toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, B.; Gauquelin, N.; Reith, P.; Halisdemir, U.; Jannis, D.; Spreitzer, M.; Huijben, M.; Abel, S.; Fompeyrine, J.; Verbeeck, J.; Hilgenkamp, H.; Rijnders, G.; Koster, G. pdf  doi
openurl 
  Title Thermal-strain-engineered ferromagnetism of LaMnO3/SrTiO3 heterostructures grown on silicon Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials  
  Volume 4 Issue 2 Pages 024406  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The integration of oxides on Si remains challenging, which largely hampers the practical applications of oxide-based electronic devices with superior performance. Recently, LaMnO3/SrTiO3 (LMO/STO) heterostructures have gained renewed interest for the debating origin of the ferromagnetic-insulating ground state as well as for their spin-filter applications. Here we report on the structural and magnetic properties of high-quality LMO/STO heterostructures grown on silicon. The chemical abruptness across the interface was investigated by atomic-resolution scanning transmission electron microscopy. The difference in the thermal expansion coefficients between LMO and Si imposed a large biaxial tensile strain to the LMO film, resulting in a tetragonal structure with c/a∼ 0.983. Consequently, we observed a significantly suppressed ferromagnetism along with an enhanced coercive field, as compared to the less distorted LMO film (c/a∼1.004) grown on STO single crystal. The results are discussed in terms of tensile-strain enhanced antiferromagnetic instabilities. Moreover, the ferromagnetism of LMO on Si sharply disappeared below a thickness of 5 unit cells, in agreement with the LMO/STO case, pointing to a robust critical behavior irrespective of the strain state. Our results demonstrate that the growth of oxide films on Si can be a promising way to study the tensile-strain effects in correlated oxides, and also pave the way towards the integration of multifunctional oxides on Si with atomic-layer control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000513552900003 Publication Date 2020-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 6 Open Access Not_Open_Access  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G093417N ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; European Commission, H2020-ICT-2016-1-732642 ; Approved Most recent IF: 3.4; 2020 IF: NA  
  Call Number EMAT @ emat @c:irua:167782 Serial (up) 6375  
Permanent link to this record
 

 
Author Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S. pdf  url
doi  openurl
  Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials  
  Volume 4 Issue 2 Pages 026001  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000513551200007 Publication Date 2020-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 13 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA  
  Call Number EMAT @ emat @c:irua:167787 Serial (up) 6376  
Permanent link to this record
 

 
Author Canossa, S.; Ji, Z.; Wuttke, S. url  doi
openurl 
  Title Circumventing Wear and Tear of Adaptive Porous Materials Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 1908547  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The assessment of the architectural stability of molecular porous materials is not yet a common practice, but critical to their understanding and development. The conformational adaptation of porous materials to guest binding and other chemical dynamics poses a risk of architectural damage, leading to performance deterioration during their prolonged usage. The deformation of the framework backbone and the disconnection of building units are driven by chemical, mechanical, and thermal perturbations, and can be quantitatively described by the term connection completeness. Analytical means that can be used to measure this parameter are presented in order to provide a standard, practical protocol for evaluating architectural damage made to framework materials. Preventive and remedial strategies are proposed for enhancing the architectural integrity of frameworks without compromising their functional mechanisms, paving the way to the design of robust yet adaptive materials. In this way, the discussion on architectural stability is initiated, and readers are encouraged to carefully characterize molecular porous materials for a better understanding of their structure-property relationship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000511238300001 Publication Date 2020-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12ZV120N ; Approved Most recent IF: 19; 2020 IF: 12.124  
  Call Number EMAT @ emat @c:irua:166505 Serial (up) 6387  
Permanent link to this record
 

 
Author Canossa, S.; Gonzalez-Nelson, A.; Shupletsov, L.; Carmen Martin, M.; Van der Veen, M.A. url  doi
openurl 
  Title Overcoming Crystallinity Limitations of Aluminium Metal-Organic Frameworks by Oxalic Acid Modulated Synthesis Type A1 Journal article
  Year 2020 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume 26 Issue 16 Pages 3564-3570  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A modulated synthesis approach based on the chelating properties of oxalic acid (H2C2O4) is presented as a robust and versatile method to achieve highly crystalline Al‐based metal‐organic frameworks. A comparative study on this method and the already established modulation by hydrofluoric acid was conducted using MIL‐53 as test system. The superior performance of oxalic acid modulation in terms of crystallinity and absence of undesired impurities is explained by assessing the coordination modes of the two modulators and the structural features of the product. The validity of our approach was confirmed for a diverse set of Al‐MOFs, namely X‐MIL‐53 (X=OH, CH3O, Br, NO2), CAU‐10, MIL‐69, and Al(OH)ndc (ndc=1,4‐naphtalenedicarboxylate), highlighting the potential benefits of extending the use of this modulator to other coordination materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517650300001 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited Open Access OpenAccess  
  Notes The Elettra Synchrotron facility (CNR Trieste, Basovizza, Italy) is acknowledged for granting beamtime at the single-crystal diffraction beamline XRD1 (Proposal ID 20185483) and the beamline staff is gratefully thanked for the precious assistance. This work was funded by the European Research Council (grant number 759 212) within the Horizon 2020 Framework Programme (H2020-EU.1.1). The work by A.G.-N. forms part of the research programme of DPI, NEWPOL project 731.015.506. Approved Most recent IF: 4.3; 2020 IF: 5.317  
  Call Number EMAT @ emat @c:irua:167706 Serial (up) 6388  
Permanent link to this record
 

 
Author González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D.M.; Lobato, I.; Noya, E.G.; Guerrero-Martínez, A.; Taboada, J.M.; Obelleiro, F.; MacDowell, L.G.; Bals, S.; Liz-Marzán, L.M. url  doi
openurl 
  Title Micelle-directed chiral seeded growth on anisotropic gold nanocrystals Type A1 Journal article
  Year 2020 Publication Science Abbreviated Journal Science  
  Volume 368 Issue 368 Pages 1472-1477  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants. Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness. Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (~0.20). Through variation of the dimensions of chiral wrinkles, the chiroptical properties can be tuned within the visible and near-infrared electromagnetic spectrum. The micelle-directed mechanism allows extension to other systems, such as the seeded growth of chiral platinum shells on gold nanorods. This approach provides a reproducible, simple, and scalable method toward the fabrication of NPs with high chiral optical activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000545264600040 Publication Date 2020-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 187 Open Access OpenAccess  
  Notes L.M.L.-M. acknowledges funding from the European Research Council (ERC AdG No. 787510). G.G.-R. and J.M. thanks the Spanish MICIU for FPI (BES-2014-068972) and Juan de la Cierva-fellowships (FJCI-2015-25080). S.B., L.M.L.-M., V.K, and A.P.- T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement No. 731019 (EUSMI) and the ERC Consolidator Grant No. 815128 (REALNANO). J.M.T and F.O acknowledge financial support from the Spanish MICIU (Grants TEC2017-85376-C2-1-R, TEC2017-85376-C2-2-R), as well as from the ERDF and the Galician Regional Government as part of the agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC). AG-M acknowledges financial support from the Spanish MICIU (Grant RTI2018-095844-BI00), EGN and LGM acknowledge funds from the Spanish MICIU (Grant No. FIS2017- 89361-C3-2-P), as well as the use of the Mare-Nostrum supercomputer and the technical support provided by Barcelona Supercomputing Center from the Spanish Network of Supercomputing (Grants QCM-2018-3-0039 and QCM-2019-1-0038). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State 13 Research Agency – Grant No. MDM-2017-0720.; sygma Approved Most recent IF: 56.9; 2020 IF: 37.205  
  Call Number EMAT @ emat @c:irua:170137 Serial (up) 6391  
Permanent link to this record
 

 
Author Li, C.; Sanli, E.S.; Barragan-Yani, D.; Stange, H.; Heinemann, M.-D.; Greiner, D.; Sigle, W.; Mainz, R.; Albe, K.; Abou-Ras, D.; van Aken, P. A. url  doi
openurl 
  Title Secondary-Phase-Assisted Grain Boundary Migration in CuInSe2 Type A1 Journal article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 124 Issue 9 Pages 095702  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Significant structural evolution occurs during the deposition of CuInSe2 solar materials when the Cu content increases. We use in situ heating in a scanning transmission electron microscope to directly observe how grain boundaries migrate during heating, causing nondefected grains to consume highly defected grains. Cu substitutes for In in the near grain boundary regions, turning them into a Cu-Se phase topotactic with the CuInSe2 grain interiors. Together with density functional theory and molecular dynamics calculations, we reveal how this Cu-Se phase makes the grain boundaries highly mobile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518464200009 Publication Date 2020-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes Horizon 2020 Framework Programme, 823717—ESTEEM3 ; Max-Planck-Gesellschaft; Helmholtz Virtual Institute; Approved Most recent IF: 8.6; 2020 IF: 8.462  
  Call Number UA @ lucian @c:irua:167699 Serial (up) 6393  
Permanent link to this record
 

 
Author Celentano, G.; Rizzo, F.; Augieri, A.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; MacManus-Driscoll, J.L.; Feighan, J.; Kursumovic, A.; Meledin, A.; Mayer, J.; Van Tendeloo, G. url  doi
openurl 
  Title YBa2Cu3O7−xfilms with Ba2Y(Nb,Ta)O6nanoinclusions for high-field applications Type A1 Journal article
  Year 2020 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech  
  Volume 33 Issue 4 Pages 044010  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structural and transport properties of YBa2Cu3O7−x films grown by pulsed laser deposition with mixed 2.5 mol% Ba2YTaO6 (BYTO) and 2.5 mol% Ba2YNbO6 (BYNO) double-perovskite secondary phases are investigated in an extended film growth rate, R = 0.02–1.8 nm s−1. The effect of R on the film microstructure analyzed by TEM techniques shows an evolution from sparse and straight to denser, thinner and splayed continuous columns, with mixed BYNO + BYTO (BYNTO) composition, as R increases from 0.02 nm s−1 to 1.2 nm s−1. This microstructure results in very efficient flux pinning at 77 K, leading to a remarkable improvement in the critical current density (J c) behaviour, with the maximum pinning force density F p(Max) = 13.5 GN m−3 and the irreversibility field in excess of 11 T. In this range, the magnetic field values at which the F p is maximized varies from 1 T to 5 T, being related to the BYNTO columnar density. The film deposited when R = 0.3 nm s−1 exhibits the best performances over the whole temperature and magnetic field ranges, achieving F p(Max) = 900 GN m−3 at 10 K and 12 T. At higher rates, R > 1.2 nm s−1, BYNTO columns show a meandering nature and are prone to form short nanorods. In addition, in the YBCO film matrix a more disordered structure with a high density of short stacking faults is observed. From the analysis of the F p(H, T) curves it emerges that in films deposited at the high R limit, the vortex pinning is no longer dominated by BYNTO columnar defects, but by a new mechanism showing the typical temperature scaling law. Even though this microstructure produces a limited improvement at 77 K, it exhibits a strong J c improvement at lower temperature with F p = 700 GN m−3 at 10 K, 12 T and 900 GN m−3 at 4.2 K, 18 T.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525650500001 Publication Date 2020-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access OpenAccess  
  Notes This work was partially financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7/2007–2013) under Grant Agreement No. 280432. This work has been partially carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom programme 2014-2018 and 2019-2020 under grant agreement N° 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3 (Nano-engineered YBCO Superconducting Tapes for High Field Applications, NESTApp). G. C. acknowledges the support of Michele De Angelis for XRD measurements and calculations. Approved Most recent IF: 3.6; 2020 IF: 2.878  
  Call Number UA @ lucian @c:irua:168582 Serial (up) 6394  
Permanent link to this record
 

 
Author Payne, L.M.; Albrecht, W.; Langbein, W.; Borri, P. url  doi
openurl 
  Title The optical nanosizer – quantitative size and shape analysis of individual nanoparticles by high-throughput widefield extinction microscopy Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoparticles are widely utilised for a range of applications, from catalysis to medicine, requiring accurate knowledge of their size and shape. Current techniques for particle characterisation are either not very accurate or time consuming and expensive. Here we demonstrate a rapid and quantitative method for particle analysis based on measuring the polarisation-resolved optical extinction cross-section of hundreds of individual nanoparticles using wide-field microscopy, and determining the particle size and shape from the optical properties. We show measurements on three samples consisting of nominally spherical gold nanoparticles of 20 nm and 30 nm diameter, and gold nanorods of 30 nm length and 10 nm diameter. Nanoparticle sizes and shapes in three dimensions are deduced from the measured optical cross-sections at different wavelengths and light polarisation, by solving the inverse problem, using an ellipsoid model of the particle polarisability in the dipole limit. The sensitivity of the method depends on the experimental noise and the choice of wavelengths. We show an uncertainty down to about 1 nm in mean diameter, and 10% in aspect ratio when using two or three color channels, for a noise of about 50 nm<sup>2</sup>in the measured cross-section. The results are in good agreement with transmission electron microscopy, both 2D projection and tomography, of the same sample batches. Owing to its combination of experimental simplicity, ease of access to statistics over many particles, accuracy, and geometrical particle characterisation in 3D, this “optical nanosizer” method has the potential to become the technique of choice for quality control in next-generation particle manufacturing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558928800022 Publication Date 2020-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes This work was supported by a Welsh Government Life Sciences Bridging Fund (grant LSBF/R6-005) and by the UK EPSRC (grant no. EP/I005072/1 and EP/M028313/1). PB acknowledges the Royal Society for her Wolfson research merit award (grant WM140077). The authors acknowledge funding from the European Commission (Grant EUSMI E191000350). WA acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA) under the EU’s Horizon 2020 program (Grant 797153, SOPMEN), and Sara Bals for supporting the STEM measurements. The bright-field TEM was performed by Thomas Davies at Cardiff University. We acknowledge Attilio Zilli for helpful discussions and contributions in calculating the relative field strengths in the illumination and finite-element simulation of cross-sections shown in the ESI.† We acknowledge Iestyn Pope for technical support of the optical equipment. Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ lucian @c:irua:170485 Serial (up) 6397  
Permanent link to this record
 

 
Author Agrawal, H.; Patra, B.K.; Altantzis, T.; De Backer, A.; Garnett, E.C. url  doi
openurl 
  Title Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 12 Issue 7 Pages 8788-8794  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoparticle self-assembly and epitaxy are utilized extensively to make 1D and 2D structures with complex shapes. High-resolution transmission electron microscopy (HRTEM) has shown that single-crystalline interfaces can form, but little is known about the strain and dislocations at these interfaces. Such information is critically important for applications: drastically reducing

dislocation density was the key breakthrough enabling widespread implementation of light-emitting diodes, while strain engineering has been fundamental to modern high-performance transistors, solar cells, and thermoelectrics. In this work, the interfacial defect and strain formation after selfassembly and room temperature epitaxy of 7 nm Pd nanocubes capped with polyvinylpyrrolidone (PVP) is examined. It is observed that, during ligand removal, the cubes move over large distances on the substrate, leading to both spontaneous self-assembly and epitaxy to form single crystals. Subsequently, atomically resolved images are used to quantify the strain and dislocation density at the epitaxial interfaces between cubes with different lateral and angular misorientations. It is shown that dislocation- and strain-free interfaces form when the nanocubes align parallel to each other. Angular misalignment between adjacent cubes does not necessarily lead to grain boundaries but does cause dislocations, with higher densities associated with larger rotations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515214300101 Publication Date 2020-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; H2020 Research Infrastructures, 731019 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 14846 ; The work at AMOLF is part of the research program of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). This work was supported by the NWO VIDI grant (project no. 14846). The authors would like to thank Reinout Jaarsma and Dr. Sven Askes for helping with the XPS measurements. A.D.B. acknowledges a postdoctoral grant from the research foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement no. 731019 EUSMI. Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number EMAT @ emat @c:irua:167770 Serial (up) 6398  
Permanent link to this record
 

 
Author Paul, S.; Bladt, E.; Richter, A.F.; Döblinger, M.; Tong, Y.; Huang, H.; Dey, A.; Bals, S.; Debnath, T.; Polavarapu, L.; Feldmann, J. url  doi
openurl 
  Title Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defects Type A1 Journal article
  Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit  
  Volume 59 Issue 17 Pages 6794-6799  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of doping Mn2+ ions into II–VI semiconductor nanocrystals (NCs) was recently extended to perovskite NCs. To date, most studies on Mn2+ doped NCs focus on enhancing the emission related to the Mn2+ dopant via an energy transfer mechanism. Herein, we found that the doping of Mn2+ ions into CsPbCl3 NCs not only results in a Mn2+‐related orange emission, but also strongly influences the excitonic properties of the host NCs. We observe for the first time that Mn2+ doping leads to the formation of Ruddlesden–Popper (R.P.) defects and thus induces quantum confinement within the host NCs. We find that a slight doping with Mn2+ ions improves the size distribution of the NCs, which results in a prominent excitonic peak. However, with increasing the Mn2+ concentration, the number of R.P. planes increases leading to smaller single‐crystal domains. The thus enhanced confinement and crystal inhomogeneity cause a gradual blue shift and broadening of the excitonic transition, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525279800024 Publication Date 2020-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 64 Open Access OpenAccess  
  Notes Deutsche Forschungsgemeinschaft, EXC 2089/1-390776260 ; H2020 European Research Council, 815128-REALNANO ; Horizon 2020 Framework Programme, 839042 731019 ; Alexander von Humboldt-Stiftung; We acknowledge financial support by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy—EXC 2089/1‐390776260 (“e‐conversion”), the Alexander von Humboldt Foundation (A.D. and T.D.), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska‐Curie grant agreement No. 839042 (H.H.). E.B. acknowledges a postdoctoral grant 12T2719N from the Research Foundation Flanders (FWO, Belgium). E.B. and S.B. acknowledge the financial support from the European Research Council ERC Consolidator Grants #815128‐REALNANO. L.P. thanks the EU Infrastructure Project EUSMI (European Union's Horizon 2020, grant No 731019). We thank local research center “Center for NanoScience (CeNS)” for providing communicative networking structure. We acknowledge the funding of Nanosystems Initiative Munich (NIM) for color figures.; sygma Approved Most recent IF: 16.6; 2020 IF: 11.994  
  Call Number EMAT @ emat @c:irua:168535 Serial (up) 6399  
Permanent link to this record
 

 
Author Das, P.P.; Guzzinati, G.; Coll, C.; Gomez Perez, A.; Nicolopoulos, S.; Estrade, S.; Peiro, F.; Verbeeck, J.; Zompra, A.A.; Galanis, A.S. url  doi
openurl 
  Title Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy Type A1 Journal article
  Year 2020 Publication Polymers Abbreviated Journal Polymers-Basel  
  Volume 12 Issue 7 Pages 1434  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Organic and biological compounds (especially those related to the pharmaceutical industry) have always been of great interest for researchers due to their importance for the development of new drugs to diagnose, cure, treat or prevent disease. As many new API (active pharmaceutical ingredients) and their polymorphs are in nanocrystalline or in amorphous form blended with amorphous polymeric matrix (known as amorphous solid dispersion—ASD), their structural identification and characterization at nm scale with conventional X-Ray/Raman/IR techniques becomes difficult. During any API synthesis/production or in the formulated drug product, impurities must be identified and characterized. Electron energy loss spectroscopy (EELS) at high energy resolution by transmission electron microscope (TEM) is expected to be a promising technique to screen and identify the different (organic) compounds used in a typical pharmaceutical or biological system and to detect any impurities present, if any, during the synthesis or formulation process. In this work, we propose the use of monochromated TEM-EELS, to analyze selected peptides and organic compounds and their polymorphs. In order to validate EELS for fingerprinting (in low loss/optical region) and by further correlation with advanced DFT, simulations were utilized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000556786700001 Publication Date 2020-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4360 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.364 Times cited 6 Open Access OpenAccess  
  Notes C.C., F.P., S.E. acknowledges the Spanish government for projects MAT2016-79455-P, Research Network RED2018-102609-T and the FPI (BES-2017-080045) grant of Ministerio de Ciència, Innovación y Universidades. G.G. acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO). P.P.D., A.G.P., S.N. gratefully acknowledge much helpful discussion on EELS study for organic compounds with Dr. Andrey Chuvilin (CIC NANOGUNE, Donostia—San Sebastian, Spain). The authors also acknowledge Raúl Arenal (University de Zaragoza, Spain) for useful discussion on EELS. The authors acknowledge also Ulises Julio Amador Elizondo (Universidad CEU San Pablo, Spain) for kindly provide the aripiprazole and piroxicam samples for EELS study.; EUSMI_TA; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:170603 Serial (up) 6400  
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; van Thiel, T.C.; Brzezicki, W.; Hortensius, J.R.; Afanasiev, D.; Gauquelin, N.; Barone, P.; van den Bos, K.H.W.; van Aert, S.; Verbeeck, J.; Filippetti, A.; Picozzi, S.; Cuoco, M.; Caviglia, A.D. pdf  url
doi  openurl
  Title Berry phase engineering at oxide interfaces Type A1 Journal article
  Year 2020 Publication Abbreviated Journal Phys. Rev. Research  
  Volume 2 Issue 2 Pages 023404  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional strontium ruthenate (SrRuO3) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO3 in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO3 exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO3/SrRuO3/SrTiO3 and SrIrO3/SrRuO3/SrIrO3) and asymmetric interfaces (SrTiO3/SrRuO3/SrIrO3). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO3 embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO3 proposed here naturally accounts for these observations and harmonizes a large body of experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603642700008 Publication Date 2020-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2643-1564 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 58 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek; European Research Council; Horizon 2020, 677458 770887 731473 ; Fondazione Cariplo, 2013-0726 ; Narodowe Centrum Nauki, 2016/23/B/ST3/00839 ; Fundacja na rzecz Nauki Polskiej; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:172462 Serial (up) 6401  
Permanent link to this record
 

 
Author Caglak, E.; Govers, K.; Lamoen, D.; Labeau, P.-E.; Verwerft, M. pdf  url
doi  openurl
  Title Atomic scale analysis of defect clustering and predictions of their concentrations in UO2+x Type A1 Journal article
  Year 2020 Publication Journal Of Nuclear Materials Abbreviated Journal J Nucl Mater  
  Volume 541 Issue Pages 152403  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The physical properties of uranium dioxide vary greatly with stoichiometry. Oxidation towards hyperstoichiometric UO2 – UO2+x – might be encountered at various stages of the nuclear fuel cycle if oxidative conditions are met; the impact of stoichiometry changes upon physical properties should therefore be properly assessed to ensure safe and reliable operations. These physical properties are intimately linked to the arrangement of atomic defects in the crystalline structure. The evolution of the defect concentration with environmental parameters – oxygen partial pressure and temperature – were evaluated by means of a point defect model where the reaction energies are derived from atomic-scale simulations. To this end, various configurations and net charge states of oxygen interstitial clusters in UO2 have been calculated. Various methodologies have been tested to determine the optimum cluster configurations and a rigid lattice approach turned out to be the most useful strategy to optimize defect configuration structures. Ultimately, results from the point defect model were discussed and compared to experimental measurements of stoichiometry dependence on oxygen partial pressure and temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000575165800006 Publication Date 2020-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes This work is dedicated to the memory of Prof. Alain Dubus, ULB, Bruxelles, Belgium. Financial support from the SCK CEN is gratefully acknowledged. Approved Most recent IF: 3.1; 2020 IF: 2.048  
  Call Number EMAT @ emat @c:irua:172464 Serial (up) 6402  
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Vázquez-Arias, A.; Bodelon, G.; Skorikov, A.; Núñez-Sanchez, S.; La Porta, A.; Polavarapu, L.; Bals, S.; Liz-Marzán, L.M.; Perez-Juste, J.; Pastoriza-Santos, I. url  doi
openurl 
  Title An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Raman-encoded gold nanoparticles have been widely employed as photostable multifunctional probes for sensing, bioimaging, multiplex diagnostics, and surface-enhanced Raman scattering (SERS)-guided tumor therapy. We report a strategy toward obtaining a particularly large library of Au nanocapsules encoded with Raman codes defined by the combination of different thiol-free Raman reporters, encapsulated at defined molar ratios. The fabrication of SERS tags with tailored size and pre-defined codes is based on the in situ incorporation of Raman reporter molecules inside Au nanocapsules during their formation via Galvanic replacement coupled to seeded growth on Ag NPs. The hole-free closed shell structure of the nanocapsules is confirmed by electron tomography. The unusually wide encoding possibilities of the obtained SERS tags are investigated by means of either wavenumber-based encoding or Raman frequency combined with signal intensity, leading to an outstanding performance as exemplified by 26 and 54 different codes, respectively. We additionally demonstrate that encoded nanocapsules can be readily bioconjugated with antibodies for applications such as SERS-based targeted cell imaging and phenotyping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595533800019 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 14 Open Access OpenAccess  
  Notes L.M.L.-M. acknowledges financial support from the European Research Council (ERC-AdG-4DbioSERS-787510) and the Spanish State Research Agency (Grant No. MDM-2017-0720 and PID2019-108954RB-I00). I.P.-S. and J.P.-J. acknowledge financial support from the Spanish State Research Agency (Grant No. MAT2016-77809-R)) and Ramon Areces Foundation (Grant No. SERSforSAFETY). G.B. acknowledges financial support from CINBIO (Grant number ED431G 2019/07 Xunta de Galicia). S.B. and A.S. acknowledge financial support by the Research Foundation Flanders (FWO grant G038116N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI). S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). We thank Carlos Fernández-Lodeiro and Daniel García-Lojo for their helpful contribution to the SEM characterization and SERS analysis and Veronica Montes-García for her fruitful contribution in the PCA analysis.; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:172492 Serial (up) 6403  
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Guzzinati, G.; Béché, A.; Bender, H.; Verbeeck, J. url  doi
openurl 
  Title HAADF-STEM block-scanning strategy for local measurement of strain at the nanoscale Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 219 Issue Pages 113099  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lattice strain measurement of nanoscale semiconductor devices is crucial for the semiconductor industry as strain substantially improves the electrical performance of transistors. High resolution scanning transmission electron microscopy (HR-STEM) imaging is an excellent tool that provides spatial resolution at the atomic scale and strain information by applying Geometric Phase Analysis or image fitting procedures. However, HR-STEM images regularly suffer from scanning distortions and sample drift during image acquisition. In this paper, we propose a new scanning strategy that drastically reduces artefacts due to drift and scanning distortion, along with extending the field of view. It consists of the acquisition of a series of independent small subimages containing an atomic resolution image of the local lattice. All subimages are then analysed individually for strain by fitting a nonlinear model to the lattice images. The method allows flexible tuning of spatial resolution and the field of view within the limits of the dynamic range of the scan engine while maintaining atomic resolution sampling within the subimages. The obtained experimental strain maps are quantitatively benchmarked against the Bessel diffraction technique. We demonstrate that the proposed scanning strategy approaches the performance of the diffraction technique while having the advantage that it does not require specialized diffraction cameras.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000594768500006 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 4 Open Access OpenAccess  
  Notes A.B. D.J. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. GG acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). Special thanks to Dr. Thomas Nuytten, Prof. Dr. Wilfried Vandervorst, Dr. Paola Favia, Dr. Olivier Richard from IMEC, Leuven and Prof. Dr. Sara Bals from EMAT, Antwerp for their continuous support and collaboration with the project and to the IMEC processing group for the device fabrication. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:172485 Serial (up) 6404  
Permanent link to this record
 

 
Author Wang, J.; Gauquelin, N.; Huijben, M.; Verbeeck, J.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal-insulator transition of SrVO 3 ultrathin films embedded in SrVO 3 / SrTiO 3 superlattices Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 117 Issue 13 Pages 133105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The metal-insulator transition (MIT) in strongly correlated oxides is a topic of great interest for its potential applications, such as Mott field effect transistors and sensors. We report that the MIT in high quality epitaxial SrVO3 (SVO) thin films is present as the film thickness is reduced, lowering the dimensionality of the system, and electron-electron correlations start to become the dominant interactions. The critical thickness of 3 u.c is achieved by avoiding effects due to off-stoichiometry using optimal growth conditions and excluding any surface effects by a STO capping layer. Compared to the single SVO thin films, conductivity enhancement in SVO/STO superlattices is observed. This can be explained by the interlayer coupling effect between SVO sublayers in the superlattices. Magnetoresistance and Hall measurements indicate that the dominant driving force of MIT is the electron–electron interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577126100001 Publication Date 2020-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 8 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 13HTSM01 ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number EMAT @ emat @c:irua:172461 Serial (up) 6415  
Permanent link to this record
 

 
Author Jovanović, Z.; Gauquelin, N.; Koster, G.; Rubio-Zuazo, J.; Ghosez, P.; Verbeeck, J.; Suvorov, D.; Spreitzer, M. pdf  url
doi  openurl
  Title Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 52 Pages 31261-31270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface<italic>i.e.</italic>formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566579400025 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 1 Open Access OpenAccess  
  Notes Vlaamse regering, Hercules Fund ; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, III 45006 ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Ministerio de Ciencia, Innovación y Universidades; Universiteit Antwerpen, GOA project Solarpaint ; F.R.S.-FNRS, PDR project PROMOSPAN ; Consejo Superior de Investigaciones Cientificas; University of Liège, ARC project AIMED ; Ministry of Education, Science and Sport, M.ERA-NET project SIOX ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number EMAT @ emat @c:irua:172059 Serial (up) 6416  
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Van Aert, S. pdf  url
doi  openurl
  Title Hidden Markov model for atom-counting from sequential ADF STEM images: Methodology, possibilities and limitations Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 219 Issue Pages 113131  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a quantitative method which allows us to reliably measure dynamic changes in the atomic structure of monatomic crystalline nanomaterials from a time series of atomic resolution annular dark field scanning transmission electron microscopy images. The approach is based on the so-called hidden Markov model and estimates the number of atoms in each atomic column of the nanomaterial in each frame of the time series. We discuss the origin of the improved performance for time series atom-counting as compared to the current state-of-the-art atom-counting procedures, and show that the so-called transition probabilities that describe the probability for an atomic column to lose or gain one or more atoms from frame to frame are particularly important. Using these transition probabilities, we show that the method can also be used to estimate the probability and cross section related to structural changes. Furthermore, we explore the possibilities for applying the method to time series recorded under variable environmental conditions. The method is shown to be promising for a reliable quantitative analysis of dynamic processes such as surface diffusion, adatom dynamics, beam effects, or in situ experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000594770500003 Publication Date 2020-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N and EOS 30489208. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:172449 Serial (up) 6417  
Permanent link to this record
 

 
Author Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O.M. url  doi
openurl 
  Title Pore Chemistry of Metal–Organic Frameworks Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue 41 Pages 2000238  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000532830900001 Publication Date 2020-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited Open Access OpenAccess  
  Notes (Not present) Approved Most recent IF: 19; 2020 IF: 12.124  
  Call Number EMAT @ emat @c:irua:169485 Serial (up) 6422  
Permanent link to this record
 

 
Author Gropp, C.; Canossa, S.; Wuttke, S.; Gándara, F.; Li, Q.; Gagliardi, L.; Yaghi, O.M. pdf  url
doi  openurl
  Title Standard Practices of Reticular Chemistry Type A1 Journal article
  Year 2020 Publication Acs Central Science Abbreviated Journal Acs Central Sci  
  Volume 6 Issue 8 Pages 1255-1273  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Since 1995 when the first of metal−organic frameworks was crystallized with the strong bond approach, where metal ions are joined by charged organic linkers exemplified by carboxylates, followed by proof of their porosity in 1998 and ultrahigh porosity in 1999, a revolution in the development of their chemistry has ensued. This is being reinforced by the discovery of two- and three-dimensional covalent organic frameworks in 2005 and 2007. Currently, the chemistry of such porous, crystalline frameworks is collectively referred to as reticular chemistry, which is being practiced in over 100 countries. The involvement of researchers from various backgrounds and fields, and the vast scope of this chemistry and its societal applications, necessitate articulating the “Standard Practices of Reticular Chemistry”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566668400005 Publication Date 2020-08-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2374-7943 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 18.2 Times cited Open Access OpenAccess  
  Notes S.C. acknowledges the Research Foundation Flanders (FWO) for supporting his research (Project 12ZV120N). Approved Most recent IF: 18.2; 2020 IF: 7.481  
  Call Number EMAT @ emat @c:irua:172057 Serial (up) 6423  
Permanent link to this record
 

 
Author Pennycook, T.J.; Martinez, G.T.; O'Leary, C.M.; Yang, H.; Nellist, P.D. pdf  url
doi  openurl
  Title Efficient Phase Contrast Imaging via Electron Ptychography, a Tutorial Type A1 Journal article
  Year 2019 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 25 Issue S2 Pages 2684-2685  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number EMAT @ emat @c:irua:172444 Serial (up) 6424  
Permanent link to this record
 

 
Author Milagres de Oliveira, T.; Albrecht, W.; González-Rubio, G.; Altantzis, T.; Lobato Hoyos, I.P.; Béché, A.; Van Aert, S.; Guerrero-Martínez, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue Pages acsnano.0c02610  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000586793400016 Publication Date 2020-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 25 Open Access OpenAccess  
  Notes This project has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants #815128 – REALNANO and #770887 – PICOMETRICS). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and G.0267.18N. W.A. acknowledges an Individual Fellowship funded by the Marie 27 Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). G.G.-R. acknowledge receipt of FPI Fellowship from the Spanish MINECO. This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00 and MAT2017-86659-R) and the Madrid Regional Government (Grant P2018/NMT-4389). A.B. acknowledges funding from FWO project G093417N and from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720); Comunidad de Madrid, P2018/NMT-4389 ; Ministerio de Ciencia, Innovación y Universidades, MAT2017-86659-R RTI2018-095844-B-I00 ; Ministerio de Economía y Competitividad; H2020 Marie Sklodowska-Curie Actions, 797153 ; Fonds Wetenschappelijk Onderzoek, G.0267.18N G.0381.16N G093417N ; H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 770887 815128 ; Agencia Estatal de Investigación, Ministerio de Ciencia, Innovación y Universidades, MDM-2017-0720 ; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:172440 Serial (up) 6426  
Permanent link to this record
 

 
Author Irtem, E.; Arenas Esteban, D.; Duarte, M.; Choukroun, D.; Lee, S.; Ibáñez, M.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Ligand-Mode Directed Selectivity in Cu–Ag Core–Shell Based Gas Diffusion Electrodes for CO2Electroreduction Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume Issue Pages 13468-13478  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592978900031 Publication Date 2020-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 23 Open Access OpenAccess  
  Notes The authors also acknowledge financial support from the University Research Fund (BOF-GOA-PS ID No. 33928). S.L. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkłodowskaCurie Grant Agreement No. 665385. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number EMAT @ emat @c:irua:173803 Serial (up) 6432  
Permanent link to this record
 

 
Author Busatto, S.; Ruiter, M. de; Jastrzebski, J.T.B.H.; Albrecht, W.; Pinchetti, V.; Brovelli, S.; Bals, S.; Moret, M.-E.; de Mello Donega, C. url  doi
openurl 
  Title Luminescent Colloidal InSb Quantum Dots from In Situ Generated Single-Source Precursor Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue 10 Pages 13146-13160  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid–base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl3, Sb[NMe2]3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000586793400068 Publication Date 2020-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 21 Open Access OpenAccess  
  Notes S.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. TOP.715.016.001. W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA) under the EU?s Horizon 2020 program (Grant No. 797153, SOPMEN). This project has received funding from the European Commission Grant (EUSMI E180900184) and European Research Council (ERC Consolidator Grant No. 815128 REALNANO).; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:173862 Serial (up) 6438  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Tuning Size and Seed Position in Small Silver Nanorods Type A1 Journal article
  Year 2020 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume 2 Issue 9 Pages 1246-1250  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571390700022 Publication Date 2020-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI), the ERC Consolidator Grant (No. 815128) (REALNANO), and the ERC Advanced Grant (No. 787510) (4DbioSERS). W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA), under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720).; sygma Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:171980 Serial (up) 6439  
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Bercx, M.; Karakulina, O.M.; Kirsanova, M.A.; Lamoen, D.; Hadermann, J.; Abakumov, A.M.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries Type A1 Journal article
  Year 2020 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 49 Issue 30 Pages 10486-10497  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g(-1), lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positionsviatetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 Vvs.Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x approximate to 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x= 0 andx= 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs.Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000555330900018 Publication Date 2020-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes ; The authors acknowledge Research Foundation Flanders (FWO) project number G040116N for funding. The authors are grateful to Dr Ken Elen and Greet Cuyvers (imo-imomec, UHasselt and imec) for respectively preliminary PXRD measurements and performing ICP-AES on the monometal precursors. Dr Dmitry Rupasov (Skolkovo Institute of Science and Technology) is acknowledged for performing TGA measurements on the metal sulfate precursors. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. ; Approved Most recent IF: 4; 2020 IF: 4.029  
  Call Number UA @ admin @ c:irua:171149 Serial (up) 6450  
Permanent link to this record
 

 
Author Cautaerts, N.; Lamm, S.; Stergar, E.; Pakarinen, J.; Yang, Y.; Hofer, C.; Schnitzer, R.; Felfer, P.; Verwerft, M.; Delville, R.; Schryvers, D. doi  openurl
  Title Atom probe tomography data collection from DIN 1.4970 (15-15Ti) austenitic stainless steel irradiated with Fe ions Type Dataset
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset comprises a large collection of atom probe tomography datasets collected from DIN 1.4970 alloy that was irradiated with Fe ions at different conditions. The DIN 1.4970 alloy is an austenitic stainless steel with 15 wt% Cr, 15 wt% Ni, a small addition of Ti. The full composition and characterization of our material can be found published elsewhere [1,2]. Some of our material was subjected to ageing heat treatments at different temperatures for different times. Small samples of our original material and aged material was irradiated at the Michigan Ion Beam Laboratory in 2017 with 4.5 MeV Fe ions up to 40 dpa at an average dose rate of 2×10−4 dpa/s. This was done at three different temperatures: 300, 450, and 600 ºC. Atom probe samples were made of the irradiated layers (approximately 1.5 micron deep) with focused ion beam and mounted on Microtip coupons. APT measurements took place on three CAMECA LEAP-HR systems located at CAES in Idaho Falls, USA (files beginning with R33), at Montanuniversität Leoben in Leoben, Austria (R21) and at Friedrich–Alexander University in Erlangen, Germany (R56).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169127 Serial (up) 6454  
Permanent link to this record
 

 
Author Chen, C.; Sang, X.; Cui, W.; Xing, L.; Nie, X.; Zhu, W.; Wei, P.; Hu, Z.-Y.; Zhang, Q.; Van Tendeloo, G.; Zhao, W. pdf  doi
openurl 
  Title Atomic-resolution fine structure and chemical reaction mechanism of Gd/YbAl₃ thermoelectric-magnetocaloric heterointerface Type A1 Journal article
  Year 2020 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 831 Issue Pages 154722-154728  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thermoelectric materials and magnetocaloric materials are promising candidates for solid-state refrigeration applications. The combination of thermoelectric and magnetocaloric effects could potentially lead to more efficient refrigeration techniques. We designed and successfully synthesized Gd/YbAl3 composites using a YbAl3 matrix with good low-temperature thermoelectric performance and Gd microspheres with a high magnetocaloric performance, using a sintering condition of 750 degrees C and 50 MPa. Using aberration-corrected scanning transmission electron microscopy (STEM), it was discovered that the heterointerface between Gd and YbAl 3 is composed of five sequential interfacial layers: GdAl3, GdAl2, GdAl, Gd3Al2, and Gd3Al. The diffusion of Al atoms plays a crucial role in the formation of these interfacial layers, while Yb or Gd do not participate in the interlayer diffusion. This work provides the essential structural information for further optimizing and designing high-performance composites for thermoelectric-magnetocaloric hybrid refrigeration applications. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000531727900005 Publication Date 2020-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by National Natural Science Foundation of China (Nos. 11834012, 51620105014, 91963207, 91963122, 51902237) and National Key R&D Program of China (No. 2018YFB0703603, 2019YFA0704903, SQ2018YFE010905). EPMA experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX). ; Approved Most recent IF: 6.2; 2020 IF: 3.133  
  Call Number UA @ admin @ c:irua:169447 Serial (up) 6455  
Permanent link to this record
 

 
Author Wei, P.; Ke, B.; Xing, L.; Li, C.; Ma, S.; Nie, X.; Zhu, W.; Sang, X.; Zhang, Q.; Van Tendeloo, G.; Zhao, W. pdf  doi
openurl 
  Title Atomic-resolution interfacial structures and diffusion kinetics in Gd/Bi0.5Sb1.5Te3 magnetocaloric/thermoelectric composites Type A1 Journal article
  Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact  
  Volume 163 Issue Pages 110240-110248  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The demand of a full solid-state cooling technology based on magnetocaloric and thermoelectric effects has led to a growing interest in screening candidate materials with high-efficiency cooling performance, which also stimulates the exploration of magnetocaloric/thermoelectric hybrid cooling materials. A series of Gd/Bi0.5Sb1.5Te3 composites was fabricated in order to develop the hybrid cooling technology. The chemical composition, phase structure and diffusion kinetics across the reaction layers in Gd/Bi0.5Sb1.5Te3 composites were analyzed at different reaction temperatures. Micro-area elemental analysis indicates that the formation of interfacial phases is dominated by the diffusion of Gd and Te while the diffusion of Bi and Sb is impeded. The interfacial phases, including GdTe2, GdTe3, and intermediate phases GdTex, are identified by atomic-resolution electron microscopy. The concentration modulation of Gd and Te is adapted by altering the stacking of the Te square-net sheets and the corrugated GdTe sheets. Boltzmann-Marano analysis was applied to reveal the diffusion kinetics of Gd and Te in the interfacial layers. The diffusion coefficients of Te in GdTe2 and GdTe3 are much higher than that of Gd while in GdTe the situation is reversed. This study provides a clear picture to understand the interfacial phase structures down to an atomic scale as well as the interfacial diffusion kinetics in Gd/Bi0.5Sb1.5Te3 hybrid cooling materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551341700045 Publication Date 2020-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by National Natural Science Foundation of China (Nos. 91963122, 11834012, 51620105014, 51521001, 51902237), National Key Research and Development Program of China (No. 2018YFB0703603), the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX, 183101006). XRD and EPMA experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. ; Approved Most recent IF: 4.7; 2020 IF: 2.714  
  Call Number UA @ admin @ c:irua:171317 Serial (up) 6456  
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Barreca, D.; Maccato, C. pdf  doi
openurl 
  Title Au-manganese oxide nanostructures by a plasma-assisted process as electrocatalysts for oxygen evolution : a chemico-physical investigation Type A1 Journal article
  Year 2020 Publication Advanced sustainable systems Abbreviated Journal  
  Volume Issue Pages 2000177-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000572376000001 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-7486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.1 Times cited 4 Open Access Not_Open_Access  
  Notes ; Padova University (DOR 2017-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), are gratefully acknowledged for financial support. The Qu-Ant-EM microscope was partially funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project “Solarpaint” from the University of Antwerp and from EU H2020 823717 ESTEEM3 project. The authors thank Dr. Daniele Valbusa, Dr. Gianluca Corr, Dr. Andrea Gallo, and Dr. Dileep Khrishnan for helpful experimental assistance. ; esteem3TA; esteem3reported Approved Most recent IF: 7.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171937 Serial (up) 6457  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: