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Abstract. The static and dynamical properties of two-dimensional mesoscopic
clusters of equally charged classical particles are investigated through the Monte
Carlo simulation technique. The particles are confined by an external harmonic
potential. The ground-state configuration and the position of the geometry
induced defects are investigated as a function of the inter-particle interaction
(Coulomb, dipole, logarithmic and screened Coulomb). The eigenmodes are
investigated and the corresponding divergence and rotor are calculated which
describe the ‘shearlike’ and ‘compression-like’ modes, respectively. The melting
behaviour is found to be strongly influenced by the inter-particle interaction
potential: a small cluster with a short-range interaction melts earlier than one
with long-range interaction. The melting temperature is related to the energy
barriers between the ground state and the metastable states. For larger clusters,
the melting scenario changes and is strongly influenced by the location of the
topological defects.
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1. Introduction

Complex plasmas consist of many strongly charged dust particles immersed in a gaseous plasma
background. Earlier this system was also called dusty plasma because the particles were treated
as ‘dust’. Nowadays one refers to it as complex plasma in analogy to the condensed matter
field of ‘complex fluids’ in colloids. This system has four components, i.e. electrons, ions,
neutral atoms and dust particles with high charges which are responsible for the unusual plasma
properties. Unlike most ordinary plasmas in space and laboratory which are weakly coupled,
i.e. the interaction energy of nearest neighbours is much smaller than their thermal energy, a
complex plasma is strongly coupled. The competition between the order caused by the mutual
Coulomb interactions and the disorder caused by random thermal motion of particles leads to
different states ranging from a solid crystal phase to a liquid phase. The coupling constant � is
defined as the ratio of the Coulomb interaction potential to the thermal energy. When � increases,
the system can self-organize from a disordered gas phase to an ordered condensed phase, the
so-called classical Wigner crystal [1].

The ordered solid phase of dusty plasmas was first predicted theoretically by Ikezi [2] and
observed experimentally as plasma crystals [3]–[6]. In the experiment, particles are trapped in
a horizontal layer by a shallow parabolic well, while particles can be electrically suspended in
the sheath above the electrodes, where gravity is balanced by the electric force. This system
represents a unique bridge connecting plasma physics and condensed matter physics. It opens
a new window to investigate the universal behaviours of strongly coupled systems. One of the
interesting topics is that plasma crystals can serve as an ideal model to investigate the phase
transitions of crystalline structures in two or three dimensions (2D or 3D). Unlike the atomic
scale systems, here particle trajectories can be observed by optical micro-imaging because of the
macroscopic size, and the structural and dynamical behaviour can be measured in real time and
space. In addition, dynamical processes are only weakly damped. By controlling the different
parameters, the structure can be changed, leading to a better understanding of phase transitions.

This system has been extensively studied in the past few years (see [7] and references
therein). As a model system one uses a many-body Coulomb system in which charged particles
are confined by an external potential. This model system was initially studied by Thomson as a
classical model for the atom [8] where a small number of electrons are embedded in a uniform
neutralizing ion background, which generated the parabolic confining potential. The structure of
the 2D Yukawa system was studied by several theoretical groups [9]–[11]. For a small number
of particles (typically N < 100) a shell structure was found [12, 13] which compares well with
the experiment [14]. The configurations of the ground state, the metastable states and the saddle
point states were obtained experimentally [15] and theoretically [16], from which the transition
path and the geometric properties of the energy landscape were obtained.

Topological defects were also investigated in such a system [17]–[20], and non-
homogeneous melting was observed [19, 20]. Nevertheless, the topological behaviour and
melting of this system with a Yukawa inter-particle potential has not been investigated in detail.

Waves and collective oscillations are fundamental dynamical processes which have attracted
many scientists’ attention. Plasma (Wigner) crystals as a convenient model solid can be used to
study the normal mode and wave motion. The normal modes have been obtained from the thermal
Brownian motion of the particles around their equilibrium position. The spectral properties of
the ground-state configurations were presented in [13]. The excitation of normal modes of 2D
Coulomb clusters in laboratory complex plasmas was recently observed [21] and it agrees well
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with the theoretical prediction [13]. The mode integrated spectrum shows two broad maxima
which are found to be due to ‘shearlike’ and ‘compression-like’ modes [20, 22].

In the first part of the present paper, the ground state and the metastable state configurations
for the Yukawa system are obtained and compared with the results of a Coulomb, dipole and
logarithmic interacting system. Topological defects which are induced by the symmetry of the
confinement potential will be investigated in larger systems. The excitation properties, (i.e. the
normal modes) are also discussed. In most papers, one concentrates on the study of the minima in
the energy landscape while the barriers between those minima are left out of the discussion. Here
the saddle point states, which are the critical states in the transition between the ground state and
the metastable states, are studied, from which the potential barriers are obtained. In the second
part of this paper, the Monte Carlo (MC) method is used to study in detail the order–disorder
transition (‘melting’) of the cluster.

The paper is organized as follows. In section 2, we describe the model system and the
numerical approach. Section 3 is devoted to the structural properties at zero temperature, and
both small and large systems are discussed. The eigenmode spectrum of Yukawa systems is
shown in section 4. The discussion on the phase transitions and energy barriers are given in
section 5. Our results are summarized in section 6.

2. Numerical approach

The particles interact through a screened Coulomb potential which, depending on the physical
parameters and the background plasma, can have different forms. The average interparticle
potential is often assumed to be isotropic and purely repulsive and approximated by the Yukawa
(Debye–Hückel) potential [2]. The Hamiltonian for such a system is given by

H = q2

ε

N∑

i>j

exp(−rij /λD)

rij

+
N∑

i

1

2
mω2

0r
2
i , (1)

where m is the mass of the particles, q is the particle charge, ω0 is the radial confinement
frequency and ε is the dielectric constant of the medium. �ri denotes the position of the ith
particle, and λD is the screening length. As the range of the Yukawa system can vary from an
extremely short-range hard-sphere-like potential for small λD to the long-range one-component
plasma for λD = ∞, it is applicable to a wide variety of systems.

To exhibit the scaling of the system, we introduce the characteristic scales in the
problem: r0 = (2q2/mεω2

0)
1/3 for the length, E0 = (mω2

0q
4/2ε2)1/3 for the energy and

T0 = (mω2
0q

4/2ε2)1/3k−1
B for temperature. After the scaling transformations (r → r/r0, E →

E/E0, T → T/T0), the Hamiltonian can be rewritten in a simple dimensionless form as [12]

H =
N∑

i>j

exp(−κrij )

rij

+
N∑

i

r2
i , (2)

where κ = r0/λD is the inverse dimensionless screening length. When κ = 0, the interaction
between particles is a pure Coulomb potential. Here, we will also consider other dimensionless
interactions as 1/r3

ij and − ln rij , for the cases of dipole and logarithmic inter-particle interaction,
respectively.

To obtain the ground state, we employed the Newton optimization technique after the
standard MC routine. This procedure was outlined and compared with the standard MC technique
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Table 1. The configurations for the particle packing sequences for N = 4–20
and different screening parameters κ . Here κ is varied from 0 to 8.0.

Number κ = 0 κ = 0.125 κ = 0.25 κ = 0.5 κ = 1.0 κ = 2.0 κ = 4.0 κ = 8.0

4 (4) (4) (4) (4) (4) (4) (4) (4)
5 (5) (5) (5) (5) (5) (5) (5) (5)
6 (1, 5) (1, 5) (1, 5) (1, 5) (1, 5) (1, 5) (1, 5) (1, 5)
7 (1, 6) (1, 6) (1, 6) (1, 6) (1, 6) (1, 6) (1, 6) (1, 6)
8 (1, 7) (1, 7) (1, 7) (1, 7) (1, 7) (1, 7) (1, 7) (1, 7)
9 (2, 7) (2, 7) (2, 7) (2, 7) (2, 7) (2, 7) (2, 7) (2, 7)
10 (2, 8) (2, 8) (2, 8) (2, 8) (2, 8) (3, 7) (3, 7) (3, 7)
11 (3, 8) (3, 8) (3, 8) (3, 8) (3, 8) (3, 8) (3, 8) (3, 8)
12 (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (4, 8) (4, 8) (3, 9)
13 (4, 9) (4, 9) (4, 9) (4, 9) (4, 9) (4, 9) (4, 9) (4, 9)
14 (4, 10) (4, 10) (4, 10) (4, 10) (4, 10) (4, 10) (4, 10) (4, 10)
15 (5, 10) (5, 10) (5, 10) (5, 10) (5, 10) (5, 10) (5, 10) (5, 10)
16 (1, 5, 10) (1, 5, 10) (1, 5, 10) (1, 5, 10) (1, 5, 10) (1, 5, 10) (1, 5, 10) (1, 5, 10)
17 (1, 6, 10) (1, 6, 10) (1, 6, 10) (1, 6, 10) (1, 6, 10) (1, 6, 10) (1, 6, 10) (1, 6, 10)
18 (1, 6, 11) (1, 6, 11) (1, 6, 11) (1, 6, 11) (1, 6, 11) (1, 6, 11) (1, 6, 11) (1, 6, 11)
19 (1, 6, 12) (1, 6, 12) (1, 6, 12) (1, 6, 12) (1, 7, 11) (1, 7, 11) (1, 7, 11) (1, 6, 12)
20 (1, 7, 12) (1, 7, 12) (1, 7, 12) (1, 7, 12) (1, 7, 12) (1, 7, 12) (1, 7, 12) (1, 7, 12)

in [13]. At zero temperature, the behaviour of the Yukawa system is completely characterized
by the number of particles N and κ . To study the phase transitions in the Yukawa system, we
use the standard Metropolis algorithm [23]. The static properties of the classical Yukawa system
(κ �= 0) at T �= 0 are characterized by three dimensionless parameters: N, T and κ .

The eigenmode frequencies are obtained from the eigenvalues of the dynamical matrix [13]

Eαβ,ij = ∂2E

∂rα,i ∂rβ,j

. (3)

Saddle point configurations are the key configurations for transitions between different stable
states. The technique we used to find the saddle point is explained in more detail in [24]. Further,
the geometric properties of the energy landscape can be obtained from which the potential barriers
are derived.

3. Ground-state configurations

The configuration of the cluster is determined by two competing effects, namely the circular
symmetry of the confinement potential and the triangular structure of the Wigner lattice. For
a small cluster (with small number of particles N ), particles are packed into concentric shells.
Depending on the total number of particles, the functional form of the confining potential and
the mutual repulsion potential, a complicated structure with inner triangular cores surrounded by
outer circular shells can be observed [19]. Table 1 shows the packing sequences of the ground
state for different Yukawa parameters κ for N = 4–20 particles. The parameter κ was varied
from 0 to 8.0. Comparing the configurations for κ = 0.125–0.5 with the pure Coulomb potential
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configurations [16], one notices the similarity of the ground-state configuration. However, a
slight increase of κ beyond this value can already change the ground-state configuration.

For small N ∈ {4–9}, the parameter κ does not influence the packing of the particles since the
confinement dictates the favourable configuration. Table 1 clearly shows that the structure of the
Yukawa clusters with N < 10 is independent of the screening strength κ . Even when κ becomes
as large as 8.0, the structure of the cluster is exactly the same as that for the case of κ = 0, only
the size of the system is smaller. However, for N = 10 particles the ground-state configuration
(2, 8) will change into (3, 7) with increasing κ . This is not the case for N ∈ {11, 13–18, 20},
and these configurations appear to be very stable with respect to the screening parameter κ .

To summarize the results of table 1: the screening parameter κ can influence and change the
configuration for a particular number of particles. With increasing κ the ground state changes
from a shell-like structure into a hexagonal lattice, and the radius of the system decreases.

In the following discussion, we focus on the N = 19 system as an interesting example.
The energy together with the ground-state configurations for different values of κ are plotted in
the insets of figure 1. One can clearly see that the shell structure for small κ transfers into a
hexagonal structure for increased κ . In figure 1, we plotted the energy of the N = 19 cluster as
a function of κ for two states, i.e. with the (1, 6, 12) and (1, 7, 11) configuration. Notice that the
energy decreases with increasing screening parameter κ because of the decreased radius of the
system which decreases the confinement potential energy. When κ < 0.66, the configuration
(1, 6, 12) is the ground-state configuration (see inset figure 1(a)), while for 0.66 < κ < 4.58,
the configuration (1, 7, 11) (see inset figure 1(b)) becomes the ground state. However, for κ

larger than 4.58, a re-entrant behaviour of the first ground state is observed (see inset figure 1(c)).
Notice the perfect hexagonal structure for κ = 16 in agreement with [9]. From figure 1(d), one
can see that the radius of the system monotonically decreases with increased κ . For a large value
of κ the particles are located in the central region where the influence of the confinement is very
small, and they form a hexagonal structure as in a 2D infinite system.

For larger Yukawa systems, we use defect theory to get a better understanding of the
topological nature of the cluster structure. When the parameter κ is small, the configuration
is similar to the one of a pure Coulomb system (κ = 0), and large clusters form a hexagonal
lattice in the central region with a ring structure near the edge [12]. We make use of the Voronoi
construction [25] to picture the cluster structure (for a detailed description see [20]) and to show
the coordination number of each of the particles. Two kinds of defect appear in the Yukawa
system, i.e. dislocations and disclinations. A dislocation is a pair of two disclinations, namely, a
defect with fivefold (−) and a defect with sevenfold (+) coordination number [26]. When those
geometry induced defects are present, the net topological charge N− − N+ always equals six as
already demonstrated in [10].

In figure 2, the Voronoi structures are shown as insets for 300 particles with differentκ values.
Figures 2(a)–(c) show the ground-state configurations for κ = 0.25, 2.0 and 16.0, respectively.
The location of the defects is strongly influenced by the screening parameter κ . One can see
that the defects can move from the edge (figure 2(a)) to the transition region (between the ring
structures and the central region, figure 2(b)) when κ changes from κ = 0.5 to 2.0. For κ = 2.0,
the defects are situated at the six corners of a hexagon, each corner with a single net topological
charge. This situation is similar to the case for pure Coulomb inter-particle interaction [20].
Beyond κ = 4.0 (see figure 2(c)) the defect region will move back from the transition area to
the edge. Meanwhile the system is reduced in size and the number of particles in the outmost
ring changes from 43 for κ = 0.25 to 40 for κ = 2.0, and to 41 for κ = 16.0.
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Figure 1. The energy of the N = 19 cluster as a function of the screening
parameter κ for two different configurations: (1, 6, 12) (dashed curve) and
(1, 7, 11) (solid curve). The insets show the ground-state configuration for N = 19
particles for (a) κ = 0.125, (b) κ = 2.0 and (c) κ = 16.0. Inset (d) shows the
radius of the system versus κ .
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Figure 2. The RPD as a function of κ for N = 300 particles. As a comparison
the results for a logarithmic and dipole interparticle interaction are also shown.
The ground-state configurations for three different values of κ are shown by
their Voronoi structures. The defects (i.e., disclinations) are indicated by + for a
sevenfold and by − for a fivefold coordination number.

This result is a consequence of the balance between the two competing forces. The cluster
patterns are determined by the need to balance the tendency to form a triangular lattice against the
formation of a compact circular shape. When increasing κ , the interaction potential will change
into a shorter-range potential, the defect region is pushed to the centre; meanwhile the system
radius is reduced. Further increasing the screening parameter κ , the particles move further to
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the centre of the confinement potential reducing its effect, which will squeeze the defect region
back to the edge of the system. The same behaviour follows from the number of particles in
the outmost ring. This quantity can decrease firstly and increase again while increasing the κ

value. In order to measure the relative position of the defects (RPD), we introduce the following
quantity:

RPD =
∑N−

i r− +
∑N+

i r+

(N− + N+) · R
, (4)

where r− and r+ denote the position of ‘−’ and ‘+’ defects, respectively, R is the radius of the
system and N−(+) is the number of ‘−’ (‘+’) defects. The RPD for 300 particles with different
inter-particle interaction is shown in figure 2. For the purpose of comparison, the RPD of
the long-range logarithmic potential, the dipole potential and the Coulomb potential between
particles are also shown [28]. Notice that initially the positions of the defects move from the
edge of the cluster towards the inner part of the cluster with decreasing range of the inter-particle
interaction. A local minimum is reached for κ ≈ 0.125. In the range κ = 0 → 0.25 the RPD
varies by at most 8%. A pronounced minimum in RPD is found for κ ≈ 2 where the defects
are situated around (2/3)R. This figure nicely illustrates the effect of the interplay between the
confinement potential and the inter-particle potential on the position of the geometry induced
topological defects.

4. The eigenmode spectrum

In this section, we will discuss the excitation spectrum corresponding to the ground-state
configuration of the Yukawa system. In the pure Coulomb interaction system, it is well known
that there are three eigenfrequencies which are independent of N [13]: ω/ω0 = 0, 1 and

√
3,

which correspond to the rotation of the system as a whole, the centre of mass mode and the
breathing mode, respectively. In the Yukawa system, the modes with frequency ω = 0 and
ω/ω0 = 1 do not depend on the interaction between the particles [27]. But the frequency of the
breathing mode depends on the screening parameter κ and the number of particles. In figure 3 we
show the eigenfrequencies for the N = 19 particles as a function of κ where the three previous
eigenmodes are indicated by different symbols. The eigenfrequencies of a uniform rotation and
the centre of mass mode are independent of the value of κ . The eigenfrequency of the breathing
mode increases with increasing κ . This agrees with previous theoretical work [9] and recent
experimental results [21]. Note also that the spectrum exhibits a discontinuous behaviour of
the value of the eigenmodes as function of κ at κ = 0.66 and 4.58 where the ground-state
configuration changes between the (1, 6, 12) and (1, 7, 11) configurations (see figure 1).

The lowest non-zero normal mode frequency (LNF) is a measure for the stability of the
ground state. It tells us how easy (or difficult) it is to deform this state. In general, the LNF will
increase when increasing the value of κ for the same configuration, since the radius of the system
decreases with increasing κ , and the system becomes stiffer [9]. Notice that the LNF changes
sharply when the configuration changes. For example, the LNF as a function of κ for N = 19
particles is shown in figure 4. When κ < 0.66, the LNF increases with increasing κ . Its ground-
state configuration is (1, 6, 12) and the LNF eigenmode (see inset (a) of figure 4) corresponds
to a vortex–antivortex excitation [13]. At the critical value κ = 0.66, the LNF suddenly drops
almost to zero. When 0.66 < κ < 4.58 the (1, 7, 11) is the ground state configuration and the
LNF slightly increases with increasing κ . The LNF excitation now corresponds to an intershell
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Figure 3. The eigenfrequencies for the N = 19 cluster as a function of κ . The
frequencies of the rotation, centre of mass mode and breathing mode are shown
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oscillation of the two rings (see inset (b) of figure 4). Further increasing the value of κ > 4.58,
the ground-state configuration changes back to (1, 6, 12) and the LNF mode is again the vortex–
antivortex excitation (see inset (c) of figure 4). When κ > 10.0, further increasing the value of
κ does not change the LNF because it equals ω/ω0 = 1 which is the centre of mass vibrational
mode (see inset (d) of figure 4). The (1, 6, 12) configuration is a so-called ‘magic number’[13]
configuration which is more stable against deformations than the (1, 7, 11) configuration. In
the former the positions of the particles on the two rings are commensurable which makes their
positions strongly inter-locked, which is not the case for the (1, 7, 11) configuration.

Note that it was previously found [13] that for small Coulomb systems, the lowest non-zero
frequency mode corresponds to intershell rotation, whereas for larger numbers of particles it
corresponds to the excitation of a vortex–antivortex pair [13]. This is not always so for the
Yukawa system as we just found. For a fixed value of N and depending on the value of κ ,
inter-shell as well as vortex–antivortex pair excitations, and even the centre of mass mode, can
be the LNF eigenmode.

The modes can have a shearlike or a compression-like character. The compressional and
shear properties can be extracted from the divergence and rotor of the velocity field. Recently,
we calculated the spatially resolved divergence and rotor of the different modes [20] for a
Coulomb interacting 2D cluster. In this paper, we will associate a single number for the shearlike
and compression-like character of the different modes by calculating the spatial average of the
divergence �∇ · �v and the vorticity ( �∇ × �v)z of the velocity field, following the approach of [13].

The z component of the rotor ψr(k) = �ez · rot ψ(k) and the divergence ψd(k) = divψ(k)
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Figure 4. The lowest non-zero eigenmode frequency (LNF) as a function of κ

for N = 19 particles. The insets show vector plots of the eigenvectors for four
different values of κ .

of the field of eigenvectors of mode k are

ψd(k) = 1

N

N∑

i=1

ψ2
d,i(k), (5a)

ψr(k) = 1

N

N∑

i=1

ψ2
r,i(k), (5b)

where the values of ψd,i(k), and ψr,i(k) for the ith particle are given by

ψd,i(k) = 1

M

M∑

m=1

(�ri − �rm) · [ �Ai(k) − �Am(k)]/|�ri − �rm|2, (6a)

ψr,i(k) = 1

M

M∑

m=1

|(�ri − �rm) × [ �Ai(k) − �Am(k)]|/|�ri − �rm|2. (6b)

Here, m and M denote the index and number of neighbouring particles of particle i, �rm is the
positional coordinate of a neighbouring particle and �Ai(k) is the eigenvector of particle i for
mode k. Note that in contrast to [13] where only the nearest-neighbour particle was used instead
of the sum in equations (6a), (6b), we sum over all the neighbours as was recently also done
in [22]. This turns out to be the correct approach because the position and direction of the nearest
neighbour is strongly influenced by small variations of the local environment of particle i. Note
also that we calculate the squared average over all the particles because the simple spatial average
is of course zero.

For small Yukawa clusters (i.e. N < 40), the properties of the rotor and divergence were
discussed in [22]. Here we extend those results to large clusters. In figure 5 we plot ψd(k) and
ψr(k) as a function of the excitation frequency for N = 200 particles for different values of κ .
In general, the lower eigenfrequency spectrum corresponds to a rotational type of excitations
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Figure 5. Distribution of the rotor ψr and the divergence ψd as a function of the
frequency for N = 200 particles for different values of κ .

which are vortex–antivortex-like motions of the particles which lead to practically no density
fluctuations. Note that ψr(k) exhibits a peak with a shoulder at intermediate frequencies. The
shoulder and peak merge into a broad peak in the limit of large κ . In the second half of the
spectrum the divergence ψd(k), which corresponds to compression-like motion, is appreciably
different from zero. Notice that for relatively small κ values there is a clear separation between
the shear and the compressional modes. However, for large values of κ , the divergence increases
more monotonically with frequency before it reaches a maximum. For smaller N the separation
between rotational and compressional modes is less strict and there is a large range of intermediate
frequencies where eigenmodes are partly compressional and partly rotational [22].

5. Melting and energy barriers

In this section we will add thermal energy to the particles and we investigate how the ordered
state is lost with increasing temperature. Previously several groups used the molecular
dynamics [18, 29] simulation technique to investigate melting of a finite 2D system. Here we
apply the MC method and relate the melting to the dynamical properties of the system.
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Figure 6. The mean square displacement as a function of temperature T/T0 for
N = 19 particles (a), 18 particles (b) and 300 particles (c) for different values
of κ .

To characterize the melting behaviour of the cluster, we calculated the mean square
displacement 〈u2

R〉 which was introduced in [12] as

〈u2
R〉 = 1

N

N∑

i=1

(〈r2
i 〉 − 〈ri〉2)/a2, (7)

with a = 2R/
√

N the average distance between the particles. Figure 6 shows 〈u2
R〉 as a

function of the scaled temperature T/T0 for N = 18, 19 and 300 for different κ . At low
temperatures the particles exhibit harmonic oscillations around their T = 0 equilibrium position,
and the oscillation amplitude increases linearly but slowly with temperature: the particles are
well localized and still display an ordered structure. Melting occurs when 〈u2

R〉 increases very

New Journal of Physics 5 (2003) 23.1–23.17 (http://www.njp.org/)

http://www.njp.org/


23.12

Figure 7. The melting temperature as a function of the screening parameter κ for
N = 18, 19 and 300 particles.

sharply with T . Because of the finite number of particles one has a region rather than a well
defined melting temperature. After the melting point, the particles exhibit liquid-like behaviour.
Following [30], we can ‘define’ a melting temperature at the point where 〈u2

R〉 ≈ 0.10, which
in fact is the Linderman melting criterion. The melting temperature as defined in this way is
depicted in figure 7. Notice that the ground-state configuration for N = 19 changes from (1, 6,
12) to (1, 7, 11) in the same range of κ . This may influence the melting behaviour. To avoid
this, we calculated the melting properties for a cluster with N = 18 particles (see figure 6(b))
which has the same structure (only different radius) for all κ . Again we found that the melting
temperature decreases with increasing screening parameter κ . Therefore we conclude that the
melting temperature of a small Yukawa cluster will decrease with increasing screening parameter
κ . However, from figure 6(c), we see that this conclusion is not valid for a large system, in fact
the opposite κ dependence is found as is clearly shown in figure 7.

In the first part, we mentioned that the system becomes stiffer with increasing κ . Therefore
we expected a higher melting temperature with increasing κ which is, as just shown, not the case
except for large clusters. To understand this unexpected melting behaviour, we investigated the
energy landscape. It is well known that the number of saddle points increases rapidly with the
particle number N which leads to a very complex energy landscape. Therefore, we considered
first the case with six particles. We obtained the barrier height between the ground state and the
metastable state. For the six-particle system, there are always two saddle point states, one ground
state (1, 5) and one metastable state (6) for every value of κ . One of these two saddle point
states is between the ground state and the metastable state. The other saddle point is between the
same metastable state and another one which are simply rotated with respect to each other. The
potential barriers and the melting temperature for N = 6 particles as functions of the parameter
κ are plotted in figure 8. One can see that the melting temperature has a maximum in the range
1 < κ < 2. Notice that the potential barrier between the ground state and the metastable state
is closely related to the melting temperature. The melting occurs through thermal excitation of
one of the particles which hops from the centre of the system to the shell. We made a similar
investigation for N = 8 particles which is a more complex system having several saddle points
and the results are shown in the inset of figure 8. Notice that the lowest two potential barriers

New Journal of Physics 5 (2003) 23.1–23.17 (http://www.njp.org/)

http://www.njp.org/


23.13

0
0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

1 10
0.000

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0.032

0.21

M
el

tin
g

te
m

pe
ra

tu
re

(T
/T

0)

κ

N=6

P
ot

en
tia

lb
ar

rie
rs

(∆
E

/E
0)

N=8

Melting TemperatureP
ot

en
tia

lb
ar

rie
rs

κ

saddle point1
saddle point2
saddle point3

Figure 8. The melting temperature and the potential barriers for N = 6 and 8
particles (inset) as a function of the screening parameter κ .

and the melting temperature have the same κ dependence.
The melting scenario of a small laterally confined 2D system was found earlier [12] to be

a two-step process. Upon increasing the temperature, first intershell rotation becomes possible
where orientational order between adjacent shells is lost while retaining their internal order and
the shell structure. At even higher temperatures, the growth of thermal fluctuations leads to radial
diffusion between the shells, which finally destroys positional order. To characterize the relative
angular intrashell and the relative angular intershell displacement, we consider the functions
defined in [12], for the relative angular intrashell square deviation

〈u2
a1〉 = 1

NR

NR∑

i=1

[〈(ϕi − ϕi1)
2〉 − 〈ϕi − ϕi1〉2]/ϕ2

0, (8)

and the relative angular intershell square deviation

〈u2
a2〉 = 1

NR

NR∑

i=1

[〈(ϕi − ϕi2)
2〉 − 〈ϕi − ϕi2〉2]/ϕ2

0 (9)

with ϕi the angle of particle i with respect to the x-axis; i1 indicates the nearest particle to
particle i in the same shell, i2 refers to the nearest particle to particle i in the adjacent shell
and ϕ0 = 2π/NR is the angle between adjacent particles in a shell for a uniform shell with NR

particles. 〈u2
a1〉 characterizes the angular motion in a particular shell, while 〈u2

a2〉 shows if the
motion of the two adjacent shells is correlated or not.

A clear two-step melting process is also found for the Yukawa system. The radially
dependent mean square displacement and the angular square deviation for N = 19 particles
with different κ are plotted in figure 9. From figures 9(a)–(c), one can see that the radial melting
always appears at higher temperature than the angular melting. In figure 9(a), the 〈u2

a1〉 of the
inner ring and the outer ring are almost the same as 〈u2

a2〉 which is the relative angular intershell
square deviation. This means that when the inner ring loses its order, the relative order is lost
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Figure 9. The mean square displacements 〈u2
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a2〉 as a function
of temperature T/T0 for N = 19 and (a) κ = 0.5, (b) κ = 2.0 and (c) κ = 8.0.

simultaneously, and the outer ring has almost the same melting temperature as the inner ring. For
κ = 2.0 (see figure 9(b)), the 〈u2

a2〉 displacement starts for much lower temperature than the 〈u2
a1〉.

It should be noted that when κ = 2.0, the ground-state configuration for N = 19 is (1, 7, 11),
which is more unstable against intershell rotation than the configuration (1, 6, 12). Therefore,
the relative intershell order disappears for very low temperature, and the two shell structures
still exist and they melt at higher temperature. The radial melting will start at even higher
temperature. Figure 9(c) is quite similar to figure 9(a), due to the same structure of the ground-
state configuration. Using the definition 〈u2

i 〉 = 0.1 as the melting criterion we found for the loss
of angular intershell correlations the melting temperature Ta2/T0 = 0.0042, 0.0012, 0.0033, and
for the loss of intrashell correlation Ta1/T0 = 0.0061, 0.0055, 0.0045 and for the radial melting
TR/T0 = 0.0097, 0.011, 0.0067 for κ = 0.5, 2.0 and 8.0, respectively.

In order to better describe the spatial dependence of the melting process in large clusters,
we separate the large system, for example N = 300, into three regions as we did earlier in [20]:
region I is comprised of the defect-free hexagonal centre, region II is a transition region between
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Figure 10. The mean square displacement 〈u2
R〉 for the three different regions in

the cluster, the relative angular intrashell square deviation 〈u2
a1〉 and the relative

intershell square deviation 〈u2
a2〉 as a function of temperature T/T0 for N = 300

and different values of κ: (a) κ = 0.5, (b) κ = 2.0 and (c) κ = 16.0.

the two outer rings and the centre region and region III consists of the outermost two rings.
The outer two rings have the same number of particles which varies between NR = 40 and 44
depending on the value of κ . We plot the radial dependent mean square displacement for the three
different regions and the angular square deviation of the two outer rings for three different values
of κ in figure 10. We find that the melting always starts from the defect region as in [20]. From
figures 10(a)–(c) we find that for a large system the melting temperature obtained from 〈u2

a1〉
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of the two outer rings is almost the same as the melting temperature obtained from 〈u2
a2〉. This

means that the outer rings are always locked which is different for small clusters. Comparing
figures 10(a), (b) with 9, we see that in the case of a large system with small κ the radial and
angular displacements start to increase rapidly at approximately the same temperature. Thus
for large clusters with small κ value angular melting of the outer rings appears at the same
temperature as the radial melting. But this is not the case for N = 300 and κ = 16 as shown
in figure 10(c). The angular melting of the outer rings starts before the radial melting. The
reason is that for large κ the defects are situated at the edge (the Voronoi structures are shown in
figure 2). This results in a radial melting of the outer rings which starts before the radial melting
of the transition region and the centre region. Moreover, the angular motion of the outer part is
even easier to excite than the radial motion in the outer ring. This results in a lower angular than
radial melting temperature at the edge. Thus also here the melting is a two-step process: first
angular melting occurs then the radial melting.

6. Conclusion

We presented the configurational and melting properties of 2D finite Yukawa clusters. The results
are obtained numerically using the MC simulation technique. For a small number of particles,
the ground-state configuration consists of a ring structure which transforms into a hexagonal
structure with increasing screening parameter κ . For large clusters, geometry induced defects
appear and the location of the defects depends on κ . For logarithmic and strongly screened
inter-particle interaction those defects occur near, or at the boundary of the cluster. For κ = 2
the defects are found deepest inside the cluster near (2/3)R.

The frequencies of the eigenmodes were investigated as functions of κ . In particular
the lowest non-zero eigenfrequency which is a measure for the stability of the cluster was
investigated. The shear and compression content of the modes was calculated and it was found
that for large N the lower half of the eigenfrequency spectrum is mostly ‘shearlike’ modes while
the upper half of the spectrum contains the ‘compression-like’ modes.

The melting behaviour is found to be strongly influenced by the screening parameter κ: a
small cluster with a short-range interaction melts earlier than the one with long-range interaction.
This was explained by the dependence of the energy barriers onκ . The two-step melting processes
are also found for small Yukawa clusters. The large clusters have a different melting scenario
which is strongly influenced by the location of the defect region. The angular and radial melting
temperatures coincide. A two-step melting can appear again for large systems with a high value
of κ , if the defect region is situated at the edge of the system.
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