
PHYSICAL REVIEW B 86, 085451 (2012)

Substrate-induced chiral states in graphene
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Unidirectional chiral states are predicted in single layer graphene which originate from the breaking of
the sublattice symmetry due to an asymmetric mass potential. The latter can be created experimentally using
boron-nitride (BN) substrates with a line defect (B-B or N-N) that changes the induced mass potential in graphene.
Solving the Dirac-Weyl equation, the obtained energy spectrum is compared with the one calculated using ab
initio density functional calculations. We found that these one-dimensional chiral states are very robust and they
can even exist in the presence of a small gap between the mass regions. In the latter case additional bound states
are found that are topologically different from those chiral states.
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I. INTRODUCTION

The discovery of graphene, i.e., a single layer of carbon
atoms with honeycomb structure, introduced an interesting
novel material to the condensed-matter community.1–7 A
pristine layer of graphene shows a gapless linear energy
spectrum at two points of its Brillouin zone (namely K and K ′)
which prevents electron confinement and which complicates
the fabrication of graphene-based electronic devices.6 This
gapless behavior is a consequence of the sublattice (chiral)
and time-reversal symmetries of graphene. It was recently
found that the application of appropriate substrates can
break the sublattice symmetry and induce a gap in the
spectrum.8,9 The hexagonal boron-nitride (h-BN) substrate is
such an example, and recent magnetotransport measurement of
graphene on top of h-BN were very promising for high quality
electronic devices.9 Furthermore, ab initio density functional
calculations (DFT) demonstrated that the energy spectrum
of graphene exhibits a gap when placed on top of h-BN
substrates.10,11 Such a breaking of the sublattice symmetry in
graphene can be translated into a mass term in the Dirac-Weyl
Hamiltonian.12 The spatial variation of such a mass term will
be useful for the creation of quantum devices where a tunable
energy gap allows the observation of confined states.13–15

Surface states have been investigated in topological insu-
lator materials over the last three decades. Such materials are
insulating in the bulk while on their boundaries topologically
protected surface (edge) states are found.16 In this paper we
propose one-dimensional (1D) chiral state in single layer
graphene that relies on the creation of an asymmetric mass pro-
file (i.e., a kink potential) [see Fig. 1(a)]. A similar electrostatic
kink potential profile has been recently investigated in bilayer
graphene (BLG), that can be realized using nanostructured
double gates placed respectively on the bottom and top of
the BLG layers.17–20 At the interface of the kink potential,
1D chiral states appear in the energy gap with unidirectional
motion of the electrons. Recently, it was also found that these
states are robust even in the presence of a perpendicular exter-
nal magnetic field.21 In contrast to these early proposals our
system can be realized with a single layer of graphene without
using gate potentials. We show that these new chiral states can
be induced by a line defect in the h-BN substrate that results
in a kink in the effective-mass profile. Other types of line
defects or vacancies can induce a mass profile different from

the present kink-antikink structure which even may open an
energy gap due to the coupling between the K and K ′ valleys.

Here, we will solve the Dirac-Weyl Hamiltonian analyti-
cally, for the kink-antikink mass profile and obtain the dis-
persion relation explicitly. We complemented our results with
DFT calculations. In our plane-wave base DFT calculations
it is necessary to apply periodic boundary conditions. We
use a rectangular graphene supercell containing 32 carbon
atoms and place it on top of a boron-nitride substrate with
a topological defect line [see Fig. 1(b)]. Different ways
of stacking are possible but AA stacking, i.e., all carbon
atoms are on top of boron or nitrogen atoms, maximizes the
graphene-substrate interaction.10 The DFT results support our
analytical results and show that the line defect in h-BN results
in the disappearance of the band gap which is normally induced
by a homogeneous h-BN substrate.10

II. KINK-SHAPED MASS PROFILE

We employ the continuum model based on the Dirac
equation, which in the valley isotropic form is described by7

H = −ih̄vF

[
0 ∂x − i∂y

∂x + i∂y 0

]
+ τ

[
�(x) 0

0 −�(x)

]
,

(1)

where vF = 106 m/s is the Fermi velocity, τ = 1 (τ = −1)
corresponds to the K (K ′) valley, and +� (−�) is the mass
term induced by the BN substrate to the A (B) sublattice. The
mass term breaks the sublattice symmetry and a gap 2� opens
in the graphene energy spectrum.

The eigenstates of Eq. (1) are two-component spinors ψ =
[φa(x,y),iφb(x,y)]T where φa,b are the envelope functions
associated with the A and B sublattices. Since [H, −i∂y] = 0,
the momentum along the y direction is a conserved quantity
and we have ψ = eikyy[ϕa(x),iϕb(x)]T , where ky is the wave
vector along the y direction. Solving the Schrödinger equation
Hψ(x,y) = Eψ(x,y) we obtain the two coupled differential
equations as

[∂x + ky]ϕb = [ε − ζ (x)]ϕa, (2a)

−[∂x − ky]ϕa = [ε + ζ (x)]ϕb. (2b)
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FIG. 1. (Color online) (a) The induced mass potential profile in
single layer graphene in the presence of a boron-nitride (BN) substrate
with a line defect. (b) A schematic picture of graphene on top of BN
substrate. The dashed line indicates the position of the line defect
(i.e., B-B).

where ε = El/h̄vF , ζ (x) = �(x)l/h̄vF , and (x,y) → (x,y)/l

are dimensionless with l = 1 nm taken as the length unit.
For convenience we consider a steplike kink profile for the
mass term which is modeled by ζ (x) = ζ0x/|x|. We decouple
Eqs. (2) and obtain [

∂2
x − γ 2

]
ϕa = 0, (3)

where γ =
√

ζ 2
0 + k2

y − ε2 is real when |ε| <
√

ζ 2
0 + k2

y

(i.e., the region where bound states exist). The solutions of
Eq. (3) for x > 0 and x � 0 regions are, respectively, given by

ψ(x < 0) = Aeγx[1,(ky − γ )/(ε − ζ0)]T , (4a)

ψ(x > 0) = Be−γ x[1,(ky + γ )/(ε + ζ0)]T , (4b)

where ϕb is obtained using Eq. (2b). Matching the solution at
x = 0 leads to

εγ = ζ0ky. (5)

Equation (5) can be written as ε4 − (ζ 2
0 + k2

y)ε2 + ζ 2
0 k2

y = 0
which results in four bands ε = ±ky and ε = ±ζ0. From
Eq. (5) we notice that these solutions must satisfy sgn(kyε) > 0

in addition to the |ε| <
√

ζ 2
0 + k2

y condition. Notice that the
flat bands at ε = −ζ0 (for ky < 0) and ε = ζ0 (for ky > 0)
are not a solution for all ky values and should be discarded.
From Eqs. (2) one can simply obtain the valid solution as
ky = ζ0 for ε = ζ0 and ky = −ζ0 for ε = −ζ0. The equations
for the K ′ valley can be obtained using the ζ (x) → −ζ (x)
transformation in Eqs. (2) where it leads to the εK ′ = −ky

solution for the K ′ valley.
Figure 2(a) shows the spectrum for a kinklike mass

potential as function of the wave vector along the kink.
The shaded region corresponds to the continuum of free
states. The solid black curves correspond to the energy levels
of a single layer graphene in the presence of a uniform
mass potential ζ0 which can be obtained from Eq. (1) as
ε = ±

√
k2
y + ζ 2

0 . The gray dotted horizontal lines correspond
to ε = ±ζ0 = ±0.152 = (100 meV) and ε = 0. The solid
blue line εK = ky and the red dashed line (εK ′ = −ky) show
the chiral states corresponding to the K and K ′ valleys,
respectively. Notice that these states have a unidirectional
character of propagation, i.e., they are chiral states, with
positive (negative) group velocity for the K (K ′) valley. These
states are related to the edge states of 2D electrons that are
realized in the presence of a perpendicular magnetic field

FIG. 2. (Color online) (a) Energy levels for a kink-shaped mass
profile in single graphene. The curves and parameters are explained
in the text. (b), (c) The wave spinors and probability density,
respectively, for εK = ky and εK ′ = −ky . (d) y component of the
persistent current corresponding to the chiral state for the K (blue
solid curve) and the K ′ (red dashed curve) valleys as a function of
the x direction.

and that are responsible for the quantum Hall effect (QHE).
Notice that here these states are realized without a magnetic
field. The inset of Fig. 2(a) shows the velocity of the carriers
for the chiral state which is +vF for the K valley (blue dotted
curve) and −vF for the K ′ valley (red dashed curve). The
black solid curve displays the velocity of the electrons for a
gapped single layer graphene, ε =

√
k2
y + ζ 2

0 , and results in the
velocity v/vF = ky/

√
k2
y + ζ 2

0 . Figures 2(b) and 2(c) present
the real parts of the spinor components and the probability
density for (a) εK = ky and (b) εK = −ky . These electron
states are localized at the position of the kink. Notice that the
solutions corresponding to the K and K ′ valleys are related by
the transformations ϕK ′

a → −ϕK
b , ϕK ′

b → ϕK
a and k′

y → −k′
y .

These unidirectional states move in the opposite direction
when they belong to the K and K ′ valley and therefore are very
promising for electronic devices based on valleytronics.22,23

These chiral states exhibit persistent currents in the y direction
jy = ψ†σyψ (σy is the y component of the Pauli matrices). In
Fig. 2(d), the y component of the persistent current for the K

(blue solid curve) and K ′ (red dashed curve) valleys is shown
as a function of the x direction. Notice that the current is
localized at the position of the kink interface and the K and
K ′ valleys carry the opposite currents.

III. EFFECT OF SMALL GAP BETWEEN
TWO MASS REGIONS

In order to investigate the stability of these chiral states
we consider the effect of a small gap between the two
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FIG. 3. (Color online) (a) Energy levels for a kink mass potential
with a gap distance d = 40 nm. (b)–(d) The wave spinors and
corresponding probability density. (e) Number of additional bound
states as a function of the gap distance. The curves and the parameters
are explained in the text.

mass regions. We checked numerically that such a gap
has qualitatively the same effect as smoothing the step
profile of Fig. 1(a). We modeled the mass term by ζ (|x| >

d/2) = ζ0x/|x| and ζ (|x| � d/2) = 0. The eigenstates of
Eq. (3) in the regions I (x < −d/2) and III (x > d/2) are
given by Eqs. (4a) and (4b), respectively, and in the gap
distance is ψII = Ceiλx[1,(ky − iλ)/ε]T + De−iλx[1,(ky +
iλ)/ε]T , where λ =

√
ε2 − k2

y and d denotes the gap distance
between the two mass regions. Matching the solutions at
x = ±d/2 and setting the matrix of the coefficients to zero
leads to the following equation:

[εγ − ζ0ky][γ sin(dλ) + λ cos(dλ)] = 0. (6)

The first part in Eq. (6) is the same as Eq. (5) (i.e., for the case
of d = 0) that leads to the above chiral states (i.e., εK = ky

and εK ′ = −ky). Setting the second part between brackets to
zero leads to a transcendental equation that results in extra
localized states when ε > ky . These extra bound states for the
K ′ valley can be obtained using the ζ0 → −ζ0 transformation
in the second part of Eq. (6) which results in the same states as
for the K valley (i.e., εK = εK ′ for the extra localized states).

In Fig. 3(a) the energy levels as a function of ky are shown
for the kink profile with a gap of d = 40 nm between the two
mass regions. Notice that now in addition to the chiral states
several branches (solid green curves) are seen which are split
off from the continuum. Increasing the gap distance increases
the number of those states that are confined near the kink. The
number of these bound states can be related to the height of the
mass potential ζ0. Figure 3(e) shows the number of these extra

bound states for three different ζ0 values as a function of the
gap distance d. The first bound state for ζ0 = 0.075,0.15,0.3
appears, respectively, at d ≈ 20,11,5 nm. Notice that the
chiral states εK = ky (blue solid line) and εK ′ = −ky (red
dashed line) are robust with regard to the smoothing of the
step profile (here modeled by the gap distance). The velocity
of the carriers corresponding to the chiral states (i.e., vK = vF

and vK ′ = −vF ) and the additional localized levels [labeled by
(1) and (2)] are shown in the inset of Fig. 3. The extra bound
states have a zero velocity at ky = 0 which is a consequence
of the symmetric energy dispersion around ky = 0. The wave
functions for εK = ky and εK ′ = −ky are respectively shown
in panels (b) and (c). In comparison with the sharp kink mass
potential (d = 0) the probability density is now uniformly
spread out over the distance d. Figure 3(d) shows the wave
function for the first additional bound state [labeled by (1) in
Fig. 3(a)] at ky = 0 and εK = 0.067 which is also bound along
the x direction with a probability distribution very similar to
the one of the chiral states but where the wave spinors exhibit
now a nodal character in the −d/2 � x � d/2 region.

IV. SUPERLATTICE

Now we extend our results to a superlattice (SL) of mass
kinks. Here we use periodic boundary conditions ψ(0) =
eikxLψ(L) where L is the periodicity and kx denotes the wave
vector along the x direction. The kink mass interface is located
at x = L/2 which is repeated periodically. The solutions ψI

and ψII , respectively for x < L/2 and x � L/2 regions, are
given by

ψI = Aeγx

[
1,

ky − γ

ε − ζ0

]T

+ Be−γ x

[
1,

ky + γ

ε − ζ0

]T

, (7a)

ψII = Ceγx

[
1,

ky − γ

ε + ζ0

]T

+ De−γ x

[
1,

ky + γ

ε + ζ0

]T

, (7b)

where γ =
√

ζ 2
0 + k2

y − ε2. Matching the solutions at x = L/2
and imposing the periodic boundary condition we find a set of
four algebraic equations that have a solution of[(

ε2 − k2
y

)
cosh(γL) − ζ 2

0

] + γ 2 cos(kxL) = 0. (8)

Figure 4(a) shows a 3D plot of the energy bands resulting from
Eq. (8) as function of kx and ky near the K point. Panels (b)
and (c) are contour plots of εK (kx,ky) for the first and second
conduction bands, respectively. Two solutions to Eq. (8) are
εK = ±

√
k2
y + ζ 2

0 [see the upper and lower bands in Fig. 4(a)]
which denotes the energy bands of gapped graphene with a
uniform mass potential. Another solution results in a Dirac
cone at (kx,ky) = 0 which is a consequence of the additional
states brought by the antikink steps in the SL system [see
intermediate bands in Fig. 4(a)]. Expanding Eq. (8) for
kx,ky → 0 and ε �

√
k2
y + ζ 2

0 we obtain εk = ±
√

k2
x + k2

y

which demonstrates the linearity of the dispersion relation
around the Dirac cone. Such Dirac cones have also been found
in graphene superlattices.24

V. AB INITIO SIMULATIONS

We supplemented our theoretical treatment with ab initio
DFT simulations. We used the ABINIT software package25 to
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FIG. 4. (Color online) (a) 3D plot of the energy bands in the
presence of a superlattice of kink mass potentials in single layer
graphene with ζ0 = 4.55 (=100 meV) and L = 30 nm. Panels (b)
and (c), respectively, display the contour plots corresponding to the
first and the second conduction bands.

calculate the electronic band structure of graphene on top of a
boron-nitride substrate with and without the line defect. These
calculations were done within the local-density approximation
(LDA) to obtain a reasonable description of the graphene-BN
interlayer interaction26 and the specific parameters for the DFT
calculations were the same as given in Ref. 26. The specific
model structure that we used consists of a rectangular graphene
supercell containing 32 C atoms on top of a BN substrate where
the relaxed distance between the BN substrate and graphene is
set to 3.24 Å [see Fig. 5(c)]. The line of defects are taken along
the zigzag direction and consists of alternating B-B and N-N
defect lines separated by defect-free h-BN regions with a width
of approximately 2 nm. In Figs. 5(a) and 5(b), the electronic
band structure of the investigated systems, calculated along
the ky direction and through the 
 point, is shown. As can
be seen from Fig. 5(a), a band gap, i.e., ≈56 meV, is opened
when graphene is placed on top of a perfect BN substrate.
When the line of defects, corresponding to a kink in the mass
potential, is added, the band gap closes and the linear spectrum
at the K point is recovered [see Fig. 5(b)]. This is in agreement
with the analytical results derived before. Note that there are
some differences between the band spectra as obtained with
DFT and the analytical result for a superlattice [Figs. 5(b)
and 4, respectively]: (i) There are additional bands in the DFT
spectrum because of the explicit incorporation of the boron-
nitride substrate in the calculations. (ii) The parabolic bands
are shifted to a larger ky point (i.e., away from the K point)
and are situated farther away from the Fermi level. This can

FIG. 5. (Color online) The band structure obtained within DFT
for (a) graphene on top of a uniform layer of a BN substrate and
(b) graphene on top of a BN substrate with a periodic area of line
defects. The vertical dashed line indicates the position of the K

point. The structure that is simulated is shown in (c): the supercell
is indicated by the yellow rectangle and the dashed vertical lines
indicate the position of the line defects.

be attributed to the relatively small size of the supercell in the
DFT calculations as compared to the continuum model.

VI. CONCLUDING REMARKS

In summary, we predicted new chiral states in the presence
of an asymmetric (kink profile) mass potential in single layer
graphene. Our study showed that these states are robust even
when a small gap is located between the two mass regions. The
system can be realized experimentally using a boron-nitride
substrate with a line defect that induces an asymmetric
mass potential in graphene. These 1D chiral states were also
investigated within ab initio calculations for a superlattice of
line defects. Throughout our calculations we showed that the
chiral states corresponding to the K and K ′ valleys exhibit
the opposite direction of propagation which is a consequence
of their chiral nature. Nanostructuring of such line defects in
the h-BN substrate can be very promising for the fabrication
of electronic devices for valleytronics. Graphene dots with
perfect zigzag edges were earlier proposed for valleytronics
applications.22 The realization of perfect zigzag edges is very
challenging and this disadvantage does not arise in our case,
where the asymmetric mass potential is induced by a line of
defects in the h-BN substrate.
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