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Superconducting films with antidot arrays
—Novel behavior of the critical current

G. R. Berdiyorov, M. V. Milošević and F. M. Peeters
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PACS. 74.25.Sv – Critical currents.
PACS. 74.78.-w – Superconducting films and low-dimensional structures.
PACS. 74.25.-q – Properties of type I and type II superconductors.

Abstract. – Novel behavior of the critical current density jc of a regularly perforated su-
perconducting film is found, as a function of applied magnetic field H. Previously pronounced
peaks of jc at matching fields were always found to decrease with increasing H. Here we found
a reversal of this behavior for particular geometrical parameters of the antidot lattice and/or
temperature. This new phenomenon is due to a strong “caging” of interstitial vortices between
the pinned ones. We show that this vortex-vortex interaction can be further tailored by an
appropriate choice of the superconducting material, described by the Ginzburg-Landau param-
eter κ. In effective type-I samples we predict that the peaks in jc(H) at the matching fields
are transformed into a step-like behavior.

Introduction. – For practical applications of superconducting (SC) materials, the increase
and, more generally, control of the critical current in SC samples are of great importance. In
recent years, much attention was given to the investigation of superconducting films patterned
with a regular array of microholes (antidots), which have a profound influence on both the
critical current and the critical magnetic field [1–5]. Due to the collective pinning to the
regular antidot array, vortices are forced to form rigid lattices when their number “matches”
integer and fractional multiples of the number of pinning sites at fields Hn = nΦ0/S, and
Hp/q =

p
qΦ0/S (where n, p, q are integers) respectively, where Φ0 is the flux quantum, and

S is the area of the unit cell of the antidot lattice. This locking between the pinning array
and the vortex lattice is responsible for the reduced mobility of the vortices in applied drive
and consequently the increased critical current at integer and fractional matching fields, was
confirmed both by experiments (imaging [6], magnetization and transport measurements [1,2])
and molecular-dynamics simulations [7].
However, regardless of the imposed pinning profile, the vortices at interstitial sites always

have high mobility [5, 8], show different dynamic regimes from the pinned ones, and their
appearance is followed by a sharp drop in the critical current [1]. In this respect, the maximal
occupation number of the antidots (saturation number ns) becomes very important for any
study of the critical current. In an early theoretical work, Mkrtchyan and Schmidt [9] have
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shown that ns depends only on the size of the holes. However, in the case of periodic pinning
arrays this number depends also on the proximity of the holes, on temperature and on the
applied field [1, 5, 10,11].
Besides the pinning strength of the artificial lattice, vortex-vortex interactions are crucial

for vortex dynamics. Most of the experiments on perforated superconducting films are carried
out in the effective type-II regime (κ∗ = 2κ2

/
d � 1/

√
2, with κ being the Ginzburg-Landau

(GL) parameter, and d being the thickness of the SC film scaled to the coherence length ξ),
where vortices act like charged point-particles, and their interaction with the periodic pinning
potential can be described using molecular-dynamics simulations (MDS) [7]. However, the
overlap of vortex cores (with sizes ∼ ξ), and the exact shape of the inter-vortex interaction
(depending on the material properties reflected through κ), which are neglected in MDS, may
significantly modify the equilibrium vortex structures and consequently the critical current.
In the present letter we investigate the critical current jc of superconducting films with

regular arrays of square antidots, taking into account all parameters relevant to the SC state,
within the non-linear Ginzburg-Landau theory. This formalism allows us to analyze the jc
dependence on the geometrical parameters of the sample, material (even type-I) and temper-
ature, and compare our results with existing experiments.

Theoretical approach. – We consider a thin superconducting film (of thickness d) with
a regular lattice of square holes (side a, period W ) immersed in an insulating medium with
a perpendicular uniform applied field H (see the inset of fig. 1). To describe this system,
we solved the nonlinear Ginzburg-Landau (GL) equations for the order parameter ψ and the
vector potential �A (in dimensionless units, and with temperature T taken explicitly in units
of the zero-field critical temperature Tc0, see ref. [12] for more details):

(
−i�∇− �A

)2

ψ = ψ
(
1− T − |ψ|2

)
, (1)

−κ∗∆ �A =
1
i

(
ψ∗�∇ψ − ψ�∇ψ∗

)
− |ψ|2 �A. (2)

The magnitude of the applied field H is determined by the number of flux quanta piercing
through the simulation region Ws × Ws. On the hole-edges we used boundary conditions
corresponding to zero normal component of the superconducting current. Periodic boundary
conditions [13] are used around the square simulation region: �A(�r + �li) = �A(�r ) + �∇ζi(�r )
and ψ(�r + �li) = ψ exp[2πiζi(�r )/Φ0], where �li (i = x, y) are lattice vectors and ζi is the
gauge potential. We use the Landau gauge �A0 = Hx�ey for the external vector potential and
ζx = HWsy + Cx, ζy = Cy, with Cx, Cy, being constants. Generally speaking, depending on
the geometry of the antidot lattice, one must minimize the energy with respect to the latter
coefficients. The size of the supercell in our calculation is typically 4×4 unit cells (containing
16 holes, i.e. Ws = 4W ). We solved the system of equations (1)-(2) self-consistently using the
numerical technique of ref. [12]. In order to calculate the critical current, first we determine
the ground vortex-state for a given applied magnetic field after multiple starts from a ran-
domly generated initial Cooper-pair distribution. Then the applied current in the x-direction
is simulated by adding a constant Acx to the vector potential of the applied external field [14].
Note that the current jx in the sample resulting from the applied Acx is obtained after inte-
gration of the x-component of the induced supercurrents (calculated from eq. (2)) over the
y = const cross-section of the sample. With increasing Acx, the critical current is reached
when a stationary solution for eqs. (1)-(2) ceases to exist (i.e. vortices are driven in motion
by the Lorentz force).
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Influence of geometrical parameters of the sample. – The enforced stability of the vortex
lattices in periodically perforated superconducting samples [6, 15] at integer and fractional
matching fields leads to pronounced peaks in the critical current [1–3]. However, the exact
shape of these lattices, and consequently their stability when locked to the pinning arrays,
strongly depend on the parameters of the sample. For example, while small antidots can pin
only one vortex, in larger holes multi-quanta vortices may become energetically preferable [10].
This reduces the number of interstitial vortices, whose higher mobility affects strongly the
critical current of the sample. Therefore, in this section we investigate the critical current of
our sample for different sizes of the antidots a and antidot lattice period W .
Figure 1 shows the critical current density jc of the sample as a function of the applied

magnetic field H for three different values of the antidot size: a = 1.5ξ, a = 2.6ξ and
a = 4ξ. The lattice period is W = 8ξ, the film thickness d = 0.1ξ and GL parameter equals
κ = 1 (corresponding roughly to Pb, Nb, or Al films). Note that, following the suggestion of
Wahl [16], we took into account the influence of the perforation on the effective GL parameter
κ∗ = 2κ2/d(1 − 2a2/W 2). As shown in fig. 1, in the absence of applied field the samples
with smaller antidots always have larger jc simply due to more superconducting material, i.e.
larger screening. However, for H �= 0, the critical current depends on the vortex structure in
the sample. For small antidot-size a = 1.5ξ, where only one vortex can be captured by each
hole (see the inset of fig. 1), the jc(H) curve shows the expected maxima at integer matching
fields H1, H2, H3 and H4 and at some of the fractional matching fields. As observed before [1],
the peaks of the critical current at matching fields decrease with increasing magnetic field.
However, a novel phenomenon is found for 2.5 ≤ a/ξ ≤ 2.8: the critical current at the 3rd
matching field is larger than the one at the 2nd matching field. Moreover, the critical currents
for H2 < H < H3 are higher than those obtained for fields H1 < H < H2.

Fig. 1 – (Color online) The critical current density jc (a) (in units of j0 = cHc2ξ/4πλ2) as a function
of the applied magnetic field H (in units of the first matching field H1) for different antidot sizes and
fixed period W = 8ξ, and the contour plot of the Cooper-pair density at H = H2 (b) and at H = H3

(c) for R = 2.6ξ. The insets show the schematic view of the sample and the antidot occupation
number no as a function of the antidot size a at different matching fields (i.e. for 2–5 vortices per
unit cell).
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The explanation for this counterintuitive feature of jc lies in the hole occupation number
no, i.e. the number of vortices inside the hole, and, consequently, in the saturation number
ns of the holes (ns = no for larger fields). For holes with 2.5 ≤ a ≤ 2.8, ns is equal to 1
(ns ≈ a/4ξ [9]). Therefore, at H = H1, all vortices are captured by the antidots. Analogously,
at H = H2, besides the pinned vortices, one vortex occupies each interstitial site. If the same
analogy is followed further, one expects two vortices at each pinning site at the 3rd matching
field. However, this depends also on the distance between neighboring holes. Namely, the
period W determines the distance between the interstitial vortices. In other words, for small
W , this distance is small, vortex-vortex repulsion is large, and it may become energetically
more favorable for the system to force one more flux-line into the hole rather than have two
vortices at interstitial sides (see figs. 1(b), (c)). Therefore, our results show that the occupation
number no of the holes in a lattice depends not only on the size of the hole a, but also on the
period W and the number of vortices per unit-cell of the hole lattice. For the parameters given
above, no = 2 at H = H3, i.e. only one vortex is located at each interstitial site, as for the
case of H = H2. Note that this interstitial vortex interacts repulsively with the pinned ones.
This interaction is roughly twice as large at H = H3 than at H = H2, and the interstitial
vortex becomes effectively “caged”. This “caging” effect has been found for 7ξ ≤ W ≤ 8.3ξ for
the radius R = 2.6ξ. For W > 8.3ξ, no and ns become independent of W and for W < 7ξ, the
larger suppression of superconductivity around the holes at H = H3 becomes more significant
than “caging”, and jc reverses again in favor of H = H2.
With further increase of hole size a, more vortices are captured by the holes. Consequently,

in order to observe the “caging” effect, one needs to consider higher magnetic fields, i.e. for
no = 4, at least H > H5 is needed. In any case, this effect can always be realized at a
given magnetic field by an adequate choice of a and W . Figure 2 shows the critical current
density of our sample for different periods of the antidot lattice W at a = 2.6ξ. For clarity, we
plotted only the critical current at the matching fields. At H = 0 and H = H1 (when there
are no interstitial vortices) the critical current is an increasing function of W , because of the
stronger screening by larger quantities of the superconducting material. For higher magnetic
fields interstitial vortices nucleate more easily in a sample with larger W , which leads to a

Fig. 2 – (Color online) The critical current density jc of the superconducting film at matching fields
for different periods of the antidot lattice. The inset shows the antidot occupation number no as a
function of W at different matching fields.
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reduction of jc. The dependence of no (and thus also saturation number ns) on W is shown
in the inset of fig. 2: no decreases from no = 5 to no = 1 at H = H5, when we increase W
from 4ξ to 10ξ.

Temperature dependence of the critical current. – So far, we presented results of our
calculations at fixed temperature, where all units were temperature dependent (e.g. distances
were expressed in ξ(T )). In what follows, we consider a superconducting film with thickness
d = 20nm, interhole distance W = 1µm, and antidot size a = 0.33µm. We choose the
coherence length ξ(0) = 40 nm and the penetration depth λ(0) = 42 nm, which are typical
values for Pb films. We study the influence of temperature with the help of the right-side
term of eq. (1), which actually describes the temperature dependence of the coherence length
ξ(T ) = ξ(0)/

√|1− T/Tc0| and penetration depth λ(T ) = λ(0)/
√|1− T/Tc0|.

Figure 3 shows the calculated critical current density of the sample as a function of the
applied field normalized to the first matching field at temperatures T/Tc0 = 0.86, 0.88, 0.9,
0.92, 0.94, 0.96 and 0.98. As discussed in the previous section, the jc(H) curve shows pro-
nounced maxima at matching fields with a substantial drop after the number of vortices per
unit-cell exceeds the hole-saturation number (in our case, for H > H1).
As expected, decreasing temperature results in an increase of the critical current for given

magnetic field. However, the qualitative behavior of the jc(H) characteristics changes. Al-
though theW/a ratio remains the same, the size of vortices and the occupation number of the
holes may change with temperature (as ξ(T ) changes). Actually, we found the same vortex
structure at all temperatures T > 0.8Tc0, but jc(H3) is found to be larger than jc(H2) only in
the temperatures range 0.8Tc0 ≤ T ≤ 0.93Tc0. At higher temperatures vortices become larger
and suppression of superconductivity around the holes “masks” the critical current enhance-
ment by the “caging” effect. This decrease of Cooper-pair density around the holes is also
responsible for the decreased jc(H1)/jc(0) ratio with increasing temperature. At temperatures
lower than 0.8Tc0, the peaks of jc again decrease with magnetic field, since W/ξ significantly
increases and its influence on no diminishes (see the previous section).

Fig. 3 – (Color online) The temperature dependence of jc(H) for a superconducting film containing
an antidot array, at temperatures T/Tc0 = 0.86–0.98. The period of the antidot lattice is W = 1µm,
the antidot size a = 0.33µm, film thickness d = 20nm, and κ equals 1.05.
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Interestingly enough, this jc(Hn+1) vs. jc(Hn) reversing behavior was recently found ex-
perimentally, but not noticed. In fig. 6(b) of ref. [4] a clear enhancement of the critical current
at H/H1 = 3 was found which is larger than the one at H/H2 as is similar to the behavior
found in fig. 3 for T/Tc0 < 0.94. A quantitative comparison between theory and experiment
is difficult because of the different determination of jc. In our calculations we assume normal
state as soon as vortices are set in motion, whereas in transport measurements a certain value
of threshold voltage determines the critical current.

Effective type-I vs. type-II behavior of the critical current. – In the previous sections
we have shown that higher mobility of interstitial vortices leads to a dramatic decrease of
the critical current. Therefore, keeping the interstitial sites of the superconductor vortex-
free is essential for an improvement of jc. In this respect, we consider effectively type-I
superconductors, where i) the screening of the magnetic field is enhanced (i.e. vortices will
be compressed in the holes), and ii) the interaction of vortices becomes attractive (depends
on lnκ∗). As an example we considered a sample, with antidot size a = 0.5µm, lattice period
W = 1.5µm, ξ0 = 40nm and λ0 = 10nm. We fine-tuned the effective vortex-vortex interaction
by varying the thickness of the sample, i.e. changing from type-II to type-I behavior with
increasing d. Figure 4 shows the critical current of the sample for four values of the film
thickness: d = 10nm (solid dots), d = 50nm (open dots), d = 100 nm (solid squares) and
d = 150 nm (open squares) at T = 0.97Tc0. For d = 10nm, the sample is still in the type-II
regime (κ∗ = 2.887), and the critical current shows a peak-like behavior at the matching
fields. The drop in the critical current for H > H1 is caused by the interstitial vortices which
is larger with increasing κ∗. Note that the “caging” effect is also present for these values of the
parameters. When the film thickness is increased (d = 50nm, κ∗ = 0.577) the critical current
density is higher for H < H2. For H < H1, this increase is achieved due to a stronger Meissner
effect. At fields H1 < H < H2 the increase of jc is more apparent, as all vortices are captured
by the holes (except for d = 10nm, where no = 1). As soon as interstitial vortices appear in
the sample (H > H2), jc becomes even smaller than the one for d = 10nm. This inversion of
jc clearly demonstrates the higher mobility of interstitial vortices in type-I superconductors.

Fig. 4 – (Color online) The critical current density jc as a function of the applied magnetic field for
different thickness of the sample. Remaining parameters are listed in the figure.
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Looking at the jc(H) curve as a whole for d = 50nm, we observed a pronounced step-like
behavior. Note that in type-I samples the matching between the number of flux-lines and
the number of antidots does not lead to a peak-like increase of the critical current. Namely,
regardless of their number, additional flux lines are doubly pinned by the attractive hole-
potential and the attractive interaction with previously pinned vortices. The “step” in jc(H)
occurs only when the number of vortices per hole no changes (more vortices and consequently
a larger suppression of ψ around the hole), or when interstitial vortices appear. The effect
of an increase of no diminishes as d increases (i.e. κ∗ decreases and screening increases), or
when temperature is lowered (as discussed before). This tendency is illustrated by solid and
open dots in fig. 4, and ultimately leads to a two-step jc(H) curve, with larger critical current
for H < Hn, and smaller jc for H > Hn, where n = no.

Conclusions. – We studied the critical current of a superconducting film containing an
array of antidots in a uniform magnetic field, as a function of all relevant parameters. We
found that the well-known jc enhancement by artificial vortex pinning strongly depends on the
antidot occupation number no. The latter is determined not only by the size of the antidots
as commonly believed, but also by their spacing and the applied field. As a consequence, when
the parameter conditions are met, the critical current becomes larger at higher matching fields,
contrary to the conventional behavior. Such a feature is a result of the “caging” of interstitial
vortices between the larger number of pinned ones. This effect is strongly influenced by
temperature, which agrees with a recent experiment. [4] Additionally, the interactions in this
system can be tailored by the effective Ginzburg-Landau parameter κ∗. In effectively type-I
samples, vortices attract, jc increases and peaks at matching fields diminish due to the enforced
pinning at all fields. As a result, a novel step-like behavior of the critical current is found,
with a sharp drop at higher fields, when interstitial vortices appear.
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[14] Milošević M. V. and Peeters F. M., Phys. Rev. Lett., 93 (2004) 267006.
[15] Berdiyorov G. R. et al., unpublished.
[16] Wahl A. et al., Physica C, 250 (1995) 163.


