toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bals, S.; Goris, B.; de Backer, A.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic resolution electron tomography Type A1 Journal article
  Year 2016 Publication MRS bulletin Abbreviated Journal Mrs Bull  
  Volume 41 Issue 41 Pages 525-530  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Over the last two decades, three-dimensional (3D) imaging by transmission electron microscopy or “electron tomography” has evolved into a powerful tool to investigate a variety of nanomaterials in different fields, such as life sciences, chemistry, solid-state physics, and materials science. Most of these results were obtained with nanometer-scale resolution, but different approaches have recently pushed the resolution to the atomic level. Such information is a prerequisite to understand the specific relationship between the atomic structure and the physicochemical properties of (nano) materials. We provide an overview of the latest progress in the field of atomic-resolution electron tomography. Different imaging and reconstruction approaches are presented, and state-of-the-art results are discussed. This article demonstrates the power and importance of electron tomography with atomic-scale resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pittsburgh, Pa Editor  
  Language Wos 000382508100012 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.199 Times cited (up) 19 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge funding from the Research Foundation Flanders (G.0381.16N, G.036915, G.0374.13, and funding of postdoctoral grants to B.G. and A.D.B.). S.B. acknowledges the European Research Council, ERC Grant Number 335078-Colouratom. The research leading to these results received funding from the European Union Seventh Framework Program under Grant Agreements 312483 (ESTEEM2). The authors would like to thank the colleagues who have contributed to this work, including K.J. Batenburg, J. De Beenhouwer, R. Erni, M.D. Rossell, W. Van den Broek, L. Liz-Marzan, E. Carbo-Argibay, S. Gomez-Grana, P. Lievens, M. Van Bael, B. Partoens, B. Schoeters, and J. Sijbers. ; ecas_sara Approved Most recent IF: 5.199  
  Call Number UA @ lucian @ c:irua:135690 Serial 4299  
Permanent link to this record
 

 
Author Kundu, P.; Turner, S.; Van Aert, S.; Ravishankar, N.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic structure of quantum gold nanowires : quantification of the lattice strain Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 1 Pages 599-606  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Theoretical studies exist to compute the atomic arrangement in gold nanowires and the influence on their electronic behavior with decreasing diameter. Experimental studies, e.g., by transmission electron microscopy, on chemically synthesized ultrafine wires are however lacking owing to the unavailability of suitable protocols for sample preparation and the stability of the wires under electron beam irradiation. In this work, we present an atomic scale structural investigation on quantum single crystalline gold nanowires of 2 nm diameter, chemically prepared on a carbon film grid. Using low dose aberration-corrected high resolution (S)TEM, we observe an inhomogeneous strain distribution in the crystal, largely concentrated at the twin boundaries and the surface along with the presence of facets and surface steps leading to a noncircular cross section of the wires. These structural aspects are critical inputs needed to determine their unique electronic character and their potential as a suitable catalyst material. Furthermore, electron-beam-induced structural changes at the atomic scale, having implications on their mechanical behavior and their suitability as interconnects, are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330542900061 Publication Date 2013-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (up) 20 Open Access  
  Notes FWO; Countatoms; Hercules Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:113856 Serial 199  
Permanent link to this record
 

 
Author Shi, H.; Frenzel, J.; Martinez, G.T.; Van Rompaey, S.; Bakulin, A.; Kulkova, A.; Van Aert, S.; Schryvers, D. pdf  doi
openurl 
  Title Site occupation of Nb atoms in ternary Ni-Ti-Nb shape memory alloys Type A1 Journal article
  Year 2014 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 74 Issue Pages 85-95  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nb occupancy in the austenite B2-NiTi matrix and Ti2Ni phase in NiTiNb shape memory alloys was investigated by aberration-corrected scanning transmission electron microscopy and precession electron diffraction. In both cases, Nb atoms were found to prefer to occupy the Ti rather than Ni sites. A projector augmented wave method within density functional theory was used to calculate the atomic and electronic structures of the austenitic B2-NiTi matrix phase and the Ti2Ni precipitates both with and without addition of Nb. The obtained formation energies and analysis of structural and electronic characteristics explain the preference for Ti sites for Nb over Ni sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000338621400009 Publication Date 2014-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited (up) 21 Open Access  
  Notes Approved Most recent IF: 5.301; 2014 IF: 4.465  
  Call Number UA @ lucian @ c:irua:118334 Serial 3028  
Permanent link to this record
 

 
Author Ren, P.; Zhang, T.; Jain, N.; Ching, H.Y.V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L.; Rokicinska, A.; Debroye, E.; Kustrowski, P.; Van Doorslaer, S.; Van Aert, S.; Bals, S.; Das, S. pdf  doi
openurl 
  Title An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the Water Oxidation Reaction (WOR) Type A1 Journal article
  Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 30 Pages 16584-16596  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Organic synthesis (ORSY); Theory and Spectroscopy of Molecules and Materials (TSM²)  
  Abstract In this work, we have fabricatedan aryl amino-substitutedgraphiticcarbon nitride (g-C3N4) catalyst with atomicallydispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibitedexcellent reactivity, obtaining up to 2230 & mu;M H2O2 in 7 h from alkaline water and up to 1800 & mu;Mfrom seawater under identical conditions. More importantly, the catalystwas quickly recovered for subsequent reuse without appreciable lossin performance. Interestingly, unlike the usual two-electron oxygenreduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction(WOR) process in which both the direct and indirect WOR processesoccurred; namely, photoinduced h(+) directly oxidized H2O to H2O2 via a one-step 2e(-) WOR, and photoinduced h(+) first oxidized a hydroxide (OH-) ion to generate a hydroxy radical ((OH)-O-& BULL;), and H2O2 was formed indirectly by thecombination of two (OH)-O-& BULL;. We have characterized thematerial, at the catalytic sites, at the atomic level using electronparamagnetic resonance, X-ray absorption near edge structure, extendedX-ray absorption fine structure, high-resolution transmission electronmicroscopy, X-ray photoelectron spectroscopy, magic-angle spinningsolid-state NMR spectroscopy, and multiscale molecular modeling, combiningclassical reactive molecular dynamics simulations and quantum chemistrycalculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034983300001 Publication Date 2023-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited (up) 21 Open Access Not_Open_Access  
  Notes S.D. thanks the IOF grant and Francqui start up grant from the University of Antwerp, Belgium, for the financial support. P.R. thanks CSC and T.Z. thanks FWO for their financial assistance to finish this work. E.D. would like to thank the KU Leuven Research Fund for financial support through STG/21/010. J.S.A. acknowledges financial support from MCIN/AEI/10.13039/501100011033 and EU NextGeneration/PRTR (Project PCI2020-111968/3D-Photocat) and Diamond Synchrotron (rapid access proposal SP32609). This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). S.B. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium, project G.0346.21 N). We also thank Mr. Jian Zhu and Mr. Shahid Ullah Khan from the University of Antwerp, Belgium, for helpful discussions. Approved Most recent IF: 15; 2023 IF: 13.858  
  Call Number UA @ admin @ c:irua:198426 Serial 8831  
Permanent link to this record
 

 
Author Egoavil, R.; Gauquelin, N.; Martinez, G.T.; Van Aert, S.; Van Tendeloo, G.; Verbeeck, J. pdf  url
doi  openurl
  Title Atomic resolution mapping of phonon excitations in STEM-EELS experiments Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 147 Issue Pages 1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberration-corrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalized due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100 meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localization of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000343157400001 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 22 Open Access  
  Notes 246102 IFOX; 278510 VORTEX; 246791 COUNTATOMS; Hercules; 312483 ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.843; 2014 IF: 2.436  
  Call Number UA @ lucian @ c:irua:118332UA @ admin @ c:irua:118332 Serial 177  
Permanent link to this record
 

 
Author den Dekker, A.J.; Van Aert, S.; van Dyck, D.; van den Bos, A.; Geuens, P. doi  openurl
  Title Does a monochromator improve the precision in quantitative HRTEM? Type A1 Journal article
  Year 2001 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 89 Issue Pages 275-290  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000172667000004 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 22 Open Access  
  Notes Approved Most recent IF: 2.843; 2001 IF: 1.890  
  Call Number UA @ lucian @ c:irua:47518 Serial 746  
Permanent link to this record
 

 
Author Liao, Z; , Green, R.J; Gauquelin, N; Macke, S.; Li, L.; Gonnissen, J; Sutarto, R.; Houwman, E.P.; Zhong, Z.; Van Aert, S.; Verbeeck, J.; Sawatzky, G.A.; Huijben, M.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title Long-Range Domain Structure and Symmetry Engineering by Interfacial Oxygen Octahedral Coupling at Heterostructure Interface Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 26 Issue 26 Pages 6627-6634  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which is accompanyed by a change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of sixfold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, it is unraveled how the local oxygen octahedral coupling at perovskite heterostructural interfaces strongly influences the domain structure and symmetry of the epitaxial films resulting in design rules to induce various structures in thin films using carefully selected combinations of substrate/buffer/film. Very interestingly it is discovered that these combinations lead to structure changes throughout the full thickness of the film. The results provide a deep insight into understanding the origin of induced structures in a perovskite heterostructure and an intelligent route to achieve unique functional properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384809800010 Publication Date 2016-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited (up) 23 Open Access  
  Notes We thank B. Keimer for valuable discussions. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G., J.G., S.V.A., J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan.; esteem2jra2; esteem2jra3; ECASJO_; Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:144663UA @ admin @ c:irua:144663 Serial 4106  
Permanent link to this record
 

 
Author Gonnissen, J.; Batuk, D.; Nataf, G.F.; Jones, L.; Abakumov, A.M.; Van Aert, S.; Schryvers, D.; Salje, E.K.H. pdf  doi
openurl 
  Title Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 26 Issue 26 Pages 7599-7604  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Direct observations of the ferroelectric domain boundaries in LiNbO3 are performed using high-resolution high-angle annular dark field scanning transmission electron microscopy imaging, revealing a very narrow width of the domain wall between the 180° domains. The domain walls demonstrate local side-way meandering, which results in inclinations even when the overall wall orientation follows the ferroelectric polarization. These local meanders contain kinks with “head-to-head” and “tail-to-tail” dipolar configurations and are therefore locally charged. The charged meanders are confined to a few cation layers along the polarization direction and are separated by longer stretches of straight domain walls.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388166700006 Publication Date 2016-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited (up) 23 Open Access  
  Notes J.G. acknowledges the support from the Research Foundation Flanders (FWO, Belgium) through various project fundings (G.0368.15N, G.0369.15N, and G.0374.13N), as well as the financial support from the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement no. 312483 (ESTEEM2). The authors thank J. Hadermann for useful suggestions on the interpretation of the HAADFSTEM images. E.K.H.S. thanks the EPSRC (EP/K009702/1) and the Leverhulme Trust (EM-2016-004) for support. G.F.N. thanks the National Research Fund, Luxembourg (FNR/P12/4853155/Kreisel) for support.; esteem2_jra2 Approved Most recent IF: 12.124  
  Call Number c:irua:135336 c:irua:135336 Serial 4129  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title High resolution electron tomography Type A1 Journal article
  Year 2013 Publication Current opinion in solid state and materials science Abbreviated Journal Curr Opin Solid St M  
  Volume 17 Issue 3 Pages 107-114  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaching atomic resolution in 3D has been the ultimate goal in the field of electron tomography for many years. Significant progress, both on the theoretical as well as the experimental side has recently resulted in several exciting examples demonstrating the ability to visualise atoms in 3D. In this paper, we will review the different steps that have pushed the resolution in 3D to the atomic level. A broad range of methodologies and practical examples together with their impact on materials science will be discussed. Finally, we will provide an outlook and will describe future challenges in the field of high resolution electron tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000323869800003 Publication Date 2013-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-0286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.938 Times cited (up) 24 Open Access  
  Notes Fwo; 312483 Esteem; Countatoms; Approved Most recent IF: 6.938; 2013 IF: 7.167  
  Call Number UA @ lucian @ c:irua:109454 Serial 1457  
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Van Aert, S. pdf  url
doi  openurl
  Title Optimal experimental design for nano-particle atom-counting from high-resolution STEM images Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 151 Issue 151 Pages 46-55  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present paper, the principles of detection theory are used to quantify the probability of error for atom-counting from high resolution scanning transmission electron microscopy (HR STEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom-counting using the expression for the probability of error. We show that for very thin objects LAADF is optimal and that for thicker objects the optimal inner detector angle increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351237800007 Publication Date 2014-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 24 Open Access  
  Notes 312483 Esteem2; Fwo G039311; G037413; esteem2_jra2 Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:123926 c:irua:123926 Serial 2481  
Permanent link to this record
 

 
Author Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title Direct structure inversion from exit waves: part 1: theory and simulations Type A1 Journal article
  Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 110 Issue 5 Pages 527-534  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In order to interpret the amplitude and phase of the exit wave in terms of mass and position of the atoms, one has to invert the dynamic scattering of the electrons in the object so as to obtain a starting structure which can then be used as a seed for further quantitative structure refinement. This is especially challenging in case of a zone axis condition when the interaction of the electrons with the atom column is very strong. Based on the channelling theory we will show that the channelling map not only yields a circle on the Argand plot but also a circular defocus curve for every column. The former gives the number of atoms in each column, while the latter provides the defocus value for each column, which reveals the surface roughness at the exit plane with single atom sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000279065700019 Publication Date 2009-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 25 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063  
  Call Number UA @ lucian @ c:irua:83691 Serial 723  
Permanent link to this record
 

 
Author Martinez, G.T.; de Backer, A.; Rosenauer, A.; Verbeeck, J.; Van Aert, S. pdf  url
doi  openurl
  Title The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images Type A1 Journal article
  Year 2014 Publication Micron Abbreviated Journal Micron  
  Volume 63 Issue Pages 57-63  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Quantitative structural and chemical information can be obtained from high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images when using statistical parameter estimation theory. In this approach, we assume an empirical parameterized imaging model for which the total scattered intensities of the atomic columns are estimated. These intensities can be related to the material structure or composition. Since the experimental probe profile is assumed to be known in the description of the imaging model, we will explore how the uncertainties in the probe profile affect the estimation of the total scattered intensities. Using multislice image simulations, we analyze this effect for Cs corrected and non-Cs corrected microscopes as a function of inaccuracies in cylindrically symmetric aberrations, such as defocus and spherical aberration of third and fifth order, and non-cylindrically symmetric aberrations, such as 2-fold and 3-fold astigmatism and coma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000338402500011 Publication Date 2014-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited (up) 25 Open Access  
  Notes FWO (G.0393.11; G.0064.10; G.0374.13; G.0044.13); European Research Council under the 7th Framework Program (FP7); ERC GrantNo. 246791-COUNTATOMS and ERC Starting Grant No. 278510-VORTEX. A.R. thanks the DFG under contract number RO2057/8-1.The research leading to these results has received funding fromthe European Union 7th Framework Programme [FP7/2007-2013]under grant agreement no. 312483 (ESTEEM2).; esteem2ta ECASJO; Approved Most recent IF: 1.98; 2014 IF: 1.988  
  Call Number UA @ lucian @ c:irua:113857UA @ admin @ c:irua:113857 Serial 831  
Permanent link to this record
 

 
Author Jany, B.R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K.H.W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F. url  doi
openurl 
  Title Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 7 Pages 42420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393940700001 Publication Date 2017-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited (up) 25 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the financial support from the Polish National Science Center, grant no. DEC-2012/07/B/ST5/00906. N.G., G.V.T. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. The Research Foundation Flanders is acknowledged through project fundings (G.0374.13N, G.0368.15N, G.0369.15N) and for a Ph.D. research grant to K.H.W.v.d.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. T.W. acknowledges the Swedish Research Council for an international postdoc grant. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483–ESTEEM2 (Integrated Infrastructure Initiative–I3). Part of the research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). Approved Most recent IF: 4.259  
  Call Number EMAT @ emat @ c:irua:140846UA @ admin @ c:irua:140846 Serial 4423  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Krause, F.F.; Winkler, F.; Béché, A.; Verbeeck, J.; Van Aert, S.; Rosenauer, A. pdf  url
doi  openurl
  Title Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue 203 Pages 95-104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465021000013 Publication Date 2018-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 25 Open Access OpenAccess  
  Notes ; The direct electron detector (Medipix3 Merlin) was funded by the Hercules fund from the Flemish Government. K. Muller-Caspary acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigator Group moreSTEM (VH-NG-1317) at Forschungszentrum Julich, Germany. F. F. Krause acknowledges funding from the Central Research Development Fund of the University of Bremen, Germany. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:160213 Serial 5242  
Permanent link to this record
 

 
Author Milagres de Oliveira, T.; Albrecht, W.; González-Rubio, G.; Altantzis, T.; Lobato Hoyos, I.P.; Béché, A.; Van Aert, S.; Guerrero-Martínez, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue Pages acsnano.0c02610  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000586793400016 Publication Date 2020-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited (up) 25 Open Access OpenAccess  
  Notes This project has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants #815128 – REALNANO and #770887 – PICOMETRICS). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and G.0267.18N. W.A. acknowledges an Individual Fellowship funded by the Marie 27 Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). G.G.-R. acknowledge receipt of FPI Fellowship from the Spanish MINECO. This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00 and MAT2017-86659-R) and the Madrid Regional Government (Grant P2018/NMT-4389). A.B. acknowledges funding from FWO project G093417N and from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720); Comunidad de Madrid, P2018/NMT-4389 ; Ministerio de Ciencia, Innovación y Universidades, MAT2017-86659-R RTI2018-095844-B-I00 ; Ministerio de Economía y Competitividad; H2020 Marie Sklodowska-Curie Actions, 797153 ; Fonds Wetenschappelijk Onderzoek, G.0267.18N G.0381.16N G093417N ; H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 770887 815128 ; Agencia Estatal de Investigación, Ministerio de Ciencia, Innovación y Universidades, MDM-2017-0720 ; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:172440 Serial 6426  
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; den Dekker, A.J.; van den Bos, A. doi  openurl
  Title Is atomic resolution transmission electron microscopy able to resolve and refine amorphous structures? Type A1 Journal article
  Year 2003 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 98 Issue Pages 27-42  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000186831500003 Publication Date 2003-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 26 Open Access  
  Notes Approved Most recent IF: 2.843; 2003 IF: 1.665  
  Call Number UA @ lucian @ c:irua:47516 Serial 1749  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Grieb, T.; Müßener, J.; Gauquelin, N.; Hille, P.; Schörmann, J.; Verbeeck, J.; Van Aert, S.; Eickhoff, M.; Rosenauer, A. pdf  url
doi  openurl
  Title Electrical Polarization in AlN/GaN Nanodisks Measured by Momentum-Resolved 4D Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 122 Issue 10 Pages 106102  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the mapping of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures at unit cell resolution as a key for the correlation of optical and structural phenomena in semiconductor optoelectronics. Momentum-resolved aberration-corrected scanning transmission electron microscopy is employed as a new imaging mode that simultaneously provides four-dimensional data in real and reciprocal space. We demonstrate how internal mesoscale and atomic electric fields can be separated in an experiment, which is verified by comprehensive dynamical simulations of multiple electron scattering. A mean difference of 5.3 +- 1.5 MV/cm is found for the polarization-induced electric fields in AlN and GaN, being in accordance with dedicated simulations and photoluminescence measurements in previous publications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461067700007 Publication Date 2019-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited (up) 26 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the help of Natalie Claes for analyzing the EDX data. K. M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Young Investigator Group moreSTEM under Contract No. VHNG- 1317 at Forschungszentrum Jülich in Germany. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. N. G. and J. V. acknowledge funding from the Geconcentreerde Onderzoekacties project Solarpaint of the University of Antwerp. T. G. and A. R. acknowledge support from the Deutsche Forschungsgemeinschaft (Germany) under Contract No. RO2057/8-3. This work also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Contract No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N).; Helmholtz Association, VH-NG-1317 ; Forschungszentrum Jülich; Flemish Government; Universiteit Antwerpen; Deutsche Forschungsgemeinschaft, RO2057/8-3 ; H2020 European Research Council, 770887 ; Fonds Wetenschappelijk Onderzoek, G.0368.15N ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @UA @ admin @ c:irua:158120 Serial 5157  
Permanent link to this record
 

 
Author Martinez, G.T.; Jones, L.; de Backer, A.; Béché, A.; Verbeeck, J.; Van Aert, S.; Nellist, P.D. pdf  url
doi  openurl
  Title Quantitative STEM normalisation : the importance of the electron flux Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 159 Issue 159 Pages 46-58  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Annular dark-field (ADF) scanning transmission electron microscopy (STEM) has become widely used in quantitative studies based on the opportunity to directly compare experimental and simulated images. This comparison merely requires the experimental data to be normalised and expressed in units of fractional beam-current. However, inhomogeneities in the response of electron detectors can complicate this normalisation. The quantification procedure becomes both experiment and instrument specific, requiring new simulations for the particular response of each instrument's detector, and for every camera-length used. This not only impedes the comparison between different instruments and research groups, but can also be computationally very time consuming. Furthermore, not all image simulation methods allow for the inclusion of an inhomogeneous detector response. In this work, we propose an alternative method for normalising experimental data in order to compare these with simulations that consider a homogeneous detector response. To achieve this, we determine the electron flux distribution reaching the detector by means of a camera-length series or a so-called atomic column cross-section averaged convergent beam electron diffraction (XSACBED) pattern. The result is then used to determine the relative weighting of the detector response. Here we show that the results obtained by this new electron flux weighted (EFW) method are comparable to the currently used method, while considerably simplifying the needed simulation libraries. The proposed method also allows one to obtain a metric that describes the quality of the detector response in comparison with the ideal detector response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000366220000006 Publication Date 2015-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 27 Open Access  
  Notes 246791 Countatoms; 278510 Vortex; 312483 Esteem2; Fwo G036815; G036915; G037413; G004413; esteem2ta ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:127293 c:irua:127293UA @ admin @ c:irua:127293 Serial 2762  
Permanent link to this record
 

 
Author de Backer, A.; Martinez, G.T.; MacArthur, K.E.; Jones, L.; Béché, A.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 151 Issue 151 Pages 56-61  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351237800008 Publication Date 2014-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 29 Open Access  
  Notes 312483 Esteem2; 278510 Vortex; Fwo G039311; G006410; G037413; esteem2ta; ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:123927 c:irua:123927 Serial 753  
Permanent link to this record
 

 
Author Skorikov, A.; Albrecht, W.; Bladt, E.; Xie, X.; van der Hoeven, J.E.S.; van Blaaderen, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Quantitative 3D Characterization of Elemental Diffusion Dynamics in Individual Ag@Au Nanoparticles with Different Shapes Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 13421-13429  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Anisotropic bimetallic nanoparticles are promising candidates for plasmonic and catalytic applications. Their catalytic performance and plasmonic properties are closely linked to the distribution of the two metals, which can change during applications in which the particles are exposed to heat. Due to this fact, correlating the thermal stability of complex heterogeneous nanoparticles to their microstructural properties is of high interest for the practical applications of such materials. Here, we employ quantitative electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADFSTEM) mode to measure the 3D elemental diffusion dynamics in individual anisotropic Au−Ag nanoparticles upon heating in situ. This approach allows us to study the elemental redistribution in complex, asymmetric nanoparticles on a single particle level, which has been inaccessible to other techniques so far. In this work, we apply the proposed method to compare the alloying dynamics of Au−Ag nanoparticles with different shapes and compositions and find that the shape of the nanoparticle does not exhibit a significant effect on the alloying speed whereas the composition does. Finally, comparing the experimental results to diffusion simulations allows us to estimate the diffusion coefficients of the metals for individual nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000500650000115 Publication Date 2019-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (up) 29 Open Access OpenAccess  
  Notes This project has received funding from the European Commission (grant 731019, EUSMI) and European Research Council (ERC Consolidator Grants 815128, REALNANO; 770887, PICOMETRICS; 648991, 3MC; and ERC Advanced Grant 291667, HierarSACol). This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 823717, ESTEEM3. W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). E.B. acknowledges a postdoctoral grant 12T2719N from the Research Foundation Flanders (FWO, Belgium). X.X. acknowledges financial support from the EU H2020-MSCAITN-2015 project 676045, MULTIMAT. The authors also acknowledge financial support by the Research Foundation Flanders (FWO grants G038116N, G026718N, and G036915N).; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:164061 Serial 5379  
Permanent link to this record
 

 
Author Monai, M.; Jenkinson, K.; Melcherts, A.E.M.; Louwen, J.N.; Irmak, E.A.; Van Aert, S.; Altantzis, T.; Vogt, C.; van der Stam, W.; Duchon, T.; Smid, B.; Groeneveld, E.; Berben, P.; Bals, S.; Weckhuysen, B.M. pdf  url
doi  openurl
  Title Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis Type A1 Journal article
  Year 2023 Publication Science Abbreviated Journal  
  Volume 380 Issue 6645 Pages 644-651  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Reducible supports can affect the performance of metal catalysts by the formation of suboxide overlayers upon reduction, a process referred to as the strong metal-support interaction (SMSI). A combination of operando electron microscopy and vibrational spectroscopy revealed that thin TiOx overlayers formed on nickel/titanium dioxide catalysts during 400 degrees C reduction were completely removed under carbon dioxide hydrogenation conditions. Conversely, after 600 degrees C reduction, exposure to carbon dioxide hydrogenation reaction conditions led to only partial reexposure of nickel, forming interfacial sites in contact with TiOx and favoring carbon-carbon coupling by providing a carbon species reservoir. Our findings challenge the conventional understanding of SMSIs and call for more-detailed operando investigations of nanocatalysts at the single-particle level to revisit static models of structure-activity relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000999020900010 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited (up) 29 Open Access OpenAccess  
  Notes This work was supported by BASF and NWO CHIPP (research grant to B.M.W.); the MCEC NWO Gravitation Program (B.M.W.); the ARC-CBBC NWO Program (B.M.W.); the European Research Council (grant 770887 PICOMETRICS to S.V.A.); and the European Research Council (grant 815128 REALNANO to S.B.). Approved Most recent IF: 56.9; 2023 IF: 37.205  
  Call Number UA @ admin @ c:irua:197432 Serial 8923  
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Martinez, G.T.; den Dekker, A.J.; Van Dyck, D.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Advanced electron crystallography through model-based imaging Type A1 Journal article
  Year 2016 Publication IUCrJ Abbreviated Journal Iucrj  
  Volume 3 Issue 3 Pages 71-83  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Engineering Management (ENM)  
  Abstract The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368590900010 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-2525; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.793 Times cited (up) 30 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a PhD grant to ADB. The research leading to these results has received funding from the European Union 7th Framework Program (FP7/20072013) under grant agreement No. 312483 (ESTEEM2). SB and GVT acknowledge the European Research Council under the 7th Framework Program (FP7), ERC grant No. 335078 – COLOURATOMS and ERC grant No. 246791 – COUNTATOMS.; esteem2jra2; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 5.793  
  Call Number c:irua:129589 c:irua:129589 Serial 3965  
Permanent link to this record
 

 
Author den Dekker, A.J.; Gonnissen, J.; de Backer, A.; Sijbers, J.; Van Aert, S. pdf  doi
openurl 
  Title Estimation of unknown structure parameters from high-resolution (S)TEM images : what are the limits? Type A1 Journal article
  Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 134 Issue Pages 34-43  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Statistical parameter estimation theory is proposed as a quantitative method to measure unknown structure parameters from electron microscopy images. Images are then purely considered as data planes from which structure parameters have to be determined as accurately and precisely as possible using a parametric statistical model of the observations. For this purpose, an efficient algorithm is proposed for the estimation of atomic column positions and intensities from high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. Furthermore, the so-called CramérRao lower bound (CRLB) is reviewed to determine the limits to the precision with which continuous parameters such as atomic column positions and intensities can be estimated. Since this lower bound can only be derived for continuous parameters, alternative measures using the principles of detection theory are introduced for problems concerning the estimation of discrete parameters such as atomic numbers. An experimental case study is presented to show the practical use of these measures for the optimization of the experiment design if the purpose is to decide between the presence of specific atom types using STEM images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000324474900006 Publication Date 2013-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 31 Open Access  
  Notes FWO; FP 2007-2013; Esteem2; esteem2_jra2 Approved Most recent IF: 2.843; 2013 IF: 2.745  
  Call Number UA @ lucian @ c:irua:109240 Serial 1083  
Permanent link to this record
 

 
Author Van Aert, S.; Geuens, P.; van Dyck, D.; Kisielowski, C.; Jinschek, J.R. doi  openurl
  Title Electron channelling based crystallography Type A1 Journal article
  Year 2007 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 107 Issue 6/7 Pages 551-558  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000245341300015 Publication Date 2006-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 32 Open Access  
  Notes Approved Most recent IF: 2.843; 2007 IF: 1.996  
  Call Number UA @ lucian @ c:irua:64286 Serial 913  
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van Dyck, D.; van den Bos, A. doi  openurl
  Title High-resolution electron microscopy and electron tomography: resolution versus precision Type A1 Journal article
  Year 2002 Publication Journal of structural biology Abbreviated Journal J Struct Biol  
  Volume 138 Issue Pages 21-33  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000177978800003 Publication Date 2002-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1047-8477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.767 Times cited (up) 33 Open Access  
  Notes Approved Most recent IF: 2.767; 2002 IF: 4.194  
  Call Number UA @ lucian @ c:irua:47520 Serial 1446  
Permanent link to this record
 

 
Author De Backer, A.; Jones, L.; Lobato, I.; Altantzis, T.; Goris, B.; Nellist, P.D.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities Type A1 Journal article
  Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 9 Issue 9 Pages 8791-8798  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to fully exploit structure–property relations of nanomaterials, three-dimensional (3D) characterization at the atomic scale is often required. In recent years, the resolution of electron tomography has reached the atomic scale. However, such tomography typically requires several projection images demanding substantial electron dose. A newly developed alternative circumvents this by counting the number of atoms across a single projection. These atom counts can be used to create an initial atomic model with which an energy minimization can be applied to obtain a relaxed 3D reconstruction of the nanoparticle. Here, we compare, at the atomic scale, this single projection reconstruction approach with tomography and find an excellent agreement. This new approach allows for the characterization of beam-sensitive materials or where the acquisition of a tilt series is impossible. As an example, the utility is illustrated by the 3D atomic scale characterization of a nanodumbbell on an in situ heating holder of limited tilt range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404614700031 Publication Date 2017-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited (up) 33 Open Access OpenAccess  
  Notes The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and postdoctoral grants to T. Altantzis, A. De Backer, and B. Goris. S. Bals acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078). Funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiatieve-I3) is acknowledged. The authors would also like to thank Luis Liz-Marzán, Marek Grzelczak, and Ana Sánchez-Iglesias for sample provision. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @ c:irua:144436UA @ admin @ c:irua:144436 Serial 4617  
Permanent link to this record
 

 
Author Gauquelin, N.; van den Bos, K.H.W.; Béché, A.; Krause, F.F.; Lobato, I.; Lazar, S.; Rosenauer, A.; Van Aert, S.; Verbeeck, J. pdf  url
doi  openurl
  Title Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 181 Issue 181 Pages 178-190  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO3-La0.67Sr0.33MnO3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411170800022 Publication Date 2017-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 34 Open Access OpenAccess  
  Notes The authors acknowledge financial support from Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N), and by a Ph.D. grant to K.H.W.v.d.B. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. A.B. and N.G. acknowledge the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no.280432) which partly funded this study. N.G., A.B. and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft under Contract No. RO 2057/4-2 and the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2. We thank Prof. G. Koster from the University of Twente for kindly providing us with the LSMO-NGO test sample. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:144435UA @ admin @ c:irua:144435 Serial 4620  
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van Dyck, D.; van den Bos, A. doi  openurl
  Title Optimal experimental design of STEM measurement of atom column positions Type A1 Journal article
  Year 2002 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 90 Issue Pages 273-289  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000174770900004 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 35 Open Access  
  Notes Approved Most recent IF: 2.843; 2002 IF: 1.772  
  Call Number UA @ lucian @ c:irua:47517 Serial 2483  
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; van Dyck, D.; Chen, J.H. pdf  doi
openurl 
  Title Maximum likelihood estimation of structure parameters from high resolution electron microscopy images : part 2 : a practical example Type A1 Journal article
  Year 2005 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 104 Issue 2 Pages 107-125  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000230526400002 Publication Date 2005-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 37 Open Access  
  Notes Approved Most recent IF: 2.843; 2005 IF: 2.490  
  Call Number UA @ lucian @ c:irua:57131 Serial 1960  
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.; Bertoni, G. pdf  doi
openurl 
  Title Model-based quantification of EELS spectra: including the fine structure Type A1 Journal article
  Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 106 Issue 11-12 Pages 976-980  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An extension to model-based electron energy loss spectroscopy (EELS) quantification is reported to improve the possibility of modelling fine structure changes in electron energy loss spectra. An equalisation function is used in the energy loss near edge structure (ELNES) region to model the differences between a single atom differential cross section and the cross section for an atom in a crystal. The equalisation function can be shown to approximate the relative density of unoccupied states for the given excitation edge. On a set of 200 experimental h-BN spectra, this technique leads to statistically acceptable models resulting into unbiased estimates of relative concentrations and making the estimated precisions come very close to the Cramer-Rao lower bound (CRLB). The method greatly expands the useability of model-based EELS quantification to spectra with pronounced fine structure. Another benefit of this model is that one also gets an estimate of the unoccupied density of states for a given excitation edge, without having to do background removal and deconvolution, making the outcome intrinsically more reliable and less noisy. (c) 2006 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000241592900004 Publication Date 2006-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 38 Open Access  
  Notes Goa; Fwo Iap-V Approved Most recent IF: 2.843; 2006 IF: 1.706  
  Call Number UA @ lucian @ c:irua:61379UA @ admin @ c:irua:61379 Serial 2102  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: