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Abstract  

The physical properties of uranium dioxide vary greatly with stoichiometry. Oxidation towards 

hyperstoichiometric UO2 – UO2+x – might be encountered at various stages of the nuclear fuel cycle if 

oxidative conditions are met; the impact of stoichiometry changes upon physical properties should 

therefore be properly assessed to ensure safe and reliable operations. These physical properties are 

intimately linked to the arrangement of atomic defects in the crystalline structure. The evolution of the 

defect concentration with environmental parameters – oxygen partial pressure and temperature – were 

evaluated by means of a point defect model where the reaction energies are derived from atomic-scale 

simulations. To this end, various configurations and net charge states of oxygen interstitial clusters in 

UO2 have been calculated. Various methodologies have been tested to determine the optimum cluster 

configurations and a rigid lattice approach turned out to be the most useful strategy to optimize defect 

configuration structures. Ultimately, results from the point defect model were discussed and compared 

to experimental measurements of stoichiometry dependence on oxygen partial pressure and 

temperature. 
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1 Introduction 

 

Over the past decades, uranium dioxide (UO2) has been the reference fuel for the current fleet of nuclear 

reactors (Gen-II and Gen-III); today it is also considered by the Gen-IV International Forum for the first 

cores of the future generation of nuclear reactors on the roadmap towards minor actinide (MA) based 

fuel technology [1]. Thermodynamic and transport properties of UO2 are a strong function of non-

stoichiometry. Although a remarkable number of studies has been performed to address the 

relationship between the material properties and oxygen defects in UO2+x, the fascinating complexity of 

these defects calls for further investigations  [2–7]. 

 

it is widely known that the UO2 lattice can host a large number of oxygen defects in various charge 

states and configurations, for example, by clustering with electronic defects, both electrons and holes; 

the only experimentally proven defect configuration is the di-interstitial cluster derived from neutron 

diffraction measurements by Willis [8]. Computer simulations techniques can help to get insight in these 

defect structures, considering that they can be addressed by density functional theory (DFT) or empirical 

potentials (EP) [9–14]. For such investigations it is of paramount importance to gain a quantitative 

knowledge of the defect concentrations as a function of environmental conditions, that is, temperature 

and oxygen potential (or oxygen partial pressure). This knowledge is provided by a point defect model 

(PDM) in which the chemical defect reactions are evaluated via a mass action law [15,16]. From that 

model, deviation from stoichiometry x in UO2+x can be derived, which is also experimentally accessible. 

 

Recent theoretical works, for example, Murphy et al., evaluated point defect concentrations and non-

stoichiometry in thoria using DFT to predict the  defect formation energies [17]. A similar approach was 

adopted for uranium oxide by Cooper et al., [9]. Soulié et al., [18] and Bruneval et al., [19] extended the 

UO2 study by adding oxygen defect clusters in their model. Even though, their results qualitatively 

provide a comparable defect concentration trend, the quantitative understanding still suffers from 

inconsistencies. This is mainly because of the various approximations used for the descriptions of the 

strong correlation between uranium f electrons, which in turn affects the defect formation energies. 

Unlike the above mentioned studies, we investigated the oxygen clusters up to di-interstitial by means 

of empirical potential simulations in expectation of qualitative agreement between DFT and EP. The 

positive results then further motivated us to go through a qualitative validation against measurements 

of stoichiometry dependence on oxygen partial pressure and temperature. In the future this will also 

allow us to discuss the solubility of different fission products and dopants in the UO2 matrix at EP level.  
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2 Methods 

2.1 Atomic scale simulations 

Atomic scale simulations were performed using the LAMMPS software, version 2017 [20]. Calculations 

consider atoms as pointwise charged particles interacting with each other through interatomic 

potentials. These calculations were complemented with the GULP software in view of its ability to 

compute defect energies with different methods [21]. In order to maintain coherence, the system defect 

energy calculations were performed using the same interatomic potentials with both codes. 

 

Several sets of parameters have been derived in the open literature to describe atom interactions for 

the UO2 system [22,23]. They differ in the degree of covalence, or ionicity 𝜉, with (0 < 𝜉 ≤ 1), attributed 

to ions and the analytical expression used for the short-range atom interactions. Most potentials are 

variants of the Buckingham potential form [24], sometimes coupled to a Morse term [25] to describe 

covalent bounds. The commonly adopted expression for the pair potential between ions i and j 

separated by distance rij takes the following form: 

V(rij) =
(𝜉𝑒)2ZiZj

4πϵ0rij

+ Aij exp (−
rij

ρij

) −
Cij

rij
6  + Dij[exp (−2γij(rij

∗ − rij)) − 2exp (−γij(rij
∗ − rij))] 

 

1 

  

The first term stands for the electrostatic interaction between point charges with ϵ0, the vacuum 

permittivity. For UO2, one considers full ionicity: Z(U4+) = +4 and Z(O2−) = −2. Classical Ewald 

summation techniques were used to handle long-range electrostatic interactions in three dimensions.  

The second term of Eq. (1) expresses the short-range repulsion of overlapping electronic shells and the 

third term expresses the van der Waals attraction as a simple inverse power function. The last term is a 

Morse function that represents the covalent bond of the uranium-oxygen pairs. Pairwise interactions 

were evaluated up to a cut-off distance of 1.1 nm.  The system configuration was relaxed at constant 

volume until a convergence of 10-4 eV is reached (total energy difference between consecutive 

minimisation steps).  

 

Earlier studies revealed that the predictive character of empirical interatomic potentials for mechanical, 

thermal or defect properties of UO2  are quite challenging, as there is no universal set of parameters 

[23,26–28]. While these studies generally addressed absolute values, the present work rather focuses on 

relative values, such as defect binding energies, for which better agreement was observed between 

interatomic potential parameter sets [29]. The Yakub potential has been extensively tested in literature 

for both static and dynamic calculations, and reproduces reasonably well defect and thermo-mechanical 
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properties of UO2 [12,30,31]. This potential was therefore selected for this study; its short range 

parametrization is reported in Table 1. 

 

Table 1 Short range parametrization of Yakub et al., [12], and 𝜉 = 0.5552 

ion pairs  𝐴𝑖𝑗 (eV) 𝜌𝑖𝑗×10-10 (m) 𝐶𝑖𝑗×10-60 (eV.m6) 𝐷𝑖𝑗 (eV) 𝛾𝑖𝑗×1010 (m-1) 𝑟𝑖𝑗
∗ ×10-10 (m) 

U4+-O2- 432.18 0.3422 0.0 0.5055 1.864 2.378 

U4+-U4+ 187.03 0.3422 0.0 0.0 - - 

O2--O2- 883.12 0.3422 3.996 0.0 - - 

 

In UO2, hole electronic defects are generally thought to maintain the system charge neutral [32]. In the 

present study, holes were described as localised on the uranium sublattice as uranium atoms with a (5+) 

charge. For the description of interactions involving those particles the atom charge (Z) is simply 

modified while respecting the ionicity proposed in the original model – see Eq (1). Modifications of the 

short-range interactions were considered as a second order effect and were not applied for this study  

[29,33,34].  

 

2.2 Defect calculations 

Defect calculations were performed according to the supercell method, with LAMMPS [20], where a 

pristine system of 4 x 4 x 4 conventional  UO2 unit-cells under periodic boundary conditions was 

considered as a starting structure [22]. The lattice parameter was set to the experimental value for UO2, 

0.547 nm [35], before relaxation. Defects were introduced in the system, which is then relaxed to find 

the energy minimum, and the corresponding atomic configuration. 

Reaction energies are based on the system energy difference between the individual products and 

reactants. One must remain careful when interpreting the as-calculated energies in empirical potential 

calculations, as only energy differences between systems having an identical set of particles have a 

straightforward, physical, meaning. For the defect calculations that do not preserve the stoichiometry 

of the pristine material – where particles of one or several species2 appear in or disappear from the 

system – the calculated defect energy implicitly takes, as a reference state for that particle, the non-

interacting, charged, particle in vacuum. For example, in the case of an oxygen interstitial defect, the 

reference states consist of the pristine UO2 crystal on the one hand, and a charged O2- in vacuum on 

the other hand. The latter configuration is purely conceptual in the empirical potential method, as the 

second electron captured actually remains unbound in vacuum. 

                                                      
2 one also considers here atoms with different charges as different species. 
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To overcome this issue, one focuses here on stoichiometric defect reactions (that conserve the species), 

so that the corrections for particle addition and removal cancel out. Coming back to our example, 

neither the as-calculated oxygen interstitial energy, neither the opposite defect – the oxygen vacancy – 

energy, have a physical meaning. However, when combining the results, one obtains the oxygen Frenkel 

pair energy. In order to facilitate the construction of a point defect model from empirical potential 

calculations, one privileges defect reactions expressing the formation of defect clusters from their 

individual components, i.e. evaluating the free energy change.  

 

At EP level, issues remain for some of the reactions considered in the PDM, (see § 2.4); for example the 

formation of an electron-hole pair, for which the electron and hole tend to be localised on the uranium 

sublattice. The creation of the pair implies the disappearance of two regular U4+ atoms, and the 

apparition of one U3+ and one U5+ atom and, hence, a species change from empirical potential 

simulation perspectives. Empirical pair-potentials results need to be corrected for the difference in 

ionization energy between U3+ and U5+, for example following a Born-Haber cycle [36]. Alternatively, a 

value derived from experiment [37] or ab initio calculations [38] could be used for the defect reaction 

energy.  

 

For the system oxidation reaction, no proper correction scheme exists, as it would involve the calculation 

of an O2 molecule. The latter state is far from the validation domain of the empirical potentials used, 

considering that they were developed to address ceramic crystals. For that reaction, energies derived 

from experiment [39] or ab initio calculations would be a better alternative [14].  

 

The supercell method can be applied to a charged system, such as for defect calculations. A neutral 

system is recovered by adding a uniform background charge to the system [40], whereas this correction 

is not implemented in LAMMPS. This background charge does not affect interatomic forces and simply 

results into an additional term to the system total energy. At post-processing,  defect energies are then 

corrected for the charge’s Madelung energy to the infinite dilution limit according to the potential 

predictions: 𝑓∞ = 𝑓L +
q2𝛼

2𝜖L
 where 𝑓∞ and 𝑓L is a formation energy of the defect at infinite dilution and 

under periodic boundary conditions with total system size L (=0.544 x 4 nm after relaxation of the 

pristine system), q is the total charge on the solid, α (=2.84) is the cubic system Madelung constant and 

ϵ (=3.28, for Yakub [12] potential) is the static dielectric constant.  
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2.3 Exploration of configuration space  

The charge state of oxygen interstitials (Oi) and Oi clusters is evaluated in this empirical potential study. 

One also considers the presence of charge-compensating holes that would be bound to the defect. The 

exploration of the arrangement of holes around a single oxygen interstitial defect, or an oxygen 

interstitials cluster, is a difficult task, considering that the number of cases to be addressed increases in 

a combinatorial way with the number of holes considered:  
N!

(N−n)!n!
, with N, the number of accessible 

sites (256) for a 4 x 4 x 4 unit-cell system, and n, the number of U5+ inserted in the system. In order to 

optimize the calculation time, several methods were tested.  

 The brute force approach, used as a reference, where all possible combinations are relaxed and 

compared in terms of energy. The method only performs in a reasonable amount of time for 

up to three U5+ in the system (~2.7×106 combinations).  

 A Monte-Carlo approach was then tested, similar to former works [41–43], where U5+ are only 

displaced when the energy gain after the displacement obeys an acceptance (Metropolis) 

criterion. The major issue with this approach is that one generally starts from a relaxed 

configuration, so that the permutation of an U5+ and an U4+ ions most often results in a positive 

energy gain. Although well-thought criteria enable to progressively converge towards lower 

energy configurations, convergence to the energy minimum is slow and not guaranteed.  

 A rigid lattice approach, where one considers that the non-relaxed and the relaxed 

configuration maps are qualitatively similar. The search for the optimal configuration is 

performed in the non-relaxed system (1st stage) and the optimal configuration is relaxed (2nd 

stage). By doing so, one avoids repeated relaxation stages, which each necessitate of the order 

of 100 to 1000 calculation steps. The relaxed configuration energy is only calculated once, for 

the optimal configuration. Although the method could be used in brute-force scheme, the 

interest also lies in coupling it to a Monte-Carlo algorithm; the fact that non-relaxed 

configurations are used eliminates the energy gain issue evoked previously when permuting 

U5+ with U4+ ions.  

 

The latter approach was validated for the clustering of a single oxygen interstitial with one and two 

holes and compared to a brute force approach. Both methods converged towards the same geometrical 

arrangement. In the case of a single hole, the hole is predicted to occupy a first nearest neighbour 

position relative to the oxygen interstitial. With two holes, the predicted configuration of minimum 

energy consisted of the holes located in second nearest neighbour positions to the oxygen interstitial, 

as illustrated by the mapping in Figure 1. They were located in opposite directions from each other, as 
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could be expected from pure electrostatic considerations; that configuration is also in good agreement 

with recent DFT calculations [44]. 

 

The systematic configuration space exploration confirmed that the minimum energy configuration was 

indeed reached. The rigid lattice approach was thus observed to rapidly converge towards the optimal 

configuration found with the brute approach method. Based on the computing time gain and efficiency 

performance – convergence to the energy minimum is observed after about 5000 Monte-Carlo swaps 

–, the method is expected to facilitate the search for optimum configurations when a larger number of 

defects are at play.  

 

.  

Figure 1 Binding energy of two holes and an oxygen interstitial atom as predicted with Yakub  potential [12] . The 

contour map expresses the binding energy as a function of the distance of each hole to the oxygen interstitial atom. 

When different configurations correspond to the same distances, the minimum value over these configurations is 

retained. The most stable configuration is observed for both holes located in second nearest neighbour to the oxygen 

interstitial, in opposite direction (along <1 1 1> direction) from each other as it is shown in Figure 2. 

 

2.4 Point defect model 

A point defect model (PDM) expresses interactions (or reactions) between defects in a similar way as 

one treats chemical reaction equilibria. It links, for each reaction, the concentrations at equilibrium of 

the species involved. Although virtually any defect and defect reaction could be considered, the point 

defect model will only provide a good representation of a material if the dominant defects are included 

in the picture. In uranium dioxide, it is commonly accepted that the dominant defects relate to electronic 

and oxygen disorder [45,46]. The simplest description of UO2, close to stoichiometry, expresses the 

polaron (electron-hole pair creation) and the oxygen Frenkel (oxygen vacancy – interstitial pair) 

equilibria. Using Kröger-Vink notations [15], these reactions can be expressed, respectively as: 
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2UU
× ⇌ UU

• + UU
′  2  

vi
× + Oo

× ⇌ Oi
′′ + vo

•• 3  

A relation between defect concentrations may then be expressed according to the mass action law 

which involves the change in free energy of the system Δ𝑓: 

KD =
[UU

′ ][UU
• ]

[UU
x ]2

=  exp (−
Δ𝑓D

kBT
) 

4 

KF =
[Oi

′′][vo
••]

[Oo
x][vi

x]
= exp (−

Δ𝑓F

kBT
) 5 

 

Where  [UU
• ] and [UU

′ ] are the concentration of holes and electrons assumed in the valence and 

conduction band, respectively [47]. [Oi
′′] represents the interstitial oxygen concentration while [vo

••] is 

the oxygen vacancy concentration. This simple system expressed by Eq. (2) and (3) contains seven 

unknowns and needs to be closed by other relations that express, for example, conservation of the site 

occupancy and of the system charge neutrality. In the infinite dilution limit, one may approximate 

regular atom concentrations by their value in a perfect crystal [UU
×] ≈ [vi

×] ≈
1

2
[OO

×] ≈ 1 otherwise the 

relative contribution of each defect to uranium, oxygen and interstitial lattices should be summed up. 

The charge neutrality condition for defects (i) with a concentration Ci and net charge qi must be 

maintained: 

∑ qiCi

i

= 0 6 

 

One last relation is required, which links the system to the constraints imposed by the environment. For 

UO2, we consider that the oxidation reaction from the atmosphere surrounding the system dominates. 

The point defect reaction is expressed as:  

vi
×+2UU

× +
1

2
O2(g) ⇌ Oi

′′+2UU
•  7 

Or, in mass action law form: 

KO =
[Oi

′′][UU
• ]2

[UU
x ]2[vi

x]√pO2

=  exp (−
Δ𝑓O

kBT
) 8 

 

Where pO2
 stands for the surrounding oxygen partial pressure. The deviation from stoichiometry x, in a 

regime dominated by isolated oxygen interstitials and holes, follows ∝ pO2

1/6
. This simple description of 

defects in UO2, however, does not correspond to what is experimentally observed at larger deviation 

from stoichiometry; it has been evidenced that a better picture is provided if the clustering of oxygen 
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interstitials is accounted in the model, as the observed relation rather obeys x ∝ pO2

1/2
[48–50]. One 

therefore introduces oxygen interstitial clusters with varying effective charges in the point defect model. 

Changes in the defect cluster charge were modelled in this work through the presence of localised holes 

on the uranium site. Assuming that a single individual oxygen interstitial cluster species dominates, in 

the form of {nOi
′′: pUU

• }(2n−p)’  – with n, the  number of oxygen interstitials and p, the number of holes 

in the cluster – the corresponding power dependency for the charge neutral system could be 

generalised as x ∝ pO2

m , with the exponent m= 
n

2(2n−p+1)
. For example, in the case of isolated Oi′′ (n=1, 

p=0) one comes back to the first case and m= 
1

6
; this situation is expected to dominate close to perfect 

stoichiometry when clustering is not favourable for configurational entropy reasons. Experimentally, one 

observes a domain where the power dependency of x goes as pO2

1/2
; this observation would be 

compatible with two clusters of limited size:  {Oi’’:  2UU
• }x  (n=1, p=2) or {2Oi’’:  3UU

• }' (n=2, p=3).  

Stoichiometry measurements can not distinguish between the two types of clusters. Electrical 

conductivity will, however, be sensitive to the type of defect, since the latter defect cluster type needs 

to be compensated by non-bound holes, which are mobile, while the former cluster type is fully charge 

compensated. Several authors have proposed to consider singly charged di-interstitial clusters as the 

dominant defect at moderate departures from stoichiometry [48–50]. This leads to: 

nOi
′′ + p UU

• ⇌ {nOi
′′: pUU

• }(2n−p)’ 9 

KCls. =
[{nOi

′′: pUU
• }(2n−p)’]

[Oi′′]n[UU
• ]p

=  exp (−
Δ𝑓Cls.

kBT
) 

10 

If one assumes that next to isolated point defects, only di-interstitial clusters with charge -1 are formed, 

the site balances may be expressed as: 

[UU
×] + [UU

• ] + [UU
′ ] = 1 11 

[Oo
×] + [vo

••]  = 2 12 

[vi
×] + [Oi

′′]  + (2 + a)[{2Oi
′′: 3UU

• }′]    = 1 13 

The parameter a is used here for {2Oi
′′: 3UU

• }′ or Willis clusters to restrict access to neighbour interstitial 

sites. Using  a ≈ 6 also enables to reproduce UO2+x saturation at x=0.25, i.e. a stoichiometry 

corresponding to U4O9. The PDM system of equations is solved with a Newton-Raphson iterative 

technique, ensuring numerical convergence is obtained. The deviation from stoichiometry is then 

evaluated from the various defect concentrations, considering that defects on the uranium sub-lattice 

play a negligible role: 

x = | ∑ n[{nOi’’:  pUU
• }(2n-p)’] −  [vo

••]| 14 
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3 Results and Discussions 

3.1 Oxygen interstitial clusters configuration and energy 

The configuration and the defect energy was calculated for various cluster of oxygen interstitials and 

holes by means of the rigid lattice approach to determine the lowest energy structure (cf. §2.3). All the 

defect configurations were rendered in Figure 2 and defect energies were listed in Table 2.  

 

Clusters involving a single oxygen interstitial and one or two holes has already been addressed in § 2.3. 

While the single hole is predicted to bind as first nearest neighbour to the oxygen interstitial, the most 

stable defect arrangement with two holes consists of these holes located in second nearest neighbour 

positions to the oxygen interstitial, in opposite directions from each other. That configuration is in 

agreement with DFT calculations [44].  

 

Di-interstitial clusters were studied here as charge-compensated clusters, with one to four holes. The 

most stable arrangement of two oxygen interstitial atoms was first determined separately due to it 

exhibiting a metastable state; the presence of charge-compensating holes was considered in a second 

stage; two oxygen interstitials were initially placed in two nearest octahedral interstitial site with a 

separation of 
√2

2
 times lattice parameter. Figure 2 shows the optimal arrangement of two oxygen 

interstitials {2Oi
′′}′′′′, as predicted in this study. We then investigated complex di-interstitial defect 

clusters with varying charges {2Oi
′′: pUU

• }(4−p)′. For a single charge-compensating hole {2Oi
′′: UU

• }′′′, the 

most stable configuration consists of the hole located on one of the closest neighbours of the oxygen 

interstitials. The structure of the {2Oi
′′: 2UU

• }′′and  {2Oi
′′: 3UU

• }′ clusters, however, do not correspond to 

the traditional description from Willis, with two regular oxygen atoms displaced from their regular 

position [8]. While uranium ions are not displaced from their regular fluorite location, an alternative 

arrangement of the oxygen atoms was predicted here, where oxygen atoms stabilize as a split di-

interstitial {3Oi’’: vO
••}. In such a configuration, oxygen ions are arranged as a regular triangle, with 

positions along <111> directions from a central oxygen vacancy. This structure, with a single oxygen 

atom displaced from its regular position was also derived in DFT calculations [38].  

 

Our study predicted the progressive binding of the cluster as it accumulates one, two and three holes, 

but the neutral cluster, with 4 holes, tended to be less stable. Without further interpretation through a 

point defect model at this stage, this result already suggests that from pure energy perspectives, di-

interstitial clusters of charge -1 could be encountered, as often suggested from interpretation of 

experimental data through point defect models. The results also suggest a low probability of forming 

neutral di-interstitial clusters. 
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a) {Oi
′′: UU

• }′ b) {Oi
′′: 2UU

• }× c) {2Oi
′′}′′′′ -metastable 

 

 

 

 

 

 

d) {2Oi
′′: UU

• }′′′ e) {2Oi
′′: 2UU

• }′′ f) {2Oi
′′: 3UU

• }′ 

 

 

 

 

 

 

Figure 2 Yakub potential relaxed configurations of oxygen interstitial and interstitial clusters [12]. Blue and white 

spheres represent the regular uranium and oxygen ions in f.c.c. UO2. Yellow spheres stand for interstitial oxygen ions 

while the green ones for U5+ (holes) positions. For the case {2𝑂𝑖
′′: 2𝑈𝑈

• }′′ and {2𝑂𝑖
′′: 3𝑈𝑈

• }′ orange spheres are used to 

highlight oxygen ions displaced from their regular positions. For the sake of clarity, central vacancy sites are not 

emphasized.  

 

Once the most stable defect cluster configurations were obtained with LAMMPS [20], they were further 

analysed in terms of their energies with GULP [4]. Using the GULP code, the supercell method results 

were cross-checked with values derived using the Mott and Littleton approach [51] . The latter method 

divides the space around the defect into three regions; in region I atoms are fully relaxed, while in region 

IIa, only harmonic relaxation due to the defect charge is assumed; in Region IIb, an infinite purely 

dielectric medium is assumed. In this work, we used radii of 1.4 nm for region I and 2.8 nm for region 

IIa; very good agreement between both methods is generally reported [52,53] and also observed here. 

Results of binding energy calculations in the supercell approach are reported in Table 2. 
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Table 2 Prediction of the defect clustering binding energy 𝛥𝑓𝐶𝑙𝑠.,  in uranium dioxide calculated with 4 x 4 x 4 unit-

cell method using Yakub potential [12] . Negative binding energy indicates preference for the cluster over its individual 

components.  

Binding 

Energy  
{Oi

′′: UU
• }′ {Oi

′′: 2UU
• }× {2Oi

′′}′′′′ {2Oi
′′: UU

• }′′′ {2Oi
′′: 2UU

• }′′ {2Oi
′′: 3UU

• }′ 

Δ 𝑓𝐶𝑙𝑠. [eV] -0.67 -1.09 1.26 -0.12 -1.40 -2.09 

 

3.2 Deviation from stoichiometry  

Point defects energies were evaluated for UO2+x (see in Table 2). They were complemented with a PDM 

in which the defect concentrations were derived from the reaction energies. We assume that the system 

of Eq. (4), (5) and (8) dominates at exact stoichiometric composition and they may be solved analytically 

under the following assumptions: [Oi
′′] = [vo

••],  [UU
• ] =  [UU

′ ] and the [UU
×] ≈ [vi

×] ≈
1

2
[OO

×] ≈ 1. For such a 

case, KO is expressed as: 

KO = KD√
2 × KF

pO2

∗  
15 

The oxygen partial pressure at exact stoichiometry pO2

∗ , suffers from large discrepancies between 

laboratories [35,48,54,55]. One of the reasons might be that the samples exhibit different impurity 

contents. Measurements performed by Leinders et al., [35] concluded that the relation found by 

Lindemer and Besmann’s [54] data analysis gives the best agreement with their observations. In spite of 

the inconsistencies, we used the Lindemer and Besmann predictions for both pO2

∗ vs temperature (T) and 

the x in UO2+x vs pO2

∗ [54]. This allows us to implicitly handle the defect vibrational entropies as corrections 

to KO. 

Another parameter appearing in Eq. (15) is KD which is related to the band gap energy. Ab initio 

calculations and experiments generally agree on the band gap width – the energy to form an electron 

in the conduction band and a hole in the valence band –, with Δ𝑓D =2.1+/-0.1 eV [37,38]. 

It was observed that reaction constant KO in Eq. (15) is ultimately linked to the precision of KF, pO2

∗  

and KD. Any changes in those parameters would significantly affect the overall defect concentrations. 

Two recent studies report and discuss inconsistencies between the Frenkel pair energy –related to KF - 

derived from atomic scale simulations and experiments [22,31]. One reports an experimental range of 

3 – 4.6 eV [2,56] while atomistic simulations (both ab initio and EP) generally predict slightly higher 

values, i.e. between 3 – 7 eV [22,31,57]. The Yakub potential provides a value of 5.7 eV [12]. 
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In a first phase, the stoichiometric deviation of UO2 was qualitatively evaluated. Eq. (15) was used to 

calculate KO with the normalised pressure at exact stoichiometry i.e.   pO2
/ pO2

∗  =1. Results presented in 

Figure 3 show that isolated oxygen interstitials Oi
′′ dominate at lower oxygen partial pressure region in 

UO2+x. No significant contribution was observed from other types of single interstitial clusters, namely: 

{Oi
′′: UU

• }′ and {Oi
′′: 2UU

• }x. The general concentration trend for single interstitial clusters at lower partial 

pressure [Oi
′′] > [{Oi

′′: UU
• }′] > [{Oi

′′: 2UU
• }x] was determined which is also in line with the interpretation of 

DFT simulation results [9]. They all progressively saturate as one approaches x~0.07, considering that 

beyond that value, first neighbour sites would become populated; then oxygen interstitials cannot be 

considered as isolated anymore. In the case of di-interstitial clusters, the trend predicted at higher 

oxygen partial pressure is to observe single charge di-interstitial clusters dominating: 

[{2Oi
′′: 3UU

• }′] > [{2Oi
′′: 2UU

• }′′] > [{2Oi
′′: UU

• }′′′] > [{2Oi
′′}′′′′]. Therefore, once higher order clustering is a 

concern, non-formally charged defects were observed to dominate. Considering saturation of isolated 

oxygen interstitial clusters occurs at low departure from stoichiometry because of site exclusion – if a 

first neighbour site becomes occupied, a di-interstitial cluster is actually formed – one focuses on a 

relatively simple PDM made of isolated point defects and a single type of oxygen interstitials 

clusters [{2Oi
′′: 3UU

• }′], which was predicted in this study to dominate at higher stoichiometry.  

 

Figure 3 Qualitative evaluation of defect concentrations in UO2+x predicted by Yakub potential [12]. Left) represents 

the single interstitial clustering concentrations and Right) is di-interstitial clustering concentrations over the 

normalised oxygen pressure range at 1273 K. 
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In a second phase, Eq. (15) was used to calculate KO with the oxygen pressure at exact stoichiometry 

provided by Lindemer and Besmann [54]. We considered the general agreement on the band gap and 

on the overestimation of the Frenkel pair energy by empirical potential simulations, which was described 

earlier. The dependence of KO to KF was also derived from the Lindemer and Besmann’s work on the 

basis of Eq. (15) [54]. The calculated Frenkel pair energy Δ𝑓F, and oxidation reaction energy Δ𝑓O are 

reported in Table 3. These energies have been found to be in good agreement with literature values. 

Table 3 Calculated Frenkel pair energy 𝛥𝑓𝐹 , and Oxidation reaction energy 𝛥𝑓𝑂 .  

Formation Energy  This study Other works 

Δ𝑓F [eV] 4.1+/-0.1 3.0 to 4.6 [2,56] 

Δ𝑓O[eV] -0.4+/-0.01 -0.2 to -0.8 [3,6] 

 

The defect concentrations as a function of oxygen partial pressure were computed at equilibrium for 

UO2+x and presented at three different temperatures (see Figure 4). The material stoichiometry was then 

derived from the oxygen defect balance. As illustrated in these Figures, the agreement for the departure 

from stoichiometry at approximately x ≤ 0.01 suffers from large uncertainties, which should be put into 

perspective with the large experimental uncertainty at these low values of x. At higher pressure, 

predictions on the x in UO2+x fits well with the experimental data points show better agreement for the 

x in UO2+x. 
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Figure 4  The deviation from stoichiometry x in UO2+x (bottom row) is calculated from the defect concentrations over 

a range of temperatures (top row). Comparison is made with the correlations published by Lindemer and Besmann 

[54], and Perron’s thermodynamic data,[55]. 

4 Conclusions 

The clustering behaviour of oxygen interstitials and holes is addressed by empirical potential based 

atomic scale simulations. The defect energies are then interpreted by mean of a PDM to derive the 

concentration of defects and defect clusters as a function of temperature and oxygen partial pressure.  

A validation of the methodology and the results is conducted on the basis of the deviation from 

stoichiometry in UO2+x. 

The following results were achieved: 

 Configurational space exploration of the arrangement of localised holes around isolated 

oxygen interstitials and oxygen interstitial clusters was shown to be most effective with a 

combination of a rigid lattice approach – where no relaxation is performed in a first stage – 

with a Metropolis Monte Carlo particle swapping method.  
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 The PDM established from EP results and experimental values which are not accessible to EP 

techniques shows good agreement with various sets of experimental data.  

 With the proposed dominant defect type -{2Oi
′′: 3UU

• }′, di-interstitial with minus one charge-, 

the calculated relation between both stoichiometry and electrical conductivity evolution with 

oxygen partial pressure have a power dependence that corresponds to what was shown in 

experiments. Especially, at 1273 K and 1573 K good agreement between our model and 

experiments was achieved. 

 At 973 K, both the experiments and the proposed model show slight inconsistencies. One might 

also consider that at low temperature (<600 K) UO2 exhibits a solid solution with U4O9 in which 

the excess oxygen ions agglomerate into a cuboctahedron (CoT) structure [58–60]. Such a 

clustering configuration of higher order might dominate the deviation from stoichiometry in 

UO2+x at low temperature. However, this statement is based solely on theoretical arguments 

and not supported by experimental data; it should therefore be addressed in future work. 
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