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ABSTRACT

The concept of resolution in high-resolution electron microscopy (HREM) is the power to resolve
neighboring atoms. Since the resolution is related to the width of the point spread function of the
microscope, it could in principle be determined from the image of a point object. However, in electron
microscopy there are no ideal point objects. The smallest object is an individual atom. If the width of an
atom is much smaller than the resolution of the microscope, this atom can still be considered as a point
object. As the resolution of the microscope enters the sub-A regime, information about the microscope is
strongly entangled with the information about the atoms in HREM images. Therefore, we need to find an
alternative method to determine the resolution in an object-independent way. In this work we propose
to use the image wave of a crystalline object in zone axis orientation. Under this condition, the atoms of a
column act as small lenses so that the electron beam channels through the atom column periodically.
Because of this focusing, the image wave of the column can be much more peaked than the constituting
atoms and can thus be a much more sensitive probe to measure the resolution. Our approach is to use the
peakiness of the image wave of the atom column to determine the resolution. We will show that the
resolution can be directly linked to the total curvature of the atom column wave. Moreover, we can then
directly obtain the resolution of the microscope given that the contribution from the object is known,
which is related to the bounding energy of the atom. The method is applied on an experimental CaTiO3

image wave.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Originally the concept of resolution was defined by Lord
Rayleigh [1] as the power to discriminate point objects, such as
stars, with a telescope. In a sense, the resolution is related to the
width of the point spread function of the telescope or the
microscope. In [2,3], a review of various resolution definitions is
given according to the transfer function in HREM. The most
commonly used definition is the inverse of the information limit
of the microscope [2,4], which is determined by the damping
envelope incorporating effects of partial coherence. In electron
microscopy, the smallest objects are atoms and because the
electron interacts with their electrostatic potential, the atoms
cannot be considered as ideal point objects. This poses no problem
when the resolution of the instrument is much larger than the
width of the atom as was the case in the past. In that case, one can
determine the resolution from the diffractogram of an amorphous
thin film which can, to some extent, be considered as a white noise
object [5,6]. Nowadays, with advanced techniques and aberration
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correctors [7], the resolution of the microscope has been greatly
improved to the sub-A regime [8-11]. In this case, objects can no
longer be considered as weak phase objects and dynamical
scattering may become important, meaning the non-linear inter-
action may not be ignored [12]. The information about the
microscope such as the resolution is evidently strongly entangled
with the information about the atoms in the HREM images. Thus,
the resolution cannot be defined independently of the object.
Therefore, we must try to find an alternative method to determine
the resolution in the image in an object-independent way. This
means that the resolution in an image should be measured directly
using the object under study.

In this work we propose to use the image wave of a crystal in
zone axis orientation. In such a “channeling condition” [13] the
atoms in a column act as small lenses that focus the electron wave.
In this way the image wave amplitude can be much more sharply
peaked than the width of the electrostatic potential of a single
atom and this channeling occurs for light atoms as well as for
heavy atoms. Furthermore, it has been shown in [15] that to a good
approximation the image wave at the atom column position has a
Gaussian shape. Our approach here is to use the shape of the
image wave of an atom column in a zone axis condition to
determine the resolution.
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The outline of this paper is as follows. In Section 2, an overview
of the channelling theory is given. Next, in Section 3, the approach
to determine the attainable resolution is derived. In Section 4,
the influence of microscope lens aberrations on the attainable
resolution is studied. Then, in Section 5, a practical example is
given. Finally, in Section 6, conclusions are drawn.

2. The channelling theory

Due to the strong electrostatic potential of the atoms, an atom
column in the direction of the electron beam acts as a channel for
the incoming electrons in which the electrons scatter dynamically.
An intuitive way of understanding this is to consider each atom as
a thin lens so that as the electron wave passes through the atoms,
it is focused at periodic distances [14].

It has been proven in [15] that when the electron beam leaves
an isolated atom column, the image wave can be expressed to a
good approximation as

w(r,2) =y(r,0) + Cshs(T) {exp (—ing—;%2> —1} , (1)
where w(r,0) is the incident wave, r describes the two-
dimensional vector in the plane of the image wave which is
perpendicular to the beam direction, and z is the column thickness
(relates to the number of atoms in a column given the distance
between atoms in the column is known). The incident beam
energy is given by Eg and 4 is the wavelength. The function ¢(r)
is the lowest energy bound state, the s-state, with Es its energy.
The s-state function can be approximated by a quadratically
normalized and parameterized Gaussian function [15]

1 r?
Ps(r) = NG exXp (— @) (2)
with a the column dependent width and r = |r|. The column width
is related to the energy of the s-state and is larger for a light atom
column type and smaller for a heavy atom column type within the
range of 0.1 A to 0.5 A. The excitation coefficient c; is given by

= / 2 (Op(r.0) dr, 3)

where the symbol x denotes the complex conjugate. For an
incident plane wave, i.e. w(r,0)=1, ¢, equals 2+/2za when using
Eq. (2). Eq. (1) is also referred to as the exit wave of an atom
column to distinguish between the wave at the exit surface of the
object and the wave at the image plane. Later, in Section 5, the
reconstructed wave will be referred to as the experimental exit
wave. A detail description will be given then.

3. Determination of the attainable resolution

As presented in [16], a complex plane, the so-called Argand
plot, can be used to derive the structure parameters, such as the
number of atoms in a column and the column height, using the
pixel value at the atom column position of the image wave (or exit
wave). Similarly, instead of plotting only the pixel at the column
position, we can plot all the pixel values of an atom column wave
in the Argand plot. According to the channelling theory, all pixels
of a single atom column wave are located on a straight line in the
Argand plot since they have the same phase (refer to Eq. (1) minus
the incident beam wave ¢(r, 0)).

An example is simulated for an isolated Au atom column with
z=16A, a=0.13 A and E;=-210.8 eV [17]. The incident beam
energy is 300 keV. Here we assume that the microscope is free
of lens aberrations. Therefore, the resolution derived is solely
contributed from the atom column. The amplitude (or magnitude)

of the image wave is shown in Fig. 1(a). All pixels of the image
wave lie on a solid straight line in the Argand plot as shown in
Fig. 1(b). If the incident beam wave is removed, meaning that the
plot passes through the origin (0, 0), this shows that the phase of
every point in the exit wave is constant as stated above. When the
image wave is defocused, meaning that the image plane is at a
distance ¢ to the focal plane, the pixel values of the atom column
will form a curve as shown by means of dotted lines in Fig. 1(b).
The effect of defocus on the image wave can mathematically be
described as a convolution product of Eq. (1) and a defocus
propagator (see Appendix). Pixels closer to the column position
give larger position changes in the Argand plot. This difference of
position changes can also be explained from the fact that pixels
closer to the column position contain more higher spatial
frequency information. Thus, Fig. 1(b) also shows different defocus
phase changes on the spatial frequencies contributing to the
column image wave. It is observed in Fig. 1(b) that there are two
stationary points (dotted circles), meaning that they do not change
with defocus. One is at (1, 0) which is the constant background
from the incident beam wave and the other one is at where the
total curvature of the column wave equals zero. Note that here the
surface of the column wave is defined in the three-dimensional
space (bell-shaped function). The latter point will be used to
define the attainable resolution. Note that this point is not strictly
stationary but is a point with very little variance. This will be
explained in detail in Section 4.1. In what follows, we will derive
the resolution mathematically.

Substituting Egs. (3) and (2) into Eq. (1), we can derive the
curvature of the column wave using the Laplacian operator A

Py Py
Ay = —+—
oxz =~ ogy?

=C LGX —i ex —1i Elz -1 i_l (4)
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Eq. (4) equals zero either when r approaches a large value or when
r=2a. The former case corresponds to the stationary point
representing the background while the latter case corresponds to
the other stationary point. Thus, at

r=ry_o=24, (5)

the total curvature of the image wave of an atom column equals
zero within a certain defocus range (see Section 4.1).

A common definition of resolution was given by Lord Rayleigh
in 1879 [1]. Rayleigh stated that the resolution is the minimum
resolvable distance in the sense that two point sources are just
resolvable when the central maximum of one source coincides
with the first zero of the other one. The Rayleigh resolution is thus
given by the distance from the central maximum to the first zero
of a point spread function. The Rayleigh resolution criterion can be
generalized as the distance for which the ratio of the value at the
central dip of composite point spread functions to the value at the
central maximum of the point spread function is equal to 0.8. This
corresponds to the original Rayleigh resolution for a rectangular
aperture. Following this approach, the Rayleigh resolution p, can
be derived mathematically from Eq. (1)

22
O.8=2exp<—1622>, (6)

from which it follows that:

pp%4a =2r5_0. @

As a result, the resolution is directly related to the width of the
atom column a in the image wave. However, the width a in an
experimentally reconstructed wave is strongly influenced by lens
aberrations such as defocus, spherical aberration, astigmatism and
so on. Thus, it seems more appropriate to determine the resolution
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Fig. 1. (a) The amplitude (magnitude) of the image wave of an isolated Au atom column (z=16 A, a=0.13 A and E; = -210.8 eV [17]). Axis unit is in A. (b) The Argand plot of
the image wave without (solid straight line) and with (dotted lines) defocus. The dotted circles locate the stationary points. The arrows show the directions of the points
move as the image wave is defocused from -5 A to 5 A. The double arrow indicates the distance between two points from the same pixel in the image wave but at different
defocus ¢ values. (c) The mean square distance (d?) as a function of the distance from each point in the solid line in (b) to the reference point (1, 0). The arrows indicate the
minima corresponding to the stationary points, one from the background and one at the zero total curvature of the image wave. (d) Resolution map: for visualization, a two-
dimensional plot, size same as the image wave, presents the pixels at the stationary points in white and the rest in black. Axis unit is in A.

from the stationary points in the Argand plot or from the
reconstructed image wave itself. This will be explained and
illustrated in the following subsections.

3.1. From the Argand plot

As described earlier, the stationary point is where the total
curvature of the atom column function equals zero. In order to find
this point, we can proceed as follows. First, a linear fit is applied to
the points from the zero defocus image wave. The intersect with a
line perpendicular to the x-axis is determined. This intersect point
will be called the reference point. In the example shown in Fig. 1(b),
we find that the fitted line intersects with x=1 at (1, 0). Second, the
Argand plot is transferred to another plot where the y-axis repre-
sents the mean square distance (d*) averaged between all defocused
points from the same pixel in the image wave. The distance
d between two defocused points is shown as double arrows in
Fig. 1(b). The x-axis represents the distance from each point on the
solid line (from the zero-defocus exit wave) to the reference point.
The plot is presented as the solid line in Fig. 1(c). The minima give
the positions of the stationary points, meaning that these pixels in

the image wave change minimal as the wave is defocused. Fig. 1
(c) can be improved by considering the directions in which the
points in the Argand plot move as the image wave is defocused. The
directions in which the points are moving are presented as curved
arrows in Fig. 1(b). The points at the lower-right corner move along
the opposite direction to those at the upper-left side. Thus, we
present the mean square distances from those points with a
negative sign and the result is shown as the dotted line in Fig. 1
(c). The stationary points can then be easily determined by the
intersections of the curve with y=0. Later, for visualization, we can
plot the pixels at the minima as white and others as black to directly
locate the zero total curvature in the atom column as shown in Fig. 1
(d). The white ring clearly shows where the stationary point is in the
atom column wave function. In other words, the white ring shows
the pixels in the image wave that have minimal changes as the
image wave is defocused. The radius of the white ring, which is
ry—o, can easily be calculated as twice the column width and
therefore the resolution p, equals 4a, being 0.52 A. This type of
black-and-white figure will be called a resolution map.

In Fig. 1(c), the displacement values between the two minima
correspond to the outer black ring area of the atom column as
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Fig. 2. (a) Amplitude (magnitude) part of image wave after applying the Marr—Hildreth operator. Axis unit is in A. (b) A profile of (a) through the center of the atom column.
The horizontal dashed line indicates the total curvature at FWHM. (c) The resolution map in which the zero total curvature is shown in white. Axis unit is in A.

shown in Fig. 1(d). In practice, this area is strongly influenced by
neighboring column waves and is sensitive to noise. The minima
will then be difficult to estimate. Therefore, in the next subsection,
we will show how to determine the stationary points directly from
the image wave.

3.2. From the image wave

According to Eq. (4), the stationary point is where the Laplacian
of the wave function equals zero. However, applying a Laplacian
operator to the wave function may increase the fluctuation of
curvature changes due to noise. Therefore, a smoothing filter, such
as a Gaussian filter, is applied. This Laplacian-of-Gaussian operator
is also known as the Marr-Hildreth operator [18] and is commonly
used in image processing for edge detection. This operator detects
the intensity change of an image I through

M = AG=, ®)

where G is a two-dimensional Gaussian function and % denotes the
convolution product. G acts as a smoothing filter that averages the
image intensity change locally. The Marr-Hildreth operator can be
described in Fourier space as

I[AG] = g2 exp(—sg?) ©)]

where g is the two-dimensional vector in Fourier space and g = |g|.
The width of G is related to s. Substituting Eq. (1) for I and the
Fourier transform of Eq. (9) into Eq. (8), we can derive that the
zeros occur at r—« and at

/ s
Ty_o= 4a2+ﬂ—2.

Using this relationship, the width of the atom column can be
obtained and thus, the resolution p, can be derived from Eq. (6).
Applying the Marr-Hildreth operator as is in fact very similar to
the work of [19] where they showed that a small defocus (absence
of spherical aberration) has the same effect as Eq. (9) contributing
to an image, so-called Fourier imaging. This effect has been
demonstrated in [20,21].

In Fig. 2 we will demonstrate how the Marr-Hildreth operator
is applied to an image wave to determine the resolution. Fig. 2
(a) shows the amplitude of the image wave after applying the
Marr-Hildreth operator (s=0.01). A profile through the center of
the atom column is shown in Fig. 2(b). Similar to Fig. 1(c), the
amplitude is zero at a certain distance from the atom column
position and at the background. We can therefore obtain the
resolution map where the zeros of the amplitude are shown in

(10)

white and other values in black as presented in Fig. 2(c). This is
similarly shown in Fig. 8 of [22] where the zeros of the second-
order derivative gives the inflection point of the image peak. The
white ring clearly indicates where the total curvature is zero in the
atom column. The radius of the ring can be estimated as 0.262 A.
From Eq. (10), the width of the column function a can be derived
as O.1ﬁ3 A. The resolution pp can then be estimated from Eq. (7) as
0.52 A

The resolution measurement derived so far is based on the
assumption that the column wave function is a Gaussian function.
In case the column wave function deviates from the Gaussian
shape, for instance, an exponential function, and/or in case the
noise is about 10% of the maximum amplitude of M, the zero total
curvature will not be easily detected. Therefore, we can use the
full-width-half-maximum (FWHM) measurement because this
part of the peak clearly surpasses the noise level. Here we do
not consider the case of an even higher noise level since one may
not even be able to separate individual atom columns accurately. It
can be derived from Eq. (8) that the FWHM occurs at about
r=1.1 a=rr, which gives a resolution p, about 3.64rr. We will
show in the next sections that the FWHM can be determined more
easily to provide the information about the resolution.

We would also like to investigate the influence of noise on the
resolution determination. In order to study the noise effect on the
radius of the curvature at FWHM, image waves with different
amount of noise have been simulated. This is done by adding
normally distributed random noise with zero mean and increasing
standard deviation [23] to both real and imaginary parts of the
image wave. The results indicate (not shown here) that if the
standard deviation of the noise exceeds 0.15, the radius of the
curvature at FWHM cannot be easily detected which may lead to
errors in the analysis. As a result, if a significant amount of noise is
present, techniques to remove the noise, such as background
subtraction, should be applied in advance before further analysis.

Applying the Marr-Hildreth operator on the image wave to
determine the resolution seems to be a more objective method
than obtaining the resolution from the Argand plot since one can
determine the resolution with an arbitrary s. Note that s should
not be a large number as it compromises between noise and
influence on resolution.

4. Effects of aberrations on the resolution

In the previous section, the resolution was determined based
on perfect lenses, without lens aberrations. However, even in the
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case of electron microscopes equipped with aberration correctors,
lens aberrations are not fully eliminated. Moreover, even with
established programs that perform exit wave reconstruction
routinely and are supposed to eliminate influence of the micro-
scope on the exit wave, the lens aberrations are not corrected with
sub-A precision. Therefore, some lens aberrations remain in the
reconstructed image wave. In this section, we will consider the
common and low order lens aberrations such as defocus e,
spherical aberration Cs, two-fold astigmatism A1 and three-fold
astigmatism A2 one by one and show how they affect the
resolution map. Throughout this section, we obtain the resolution
by applying the Marr-Hildreth operator on the image waves.

4.1. Defocus ¢

The object may not be flat at the exit surface due to uneven
number of atoms or located at different heights for adjacent atom
columns. Thus, the column wave may not be focused at the same
plane for every atom column or the exit wave cannot be recon-
structed to the exact exit position of every atom column. This
means that there may be a distance from the focal plane of the
atom column to the image wave plane or from the exact exit
position of an atom column to the exit wave plane; in other words,
the column wave is defocused. This effect has been studied in [16]
and a method is proposed to determine the defocus £ atom column
by atom column from the exit wave. Here we study the defocus
effect on the resolution map.

When the image wave is defocused ¢ =5 A, as shown in Fig. 1
(b), the location of the zero total curvature does not change
significantly. However, due to the defocus, the amplitude of M is
not zero within the atom column but rather a local minimum as
shown in the solid line profile in Fig. 3(a). One can derive the
position of this local minimum by applying Eq. (8) on a defocused
image wave (see Appendix A) which gives

r=y/4a + (- 2+(i) 1)
- 2za 2]’

This value does not equal 2a but at small defocus the shift is
insignificant. In this example, with defocus ¢=5 A, the shift is
about 0.03 A. In case the pixel size is larger than this value, one
will not be able to see such a change in resolution. Note that the
pixel size is typically about 0.2 A in an experimental image. A
short discussion about the pixel size is given at the end of
this section. We can still obtain the resolution map as shown in

Fig. 3(b) by setting a threshold 7 such that values lower than 5 are
shown in white otherwise in black. Note that choosing the value of
n is somewhat subjective and will affect the size of the white ring;
thus, it should be chosen as close to the local minimum
as possible. In Fig. 3(b), 5 is set to 0.72, from which we can
estimate r=0.29 A as expected from Eq. (11) and thus the resolu-
tion is 0.52 A.

If the image wave is defocused a larger value, such as 10 A, the
atom column wave is blurred such that after applying the Marr—
Hildreth operator, there is no local minimum curvature change
within the column wave. This can be seen from the dashed profile
shown in Fig. 3(a). Instead of a dip, there is a plateau. Therefore,
even by setting a threshold # = 0.95 (value of the plateau), we do
not see a white ring in the resolution map similar to Fig. 3(b). As a
result, it is more convenient to use the curvature at FWHM to
obtain the resolution map as shown in Fig. 3(c). From this figure,
we can still derive that the resolution equals 0.52 A.

4.2. Spherical aberration Cs

A dominant aberration for electromagnetic lenses in HRTEM is
the spherical aberration Cs, which causes the electron beam to be
refracted stronger at the outer region of the lens than at the inner
region. Though nowadays most advanced electron microscopes are
equipped with a spherical aberration corrector, the standard
deviation of the spherical aberration is still in the order of 1 pm
[24,25]. Therefore, we need to take this effect into account. We
include two different values of Cs, 1 pm and 3 pm, in the image
waves with and without a defocus of 5 A. The resolution maps are
shown in Fig. 4. Following from this figure, in case there is no
defocus (Fig. 4(a) and (c)), we can still set a threshold 5 to
determine the zero total curvature ring. In case there is defocus
and spherical aberration, # cannot be easily set. Therefore, in such
case, we suggest to use the FWHM measurement as shown in Fig. 4
(b) and (d). Compared to the rings in Fig. 3, the radii of the rings in
Fig. 4(a) and (c) are larger indicating that the amount of blurring is
more from the spherical aberration than from defocus. Moreover,
the radius in Fig. 4(c) is larger than that in Fig. 4(a) since the
amount of blurring is larger. The resolutions derived from the maps
in Fig. 4 are about 0.657 A, 0.767 A, 0.855 A, and 1.11 A, respectively.

4.3. Two-fold astigmatism A1 and three-fold astigmatism A2

In this subsection, we consider two parasitic aberrations, two-
fold astigmatism A1 and three-fold astigmatism A2, which are
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Fig. 3. Considering the effect of defocus aberration. (a) Profiles through the centers of amplitude parts of M from image waves defocused 5 A and 10 A. The horizontal lines
are the thresholds 7. (b) Resolution map obtained by showing the local minima of total curvature in white for the image wave defocused 5 A. Axis unit is in A. (c) Resolution
map obtained by showing the FWHM of total curvature in white for the image wave defocused 10 A. Axis unit is in A.
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Fig. 4. Resolution maps of image waves including the spherical aberration with/without defocus: (a) defocus £ = 0 A and spherical aberration Cs = 1 pm, local minima of total
curvature shown in white; (b) defocus £ =5 A and spherical aberration Cs =1 um, FWHM of total curvature shown in white; (c) defocus ¢ =0 A and spherical aberration
Cs =3 pm, local minima of total curvature shown in white; (d) defocus ¢ = 5 A and spherical aberration Cs = 3 um, FWHM of total curvature shown in white. Axis unit is in A.

caused by deviations of the electromagnetic field from rotational
symmetry. In case of two-fold astigmatism, the focal strength is
different in two orthogonal directions. As a result, the column
wave will be elliptically elongated. Similarly, in case of three-fold
astigmatism, the column wave will form a three-fold symmetry. In
order to study these aberrations separately, two defocused image
waves were simulated including A1 =10 A and A2 =200 A, respec-
tively. Here we perform the same Marr-Hildreth operator as in
previous sections on the image waves and the amplitude parts of
M are given in Fig. 5. It is clearly shown that the smaller pixel
values (darker) form the shape of an ellipse and a triangle around
the atom column, respectively. This gives the user a clear clue that
astigmatism is still present. We suggest that the asymmetric
aberrations should be eliminated before applying our approach
to determine the resolution.

In Section 4, we studied the effects of residual aberrations on
resolution maps through simulations. Defocus itself does not
change the resolution significantly but in case of spherical aberra-
tion, the resolution is lower. Moreover, in the presence of astig-
matism, the shape of the atom column in the resolution map turns
into asymmetric shapes. We suggest that, in the future, with a

routine program installed with the microscope, the user can tune
the values of lens aberrations until the ring in the resolution map
is the smallest and most circularly shaped. Under such microscope
condition, the image wave has then the highest resolution and is
most suitable for further structural analysis.

It is also shown in this section that the resolution decreases
with increasing lens aberrations. Thus, the resolution of the image
includes a contribution arising from the object, atoms, and the
contribution from the microscope. If we can assume the atom
wave as a Gaussian function (e.g. Egs. (1) and (2)) and also the
“blurring” from the microscope as a Gaussian function, then the
resolution of the image p, can be approximated as [26]

Pp=Pa + Phs (12)

where p, is the resolution of the atom wave which is related to
the width of the atom column a and p,, is the resolution of the
microscope. From this equation, it follows that if one knows the
width of the atom column, then one can determine the resolution
of the microscope directly from the image regardless of the object
under study.
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Fig. 5. Amplitude parts after applying the Marr—Hildreth operator to the image waves including the aberrations (Axis unit is in A): (a) defocus ¢=5 A and two-fold
astigmatism A1 =10 A (¢,, =z/3) and (b) defocus ¢ =5 A and three-fold astigmatism A2 =200 A (¢33 = 7/3).
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Fig. 6. (a) Amplitude and (b) phase parts of the experimentally reconstructed CaTiOs exit wave. The pixel size is 0.248 A. A structure model is placed in (b) (large circles as Ca
columns, medium-sized circles as Ti-O columns and smaller circles as O atom columns). The white box in (a) shows the area used in this study. A Fourier transform of the

exit wave is inserted in the upper-right corner of (b).

Note that the pixel sizes used in these simulations are all
0.01 A which is an order of magnitude smaller than a typical atom
column width. If the pixel size is too large (about the same order of
an atom column width is considered large), the change of
curvature of the atom column cannot be easily detected such that
the resolution cannot be determined.

5. A practical example

In this section, we apply our method on an experimental
CaTiO3 exit wave. An experimental exit wave is reconstructed
from a series of images taken from the microscope. Due to lens
apertures and spatial limitation in recording, not all scattered
beams are recorded. Moreover, based on modern techniques lens
aberrations cannot be estimated with sub-A precision. Therefore,
as compared to the theoretical exit wave described in Section 2, a
reconstructed exit wave includes limited structure information
about the object and may still contain “residual” lens aberrations.
In this experiment, an aberration-corrected transmission electron
microscope, FEI Titan® 50-80, operating at 300 keV was used to
record a series of high resolution images with defocus ranging
from 270 A to -186 A with a defocus step of 24 A. For details on
the microscope parameters and the sample under study, we refer
to [27]. The reconstruction of the exit wave was carried out using

the Truelmage software [28,29]. The amount of lens aberrations is
minimized using standard techniques in Truelmage. The ampli-
tude and phase of the exit wave are shown in Fig. 6(a) and (b),
respectively, which is reconstructed up to a resolution of 0.8 A.
This value is in general calculated from the microscope transfer
function with the given lens parameters. A structure model is
shown in Fig. 6(b). A Fourier transform of the exit wave is inserted
in Fig. 6(b). The white box inserted shows the area used in this
study. The area under study is chosen close to the edge so that the
thickness variation is minimized.

In Section 5.1, the method will be described applying on the
experimental data. Then in Section 5.2, the results will be
discussed.

5.1. Data analysis

The pixel size of this exit wave as delivered from the camera
system is 0.248 A, which is about the same order as the column
width. Although this sampling obeys the Nyquist criterion so that
no information is lost, it cannot be used for further numerical
treatment. Therefore, we first re-sample the exit wave eight times
smaller using a spline interpolation method. In this section, we
present the determination of the resolution according to the
methods described in Sections 3.1 and 3.2 using the Argand plot
and the Marr-Hildreth operator, respectively.
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5.1.1. From the Argand plot

As described in Section 3.1, we can obtain the resolution by
determining the stationary points in the Argand plot from a set of
defocused exit waves. The exit wave was defocused from
-100 A to 100 A with a defocus step of 1 A. Fig. 7(a) shows the
Argand plot of a Ca atom column close to the edge from several
defocused exit waves (for visualization). Similar to Fig. 1(b), the
pixels closer to the column center have larger displacements
between defocused points. Also, those points move along the
opposite direction to those from pixels further away from the
column center. We can somewhat visualize that there are dense
points (shown with dotted circle in Fig. 7(a)) where the displace-
ment is minimal. Then, we can translate this figure into Fig. 7
(b) similarly as Fig. 1(c). In this experimental example, we directly
take into account the direction of displacement so that the mean
square displacements from pixels further away from the column
center has a negative sign. As shown, either from the lower-left
corner of Fig. 7(a) or from the negative points in (b), pixels
corresponding to the area of the atom column further away from
the column center are strongly influenced by neighboring column
waves and noise. This makes the intersection of the curve with
y=0 in Fig. 7(b) more difficult to determine. In order to find the
intersection, we fit a 3rd-order polynomial to the points which is
shown as the solid curve in the figure. Then, the pixels corre-
sponding to the points in the flat region (between the two vertical
lines) are colored in white while others are in black as shown in
Fig. 7(c). We can clearly see a ring around the atom column. From
this figure, we can estimate the radius of the ring about 0.65 A and
thus the resolution about 1.3 A.

From this example, we see that since there is no clear inter-
section of the curve with y=0 in Fig. 7(b), the ring in Fig. 7(c) is
thick. This is due to the fact that, as stated earlier in Section 3.1, the
pixels corresponding to the flat region are strongly influenced by
neighboring waves and noise. As a result, the ring and thus the
resolution cannot be estimated precisely. Therefore, we will
directly determine the resolution by using the Marr-Hildreth
operator as follows.

5.1.2. Marr-Hildreth operator

The amplitude parts after applying the Marr-Hildreth operator
with s=0.03 are shown in Fig. 8(a). Since the pixels in between
atom columns are about the same values as those at the local
minima of the atom columns, it is more suitable to obtain the total
curvature at FWHM as shown in Fig. 8(b). The FWHM is obtained
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locally atom column by atom column. From the resolution map,
we can see that there are white rings at the Ca and Ti-O atom
columns and also in between. The white contrast in between these
columns result from the O atom columns and also, possibly, noise.
As a result, these white contrast as well as columns near the
border is filtered before further analysis. This can be done by
creating a user-created mask for filtering. The filtered resolution
map is shown in Fig. 8(c). Keeping only the white rings at the Ca
and Ti-O atom columns, the radii of the rings in the resolution
map are obtained. The radius is determined by the distance of the
white pixel around the column to the center maximum. The radii
for both types of atom columns are presented as histograms in
Fig. 8(d). From this histogram, we can derive the mean radius for
Ca column is about 0.333 A, and that for Ti-O is about 0.354 A.
Therefore, we can estimate the resolution p,, as 1.24 A. This value is
larger than the value given from the software, 0.8 A.

If the amount of noise in the experimental data is high, we can
apply a simple filtering procedure called lattice averaging. This is
applicable when assuming the area under study has about the
same thickness and the same surface profile. This procedure is
done by refining the Fourier spots as shown in Fig. 6(b). According
to simulations, given the known positions of the Fourier spots,
Gaussian functions are fitted to the intensities of the experimental
Fourier spots. The averaged lattice is then obtained by Fourier
transforming the fitted model of the Fourier spots as shown in
Fig. 9(a). Then the same Marr-Hildreth operator with s=0.03 is
applied to this averaged lattice. The amplitude part after applying
the operator is shown in Fig. 9(b). From this figure, we can see that
the minima around the atom columns are clearly presented, even
around some O atom columns. We apply a mask filter to remove
columns near the border and the pixels in between the Ca and
Ti-O atom columns. Also, the O atom columns are removed since
we are only interested in comparing the results with Fig. 8. We can
again obtain the resolution map by finding the total curvature at
FWHM of the Ca and Ti-O atom columns as shown in Fig. 9(c). The
histograms of the radius of the rings are given in Fig. 9(d). The
mean radius for Ca column is about 0.376 A, and that for Ti-O is
about 0.296 A. Therefore, we can estimate the resolution pp aS
122 A

5.2. Discussions
In the previous section, we have demonstrated how to deter-

mine the resolution in practice. We have used an experimentally
reconstructed exit wave. The reconstructed exit wave is supposed
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Fig. 7. (a) Argand plot of a Ca column close to the edge from several defocused exit waves. The dotted circle indicates a rough visualization of a dense point. (b) The mean
square distance as a function of the distance from each point at zero defocus to the reference point (0, —1.59). The solid curve is the fitted 3rd-order polynomial and the
vertical lines mark the turning points. (c) The resolution map in which the pixels corresponding to the points in the flat region (between the two vertical lines in (b)) are
colored in white while others are in black. Axis unit is in A with origin at the corner of the area under study. Here only an area around the column is shown. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 8. (a) Amplitude (magnitude) part after applying the Marr-Hildreth operator to the area under study. (b) Resolution map obtained by showing the total curvature at
FWHM in white. (c) Filtered resolution map. (d) Histogram of the radius of the rings in the resolution map. (For interpretation of the references to color in this figure caption,

the reader is referred to the web version of this paper.)

to be free of microscope aberrations except of local defocus which
may vary atom column by atom column. However, as shown in Fig. 8
(c), not all the rings around the columns are circularly shaped. Thus,
we present the resolution as an averaged measurement from all
the atom columns in the area under study. The resolution obtained,
about 1.2 A, is larger than the value given from the software, 0.8 A.
The difference between these two values mainly results from the
atom column itself. This means that the image is a combination of
the electron beam spreading from the atoms and from the micro-
scope lenses. Therefore, the resolution of an image is a combination
of the resolution of the atoms, which is limited by the width of the
atoms, and the resolution of the microscope. To demonstrate this, a
simulation study has been carried out. A simulated CaTiOs; recon-
structed exit wave has been generated using a series of through-focal
simulated images with the same microscopic conditions as described
in the beginning of Section 5. The same analysis procedure has
been applied on this simulated reconstructed exit wave. The resolu-
tion thus determined equals about 1A, which is larger than the

expected contribution of 0.8 A if only instrumental conditions would
contribute. The simulation images did not include experimental
conditions such as noise or image shift, which may also explain
why the resolution obtained from the simulated images is slightly
better than that from the experimental images. In this simulation, we
have also applied the analysis procedure on the simulated exit wave
which is free of microscope aberrations. The resolution determined
equals about 0.53 A which is contributed only from the atoms. These
resolution measurements are in good agreement with Eq. (12). Thus,
as suggested in the end of Section 4, if one can know precisely the
width of the column wave which is dominated by the s-state wave,
one can determine the resolution of the microscope directly.

This method may also be applied on reconstructed image
waves. The main difference between a reconstructed image wave
and a reconstructed exit wave is that the former is the wave at the
image plane which contains the information about the microscope
lenses. As stated earlier in Section 4, the user may use the shape
and size of the rings in the resolution map to minimize the total
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Fig. 9. (a) Amplitude (magnitude) of the lattice-averaged exit wave. (b) Amplitude part after applying the Marr-Hildreth operator. (c) Filtered resolution map obtained by
showing the total curvature at FWHM in white. (d) Histogram of the radius of the rings in the resolution map. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this paper.)

aberration effect. Theoretically, the resolution obtained from a
reconstructed image wave scales with a factor resulting from the
symmetric lens aberrations as compared with that obtained from a
reconstructed exit wave. However, as shown in Section 4, the
radius of the rings in the resolution map increases as the amount
of aberration increases. It is evident that, in case of either large
defocus, spherical aberration or both, the rings may overlap or
become difficult to interpret due to phase wrapping. Therefore, we
suggest that the method is applied on a reconstructed exit wave
where most lens aberrations are eliminated. It should be noted
that, however, that if the images are not aligned properly (which is
unlikely using modern exit wave reconstruction program), this
may contribute to an extra boardening of the reconstructed atom
wave function which may result in a larger resolution value. This
method is of course not suitable to apply on a recorded image
itself. An image is the intensity distribution of electron counts
recorded by the detector. The image formation through the
detector is a complicated and nonlinear process and as such, the

wave information is mixed in a nonlinear way. As a result, the
resolution information is also mixed in the image.

One may suggest that the resolution can be related to the most
distant spot from the center in a diffraction pattern or the Fourier
transform of the exit wave. In case of an amorphous thin object,
the electron channelling effect does not occur and the electrons
are kinematically scattered. If this would be a perfect white noise
object with a constant spectrum, the diffractogram would directly
reveal the transfer function. The resolution can then be deter-
mined from the Thon rings and the visibility can be improved by
Young's fringes [5,6]. However, the object is never a pure phase
object because it consists of atoms so that the transfer function is
dampened not only by the aberrations of the microscope but also
by the scattering factor of the constituting atoms. Therefore, one
uses heavy atoms such as tungsten. Even for such atoms the
damping is already significant when one enters the sub-A regime
of advanced Cs-corrected electron microscopes. Also, there is
influence from the microscope where mechanical vibrations may
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easily damp the intensities at high spatial frequencies [2]. One also
has to avoid using nonlinear contributions in the diffractograms
because they are not a true proof of resolution. Moreover, there
appears to be no standard technique to determine the most distant
spot in a diffractogram. In X-ray diffraction, a common criterion
applied is that the intensity of a reliable spot should be at least
three times larger than the standard deviation of the intensity
[30]. Applying such criteria on the Fourier transform of the exit
wave as shown in Fig. 6(b), it is suggested that the most distant
spot corresponds with a resolution of about 1.21A. In this
example, this value is about the averaged resolution we obtained
in the previous subsection.

6. Conclusions

In this paper, we have introduced an alternative method to
determine the resolution directly in an object-independent way.
We have observed that the pixels in the atom column plotted in an
Argand plot pass through two stationary points when the column
wave is being defocused in a small defocus range. One stationary
point is at the background, whereas the other one, based on the
channelling theory, is at the zero total curvature of the atom
column (considering the atom column surface as a bell-shape
function in the three-dimensional space). Moreover, using the
Rayleigh criterion, we can relate the attainable resolution to the
zero total curvature. An objective method is proposed to deter-
mine the total curvature of the atom column; that is, by applying a
Marr-Hildreth operator on the column wave. We have suggested,
if the zero total curvature cannot be easily detected (may be
because of noise), we can also use the FWHM measurement to
relate to the resolution. Both criteria yield a circular ring around
the atom column position which can easily be visualized in white
on a black constant. We have demonstrated that with the presence
of lens aberrations, either the size of the ring is enlarged or the
shape is changed. We suggest that, in the future, with a routine
program installed with the microscope, the size and/or the shape
of the ring may be used as a fingerprint for a microscopist to
minimize aberrations by adjusting the microscopic lenses to
obtain the smallest circular ring possible. Therefore, the image
wave has then the highest resolution and is most suitable for
further structural analysis.

The method has been applied to an experimentally recon-
structed exit wave of CaTiOs. We have shown that the resolution
determined using the proposed method is about 1.2 A which is
larger than the one given from the software. This difference proves
that the resolution of an image cannot be determined solely from
the electron microscope. Only when the object would be a perfect
white noise object or when the resolution of the microscope is
much larger that the width of the atoms, the resolution of an image
can be directly determined from the diffractogram or from the exit
wave. The results presented reflect the statement in the introduc-
tion that the resolution of an image is set by the resolution of the
microscope and by the object itself which is much smaller using a
crystalline object in a channeling condition than with the use of an
amorphous film. We also suggested that the resolution of the
microscope can be directly determined given the width of the atom
column known. If, in the near future, the microscope reaches
picometer resolution, then the resolution will ultimately be limited
by the width of the focusing channelling wave.
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Appendix A

In this appendix, we derive the radius of the ring in the
resolution map as a function of defocus e. The effect of defocus
on the image wave for a particular atom column can mathemati-
cally be described as a convolution product of Eq. (1) and the
defocus propagator p(r)

Y(1,2) =y £, 2)p(). (A1)

The defocus propagator, described by Fresnel diffraction as the
wave propagates through vacuum, is given by

p(r) = 37 [exp(~izeig?)] (A2)

where 37! denotes the inverse Fourier transformation and g the
length of the two-dimensional reciprocal wave vector g. Using the
convolution theorem, it can be shown that the defocused image
wave of one atom column is given by

5 vy
v (r,z)=1 +c542a22+mi1/1exp _r ﬂ)d
7 & 4a2 + i~
V3
x {exp <—in55> —1} . (A3)
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Applying the Laplacian operator onto Eq. (A.3), we can derive
r? 1

(R? +ie? RZ+ie

. Esz
X {exp <_1”F01) —1} (A4)
with R =2a and e = ¢1/z. The local extrema can be found at r=0

(maximum), +2R (local maximum) and /R? + (¢/R)?> (local

minimum). The locations of these extrema are marked in Fig. Al.
When applying the Marr-Hildreth operator (Eq. (8)), the radius at
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the local minimum scales with s similarly to Eq. (10), as
oz (VL (S
i min = \/’R + (R) +()- (A5)
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