toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van den Broek, W.; Rosenauer, A.; Van Aert, S.; Sijbers, J.; van Dyck, D. pdf  url
doi  openurl
  Title (up) A memory efficient method for fully three-dimensional object reconstruction with HAADF STEM Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 141 Issue Pages 22-31  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000335766600004 Publication Date 2014-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access  
  Notes ResearchFoundationFlanders(FWO;G.0393.11; G.0064.10;andG.0374.13); European Union Seventh Frame- workProgramme [FP7/2007-2013]under Grant agreement no. 312483 (ESTEEM2).; esteem2jra2; esteem2jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436  
  Call Number UA @ lucian @ c:irua:117650 Serial 1992  
Permanent link to this record
 

 
Author Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title (up) A method to determine the local surface profile from reconstructed exit waves Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 8 Pages 1352-1359  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Reconstructed exit waves are useful to quantify unknown structure parameters such as the position and composition of the atom columns at atomic scale. Existing techniques provide a complex wave in a flat plane which is close to the plane where the electrons leave the atom columns. However, due to local deviation in the flatness of the exit surface, there will be an offset between the plane of reconstruction and the actual exit of a specific atom column. Using the channelling theory, it has been shown that this defocus offset can in principle be determined atom column-by-atom column. As such, the surface roughness could be quantified at atomic scale. However, the outcome strongly depends on the initial plane of reconstruction especially in a crystalline structure. If this plane is further away from the true exit, the waves of the atom columns become delocalized and interfere mutually which strongly complicates the interpretation of the exit wave in terms of the local structure. In this paper, we will study the delocalization with defocus using the channelling theory in a more systematic way.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300461100049 Publication Date 2011-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 3 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:88941 Serial 2017  
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D. doi  openurl
  Title (up) A model based atomic resolution tomographic algorithm Type A1 Journal article
  Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 109 Issue 12 Pages 1485-1490  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Tomography with high angular annular dark field scanning transmission electron microscopy at atomic resolution can be greatly improved if one is able to take advantage of prior knowledge. In this paper we present a reconstruction technique that explicitly takes into account the microscope parameters and the atomic nature of the projected object. This results in a more accurate estimate of the atomic positions and in a good resistance to noise. The reconstruction is a maximum likelihood estimator of the object. Moreover, the limits to the precision have been explored, allowing for a prediction of the amount of expected noise in the reconstruction for a certain experimental setup. We believe that the proposed reconstruction technique can be generalized to other tomographic experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000271840200010 Publication Date 2009-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.843; 2009 IF: 2.067  
  Call Number UA @ lucian @ c:irua:78588 Serial 2097  
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title (up) A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy Type A1 Journal article
  Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 110 Issue 5 Pages 548-554  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Depth sectioning in high angular annular dark field scanning transmission electron microscopy is considered a candidate for three-dimensional characterization on the atomic scale. However at present the depth resolution is still far from the atomic level, due to strong limitations in the opening angle of the beam. In this paper we introduce a new, parameter based tomographic reconstruction algorithm that allows to make maximal use of the prior knowledge about the constituent atom types and the microscope settings, so as to retrieve the atomic positions and push the resolution to the atomic level in all three dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000279065700022 Publication Date 2009-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 16 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063  
  Call Number UA @ lucian @ c:irua:83690 Serial 2104  
Permanent link to this record
 

 
Author Amelinckx, S.; van Heurck, C.; van Dyck, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) A peculiar diffraction effect in FCC crystals of C60 Type A1 Journal article
  Year 1992 Publication Physica status solidi: A: applied research Abbreviated Journal  
  Volume 131 Issue Pages 589-604  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1992JE20400030 Publication Date 2007-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 13 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:4371 Serial 2568  
Permanent link to this record
 

 
Author Geuens, P.; Lebedev, O.I.; van Dyck, D.; Van Tendeloo, G. openurl 
  Title (up) Accurate measurements of atomic displacements in La0.9Sr0.1MnO3 thin films grown on a SrTiO3 substrate Type H3 Book chapter
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages 1133-1134  
  Keywords H3 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication s.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:54730 Serial 49  
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Martinez, G.T.; den Dekker, A.J.; Van Dyck, D.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title (up) Advanced electron crystallography through model-based imaging Type A1 Journal article
  Year 2016 Publication IUCrJ Abbreviated Journal Iucrj  
  Volume 3 Issue 3 Pages 71-83  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Engineering Management (ENM)  
  Abstract The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368590900010 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-2525; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.793 Times cited 30 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a PhD grant to ADB. The research leading to these results has received funding from the European Union 7th Framework Program (FP7/20072013) under grant agreement No. 312483 (ESTEEM2). SB and GVT acknowledge the European Research Council under the 7th Framework Program (FP7), ERC grant No. 335078 – COLOURATOMS and ERC grant No. 246791 – COUNTATOMS.; esteem2jra2; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 5.793  
  Call Number c:irua:129589 c:irua:129589 Serial 3965  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title (up) Advanced electron microscopy for advanced materials Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Lobato Hoyos, I.P.; van Dyck, D. url  doi
openurl 
  Title (up) An accurate parameterization for scattering factors, electron densities and electrostatic potentials for neutral atoms that obey all physical constraints Type A1 Journal article
  Year 2014 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A  
  Volume 70 Issue 6 Pages 636-649  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract An efficient procedure and computer program are outlined for fitting numerical X-ray and electron scattering factors with the correct inclusion of all physical constraints. The numerical electron scattering factors have been parameterized using five analytic non-relativistic hydrogen electron scattering factors as basis functions for 103 neutral atoms of the periodic table. The inclusion of the correct physical constraints in the electron scattering factor and its derived quantities allows the use of the new parameterization in different fields. In terms of quality of the fit, the proposed parameterization of the electron scattering factor is one order of magnitude better than the previous analytic fittings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000344599300012 Publication Date 2014-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-2733; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.725 Times cited 19 Open Access  
  Notes Approved Most recent IF: 5.725; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:122103 Serial 93  
Permanent link to this record
 

 
Author Wang, A.; Turner, S.; Van Aert, S.; van Dyck, D. pdf  url
doi  openurl
  Title (up) An alternative approach to determine attainable resolution directly from HREM images Type A1 Journal article
  Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 133 Issue Pages 50-61  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The concept of resolution in high-resolution electron microscopy (HREM) is the power to resolve neighboring atoms. Since the resolution is related to the width of the point spread function of the microscope, it could in principle be determined from the image of a point object. However, in electron microscopy there are no ideal point objects. The smallest object is an individual atom. If the width of an atom is much smaller than the resolution of the microscope, this atom can still be considered as a point object. As the resolution of the microscope enters the sub-Å regime, information about the microscope is strongly entangled with the information about the atoms in HREM images. Therefore, we need to find an alternative method to determine the resolution in an object-independent way. In this work we propose to use the image wave of a crystalline object in zone axis orientation. Under this condition, the atoms of a column act as small lenses so that the electron beam channels through the atom column periodically. Because of this focusing, the image wave of the column can be much more peaked than the constituting atoms and can thus be a much more sensitive probe to measure the resolution. Our approach is to use the peakiness of the image wave of the atom column to determine the resolution. We will show that the resolution can be directly linked to the total curvature of the atom column wave. Moreover, we can then directly obtain the resolution of the microscope given that the contribution from the object is known, which is related to the bounding energy of the atom. The method is applied on an experimental CaTiO3 image wave.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000324471800007 Publication Date 2013-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.843 Times cited Open Access  
  Notes FWO; Hercules; Esteem2; esteem2_jra2 Approved Most recent IF: 2.843; 2013 IF: 2.745  
  Call Number UA @ lucian @ c:irua:109919 Serial 90  
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Van Aert, S.; Bals, S.; Verbeeck, J. pdf  doi
openurl 
  Title (up) An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images Type A1 Journal article
  Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 106 Issue 10 Pages 933-940  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab  
  Abstract We propose an improved image simulation procedure for atomic-resolution annular dark-field scanning transmission electron microscopy (STEM) based on the multislice formulation, which takes thermal diffuse scattering fully into account. The improvement with regard to the classical frozen phonon approach is realized by separating the lattice configuration statistics from the dynamical scattering so as to avoid repetitive calculations. As an example, the influence of phonon scattering on the image contrast is calculated and investigated. STEM image simulation of crystals can be applied with reasonable computing times to problems involving a large number of atoms and thick or large supercells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000240397200006 Publication Date 2006-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 18 Open Access  
  Notes Fwo; Fwo-V Approved Most recent IF: 2.843; 2006 IF: 1.706  
  Call Number UA @ lucian @ c:irua:87604UA @ admin @ c:irua:87604 Serial 876  
Permanent link to this record
 

 
Author Zhang, X.B.; Van Tendeloo, G.; van Landuyt, J.; van Dyck, D.; Briers, J.; Bao, Y.; Geise, H.J. pdf  doi
openurl 
  Title (up) An electron microscopic study of highly oriented undoped and FeCl3-doped poly (p-phenylenevinylene) Type A1 Journal article
  Year 1996 Publication Macromolecules Abbreviated Journal Macromolecules  
  Volume 29 Issue 5 Pages 1554-1561  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos A1996TY13900024 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-9297;1520-5835; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.8 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15452 Serial 939  
Permanent link to this record
 

 
Author Xu, Q.; Zandbergen, H.W.; van Dyck, D. pdf  doi
openurl 
  Title (up) Applying an information transmission approach to extract valence electron information from reconstructed exit waves Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 7 Pages 912-919  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The knowledge of the valence electron distribution is essential for understanding the properties of materials. However this information is difficult to obtain from HREM images because it is easily obscured by the large scattering contribution of core electrons and by the strong dynamical scattering process. In order to develop a sensitive method to extract the information of valence electrons, we have used an information transmission approach to describe the electron interaction with the object. The scattered electron wave is decomposed in a set of basic functions, which are the eigen functions of the Hamiltonian of the projected electrostatic object potential. Each basic function behaves as a communication channel that transfers the information of the object with its own transmission characteristic. By properly combining the components of the different channels, it is possible to design a scheme to extract the information of valence electron distribution from a series of exit waves. The method is described theoretically and demonstrated by means of computer simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300461000024 Publication Date 2011-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:93623 Serial 146  
Permanent link to this record
 

 
Author Sentosun, K.; Lobato, I.; Bladt, E.; Zhang, Y.; Palenstijn, W.J.; Batenburg, K.J.; Van Dyck, D.; Bals, S. pdf  url
doi  openurl
  Title (up) Artifact Reduction Based on Sinogram Interpolation for the 3D Reconstruction of Nanoparticles Using Electron Tomography Type A1 Journal article
  Year 2017 Publication Particle and particle systems characterization Abbreviated Journal Part. Part. Syst. Charact.  
  Volume 34 Issue 34 Pages 1700287  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Electron tomography is a well-known technique providing a 3D characterization of the morphology and chemical composition of nanoparticles. However, several reasons hamper the acquisition of tilt series with a large number of projection images, which deteriorate the quality of the 3D reconstruction. Here, an inpainting method that is based on sinogram interpolation is proposed, which enables one to reduce artifacts in the reconstruction related to a limited tilt series of projection images. The advantages of the approach will be demonstrated for the 3D characterization of nanoparticles using phantoms and several case studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418416100005 Publication Date 2017-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4117 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes K.S. and S.B. acknowledge support from the Fund for Scientific ResearchFlanders (FWO) (G019014N and G021814N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). The authors would like to thank Prof. Luis Liz-Marzán for provision of the samples. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:147857UA @ admin @ c:irua:147857 Serial 4798  
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; Croitoru, M. pdf  doi
openurl 
  Title (up) Atomic resolution electron tomography: a dream? Type A1 Journal article
  Year 2006 Publication International journal of materials research Abbreviated Journal Int J Mater Res  
  Volume 97 Issue 7 Pages 872-879  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000239916700003 Publication Date 2013-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-5282;2195-8556; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.681 Times cited 6 Open Access  
  Notes Approved Most recent IF: 0.681; 2006 IF: NA  
  Call Number UA @ lucian @ c:irua:60965 Serial 176  
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Bals, S.; Erni, R.; van Dyck, D.; Van Tendeloo, G. url  doi
openurl 
  Title (up) Atomic resolution mapping using quantitative high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
  Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 15 Issue S:2 Pages 464-465  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000208119100230 Publication Date 2009-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.891; 2009 IF: 3.035  
  Call Number UA @ lucian @ c:irua:96555UA @ admin @ c:irua:96555 Serial 178  
Permanent link to this record
 

 
Author Chen, J.H.; van Dyck, D.; op de Beeck, M.; van Landuyt, J. openurl 
  Title (up) Computational comparisons between the conventional multislice method and the third-order multislice method for calculating high-energy electron diffraction and imaging Type A1 Journal article
  Year 1997 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 69 Issue Pages 219-240  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1997YG59500001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.843; 1997 IF: 1.600  
  Call Number UA @ lucian @ c:irua:21416 Serial 455  
Permanent link to this record
 

 
Author van den Broek, W.; Rosenauer, A.; Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title (up) Correction of non-linear thickness effects in HAADF STEM electron tomography Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 116 Issue Pages 8-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000304473700002 Publication Date 2012-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 67 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:96558 Serial 518  
Permanent link to this record
 

 
Author Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title (up) Direct structure inversion from exit waves : part 2 : a practical example Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 116 Issue Pages 77-85  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract This paper is the second part of a two-part paper on direct structure inversion from exit waves. In the first part, a method has been proposed to quantitatively determine structure parameters with atomic resolution such as atom column positions, surface profile and the number of atoms in the atom columns. In this part, the theory will be demonstrated by means of a Au[110] exit wave reconstructed from a set of focal-series images. The procedures to analyze the experimentally reconstructed exit wave in terms of quantitative structure information are described in detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000304473700011 Publication Date 2012-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:96660 Serial 724  
Permanent link to this record
 

 
Author Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title (up) Direct structure inversion from exit waves: part 1: theory and simulations Type A1 Journal article
  Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 110 Issue 5 Pages 527-534  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In order to interpret the amplitude and phase of the exit wave in terms of mass and position of the atoms, one has to invert the dynamic scattering of the electrons in the object so as to obtain a starting structure which can then be used as a seed for further quantitative structure refinement. This is especially challenging in case of a zone axis condition when the interaction of the electrons with the atom column is very strong. Based on the channelling theory we will show that the channelling map not only yields a circle on the Argand plot but also a circular defocus curve for every column. The former gives the number of atoms in each column, while the latter provides the defocus value for each column, which reveals the surface roughness at the exit plane with single atom sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000279065700019 Publication Date 2009-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063  
  Call Number UA @ lucian @ c:irua:83691 Serial 723  
Permanent link to this record
 

 
Author Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title (up) Do smaller probes in a scanning transmission electron microscope result in more precise measurement of the distances between atom columns? Type A1 Journal article
  Year 2001 Publication Philosophical magazine: B: physics of condensed matter: electronic, optical and magnetic properties Abbreviated Journal  
  Volume 81 Issue 11 Pages 1833-1846  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000172199700016 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-2812;1463-6417; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:47519 Serial 744  
Permanent link to this record
 

 
Author van Dyck, D.; Lobato, I.; Chen, F.-R.; Kisielowski, C. pdf  doi
openurl 
  Title (up) Do you believe that atoms stay in place when you observe them in HREM? Type A1 Journal article
  Year 2015 Publication Micron Abbreviated Journal Micron  
  Volume 68 Issue 68 Pages 158-163  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Recent advancements in aberration-corrected electron microscopy allow for an evaluation of unexpectedly large atom displacements beyond a resolution limit of similar to 0.5 angstrom, which are found to be dose-rate dependent in high resolution images. In this paper we outline a consistent description of the electron scattering process, which explains these unexpected phenomena. Our approach links thermal diffuse scattering to electron beam-induced object excitation and relaxation processes, which strongly contribute to the image formation process. The effect can provide an explanation for the well-known contrast mismatch (“Stobbs factor”) between image calculations and experiments. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000348016500023 Publication Date 2014-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.98; 2015 IF: 1.988  
  Call Number c:irua:123802 Serial 745  
Permanent link to this record
 

 
Author den Dekker, A.J.; Van Aert, S.; van Dyck, D.; van den Bos, A.; Geuens, P. doi  openurl
  Title (up) Does a monochromator improve the precision in quantitative HRTEM? Type A1 Journal article
  Year 2001 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 89 Issue Pages 275-290  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000172667000004 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 22 Open Access  
  Notes Approved Most recent IF: 2.843; 2001 IF: 1.890  
  Call Number UA @ lucian @ c:irua:47518 Serial 746  
Permanent link to this record
 

 
Author Robert, Hl.; Lobato, I.; Lyu, Fj.; Chen, Q.; Van Aert, S.; Van Dyck, D.; Müller-Caspary, K. url  doi
openurl 
  Title (up) Dynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution Type A1 Journal article
  Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 233 Issue Pages 113425  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract We report a study of scattering dynamics in crystals employing momentum-resolved scanning transmission

electron microscopy under varying illumination conditions. As we perform successive changes of the probe

focus, multiple real-space signals are obtained in dependence of the shape of the incident electron wave.

With support from extensive simulations, each signal is shown to be characterised by an optimum focus for

which the contrast is maximum and which differs among different signals. For instance, a systematic focus

mismatch is found between images formed by high-angle scattering, being sensitive to thickness and chemical

composition, and the first moment in diffraction space, being sensitive to electric fields. It follows that a single

recording at one specific probe focus is usually insufficient to characterise materials comprehensively. Most

importantly, we demonstrate in experiment and simulation that the second moment (
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000734396800009 Publication Date 2021-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access OpenAccess  
  Notes We thank Dr. Florian Winkler for valuable discussions and experimental work at the early stages of this study. This work was supported by the Initiative and Network Fund of the Helmholtz Association (Germany) under contracts VH-NG-1317 and ZT-I-0025. This project furthermore received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 770887). Approved Most recent IF: 2.2  
  Call Number EMAT @ emat @c:irua:184833 Serial 6898  
Permanent link to this record
 

 
Author De Meulenaere, P.; van Dyck, D.; Van Tendeloo, G.; van Landuyt, J. pdf  doi
openurl 
  Title (up) Dynamical electron diffraction in substitutionally disordered column structures Type A1 Journal article
  Year 1995 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 60 Issue 1 Pages 171-185  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract For column structures, such as fee-based alloys viewed along the cube direction, the concept of electron channelling through the atom columns is more and more used to interpret the corresponding HREM images. In the case of(partially) disordered columns, the projected potential approach which is used in the channelling description must be questioned since the arrangement of the atoms along the beam direction might affect the exit wave of the electrons. In this paper, we critically inspect this top-bottom effect using multi-slice calculations. A modified channelling theory is introduced which turns out to be very appropriate for the interpretation of these results. For substitutionally disordered column structures, it is also discussed how to link the chemical composition of the material to statistical data of the HREM image. This results in a convenient tool to discern images taken at different thicknesses and focus values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1995TG59500017 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.436 Times cited 14 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13013 Serial 770  
Permanent link to this record
 

 
Author Van Aert, S.; Geuens, P.; van Dyck, D.; Kisielowski, C.; Jinschek, J.R. doi  openurl
  Title (up) Electron channelling based crystallography Type A1 Journal article
  Year 2007 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 107 Issue 6/7 Pages 551-558  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000245341300015 Publication Date 2006-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 32 Open Access  
  Notes Approved Most recent IF: 2.843; 2007 IF: 1.996  
  Call Number UA @ lucian @ c:irua:64286 Serial 913  
Permanent link to this record
 

 
Author Luyten, W.; Krekels, T.; Amelinckx, S.; Van Tendeloo, G.; van Dyck, D.; van Landuyt, J. doi  openurl
  Title (up) Electron diffraction effects of conical, helically wound, graphite whiskers Type A1 Journal article
  Year 1993 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 49 Issue Pages 123-131  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993KV56700014 Publication Date 2002-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.436 Times cited 14 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:6784 Serial 917  
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; de Keyzer, R. openurl 
  Title (up) Electron diffraction evidence for ordering of interstitial silver ions in silver bromide microcrystals Type A1 Journal article
  Year 1994 Publication Icem Abbreviated Journal  
  Volume 13 Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1994BC23W00081 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:10058 Serial 918  
Permanent link to this record
 

 
Author Amelinckx, S.; van Dyck, D.; van Landuyt, J.; Van Tendeloo, G. isbn  openurl
  Title (up) Electron microscopy: principles and fundamentals Type ME1 Book as editor or co-editor
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ME1 Book as editor or co-editor; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Vch Place of Publication Weinheim Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 3-527-29479-1 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:22089 Serial 967  
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; de Keyzer, R. pdf  doi
openurl 
  Title (up) Electron-diffraction evidence for ordering of interstitial silver ions in silver bromide microcrystals Type A1 Journal article
  Year 1994 Publication Physica status solidi: A Abbreviated Journal  
  Volume 143 Issue 2 Pages 277-287  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The occurrence and origin of diffuse intensity contours in electron micrographs of AgBr crystals are investigated. The observations are interpreted in terms of a model, which attributes diffuse scattering to the presence of predominant atom or vacancy clusters of a particular polyhedral type. It is shown that irrespective of the crystal morphology, interstitial Ag ions order in AgBr material in clusters of finite size along 001 type planes. A different geometry of the diffuse intensity locus observed for triangular and hexagonal tabular grains is explained in terms of the different twin plane morphology of these grains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1994NW15300010 Publication Date 2007-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:99870 Serial 919  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: