.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000231564000031 Publication Date 2005-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:103149 Serial 3306  
Permanent link to this record
 

 
Author Vansweevelt, R.; Mortet, V.; D' Haen, J.; Ruttens, bart; van Haesendonck, C.; Partoens, B.; Peeters, F.M.; Wagner, P. doi  openurl
  Title (up) Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes Type A1 Journal article
  Year 2011 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 208 Issue 6 Pages 1252-1258  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we report on the electronic transport properties of mesoscopic, ultrathin graphite flakes with a thickness corresponding to a stack of 150 graphene layers. The graphite flakes show an unexpectedly strong positive magnetoresistance (PMR) already at room temperature, which scales in good approximation with the square of the magnetic field. Furthermore, we show that the resistivity is unaffected by magnetic fields oriented in plane with the graphene layers. Hall effect measurements indicate that the charge carriers are p-type and their concentration increases with increasing temperature while the mobility is decreasing. The Hall voltage is non-linear in higher magnetic fields. Possible origins of the observed effects are discussed. Ball and stick model of the two topmost carbon layers of the hexagonal graphite structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292945800008 Publication Date 2011-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access  
  Notes ; The authors gratefully acknowledge the support by FWO – Research Foundation Flanders (project G.0159.07 “Structural and electronic properties of biologically modified, graphene-based layers”), by the Federal Belgian Interuniversity Attraction Poles Programme BELSPO (project TAP VI P6/42 “Quantum effects in clusters and nanowires”) and by the Methusalem network “NANO – Antwerp-Hasselt,” funded by the Flemish Community. Technical assistance by Stoffel D. Janssens (magnet calibration and software development), Dr. Hong Yin (AFM-based thickness studies), Dr. Ronald Thoelen (data analysis), and Prof. Hans-Gerd Boyen (XPS spectroscopy) is greatly appreciated. ; Approved Most recent IF: 1.775; 2011 IF: 1.463  
  Call Number UA @ lucian @ c:irua:91941 Serial 3343  
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Duan, Y.F.; Li, L.L.; Huang, F.; Peeters, F.M. url  doi
openurl 
  Title (up) Substrate dependent terahertz magneto-optical properties of monolayer WS2 Type A1 Journal article
  Year 2021 Publication Optics Letters Abbreviated Journal Opt Lett  
  Volume 46 Issue 19 Pages 4892-4895  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Terahertz (THz) magneto-optical (MO) properties of monolayer (ML) tungsten disulfide (WS2), placed on different substrates and subjected to external magnetic fields, are studied using THz time-domain spectroscopy (TDS). We find that the THz MO conductivity exhibits a nearly linear response in a weak magnetic field, while a distinctly nonlinear/oscillating behavior is found in strong magnetic fields owing to strong substrate-induced random impurity scattering and interactions. The THz MO response of ML WS2 depends sensitively on the choice of the substrates, which we trace back to electronic localization and the impact of the substrates on the Landau level (LL) spectrum. Our results provide an in-depth understanding of the THz MO properties of ML WS2/substrate systems, especially the effect of substrates, which can be utilized to realize atomically thin THz MO nano-devices. (C) 2021 Optical Society of America  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000702746400048 Publication Date 2021-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-9592 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.416 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.416  
  Call Number UA @ admin @ c:irua:182526 Serial 7023  
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Li, L.L.; Huang, F.; Xu, W.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Substrate dependent terahertz response of monolayer WS₂ Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 116 Issue 20 Pages 1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate experimentally the terahertz (THz) optoelectronic properties of monolayer (ML) tungsten disulfide (WS2) placed on different substrates using THz time-domain spectroscopy (TDS). We find that the THz optical response of n-type ML WS2 depends sensitively on the choice of the substrate. This dependence is found to be a consequence of substrate induced charge transfer, extra scattering centers, and electronic localization. Through fitting the experimental results with the Drude-Smith formula, we can determine the key sample parameters (e.g., the electronic relaxation time, electron density, and electronic localization factor) of ML WS2 on different substrates. The temperature dependence of these parameters is examined. Our results show that the THz TDS technique is an efficient non-contact method that can be utilized to characterize and investigate the optoelectronic properties of nano-devices based on ML WS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536282300001 Publication Date 2020-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 10 Open Access  
  Notes ; This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2018GF09) and by the National Natural Science foundation of China (Nos. U1930116 and 11574319). ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:170255 Serial 6620  
Permanent link to this record
 

 
Author Zarenia, M.; Leenaerts, O.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title (up) Substrate-induced chiral states in graphene Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 8 Pages 085451  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Unidirectional chiral states are predicted in single layer graphene which originate from the breaking of the sublattice symmetry due to an asymmetric mass potential. The latter can be created experimentally using boron-nitride (BN) substrates with a line defect (B-B or N-N) that changes the induced mass potential in graphene. Solving the Dirac-Weyl equation, the obtained energy spectrum is compared with the one calculated using ab initio density functional calculations. We found that these one-dimensional chiral states are very robust and they can even exist in the presence of a small gap between the mass regions. In the latter case additional bound states are found that are topologically different from those chiral states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308005600015 Publication Date 2012-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the European Science Foundation (ESF) under the EUROCORES Program: EuroGRAPHENE (project CONGRAN). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101100 Serial 3347  
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title (up) Superconducting current and proximity effect in ABA and ABC multilayer graphene Josephson junctions Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 88 Pages 214502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using a numerical tight-binding approach based on the Chebyshev–Bogoliubov–de Gennes method we describe Josephson junctions made of multilayer graphene contacted by top superconducting gates. Both Bernal (ABA) and rhombohedral (ABC) stacking are considered and we find that the type of stacking has a strong effect on the proximity effect and the supercurrent flow. For both cases the pair amplitude shows a polarization between dimer and nondimer atoms, being more pronounced for rhombohedral stacking. Even though the proximity effect in nondimer sites is enhanced when compared to single-layer graphene, we find that the supercurrent is suppressed. The spatial distribution of the supercurrent shows that for Bernal stacking the current flows only in the topmost layers while for rhombohedral stacking the current flows throughout the whole structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328569900004 Publication Date 2013-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number CMT @ cmt @ c:irua:128896 Serial 3962  
Permanent link to this record
 

 
Author Lyu, Y.-Y.; Jiang, J.; Wang, Y.-L.; Xiao, Z.-L.; Dong, S.; Chen, Q.-H.; Milošević, M.V.; Wang, H.; Divan, R.; Pearson, J.E.; Wu, P.; Peeters, F.M.; Kwok, W.-K. url  doi
openurl 
  Title (up) Superconducting diode effect via conformal-mapped nanoholes Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 2703  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract A superconducting diode is an electronic device that conducts supercurrent and exhibits zero resistance primarily for one direction of applied current. Such a dissipationless diode is a desirable unit for constructing electronic circuits with ultralow power consumption. However, realizing a superconducting diode is fundamentally and technologically challenging, as it usually requires a material structure without a centre of inversion, which is scarce among superconducting materials. Here, we demonstrate a superconducting diode achieved in a conventional superconducting film patterned with a conformal array of nanoscale holes, which breaks the spatial inversion symmetry. We showcase the superconducting diode effect through switchable and reversible rectification signals, which can be three orders of magnitude larger than that from a flux-quantum diode. The introduction of conformal potential landscapes for creating a superconducting diode is thereby proven as a convenient, tunable, yet vastly advantageous tool for superconducting electronics. This could be readily applicable to any superconducting materials, including cuprates and iron-based superconductors that have higher transition temperatures and are desirable in device applications. A superconducting diode is dissipationless and desirable for electronic circuits with ultralow power consumption, yet it remains challenging to realize it. Here, the authors achieve a superconducting diode in a conventional superconducting film patterned with a conformal array of nanoscale holes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000658724200018 Publication Date 2021-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 23 Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:179611 Serial 7024  
Permanent link to this record
 

 
Author Milošević, M.V.; Rakib, M.T.I.; Peeters, F.M. doi  openurl
  Title (up) Superconducting disk with magnetic coating: re-entrant Meissner phase, novel critical and vortex phenomena Type A1 Journal article
  Year 2007 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 77 Issue 2 Pages 27005,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000245671500025 Publication Date 2007-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.957; 2007 IF: 2.206  
  Call Number UA @ lucian @ c:irua:64309 Serial 3351  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Superconducting films with antidot arrays: novel behaviour of the critical current Type A1 Journal article
  Year 2006 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 74 Issue 3 Pages 493-499  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000236911200018 Publication Date 2006-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 36 Open Access  
  Notes Approved Most recent IF: 1.957; 2006 IF: 2.229  
  Call Number UA @ lucian @ c:irua:58253 Serial 3352  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Superconducting films with weak pinning centers: incommenssurate vortex lattices Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue 13 Pages 134508,1-134508,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000250619800087 Publication Date 2007-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:67348 Serial 3353  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: