toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V. pdf  url
doi  openurl
  Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 23 Pages 9954-9963  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000418206600013 Publication Date 2017-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access OpenAccess  
  Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:148531 Serial (down) 4869  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Rousochatzakis, I.; Filimonov, D.; Batuk, D.; Frontzek, M.; Abakumov, A.M. url  doi
openurl 
  Title Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 9 Pages 094420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411161700002 Publication Date 2017-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access OpenAccess  
  Notes We are grateful to J.-M. Perez-Mato and Dmitry Khalyavin for valuable discussions on the magnetic structures and symmetries. D.F. and A.A. are grateful to the Russian Science Foundation (Grant No. 14-13-00680) for support. A.T. was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @c:irua:146748 Serial (down) 4774  
Permanent link to this record
 

 
Author Mikhailova, D.; Kuratieva, N.N.; Utsumi, Y.; Tsirlin, A.A.; Abakumov, A.M.; Schmidt, M.; Oswald, S.; Fuess, H.; Ehrenberg, H. doi  openurl
  Title Composition-dependent charge transfer and phase separation in the V1-xRexO2 solid solution Type A1 Journal article
  Year 2017 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 46 Issue 5 Pages 1606-1617  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The substitution of vanadium in vanadium dioxide VO2 influences the critical temperatures of structural and metal-to-insulator transitions in different ways depending on the valence of the dopant. Rhenium adopts valence states between + 4 and + 7 in an octahedral oxygen surrounding and is particularly interesting in this context. Structural investigation of V1-xRexO2 solid solutions (0.01 <= x <= 0.30) between 80 and 1200 K using synchrotron X-ray powder diffraction revealed only two polymorphs that resemble VO2: the low-temperature monoclinic MoO2-type form (space group P2(1)/c), and the tetragonal rutile-like form (space group P4(2)/mnm). However, for compositions with 0.03 < x <= 0.15 a phase separation in the solid solution was observed below 1000 K upon cooling down from 1200 K, giving rise to two isostructural phases with slightly different lattice parameters. This is reflected in the appearance of two metal-toinsulator transition temperatures detected by magnetization and specific heat measurements. Comprehensive X-ray photoelectron spectroscopy studies showed that an increased amount of Re leads to a change in the Re valence state from solely Re6+ at a low doping level (<= 3 at% Re) via mixed-valence states Re4+/Re6+ for at least 0.03 < x <= 0.10, up to nearly pure Re4+ in V0.70Re0.30O2. Thus, compositions V1-xRexO2 with only one valence state of Re in the material (Re6+ or Re4+) can be obtained as a single phase, while intermediate compositions are subjected to a phase separation, presumably due to different valence states of Re.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000395442700030 Publication Date 2016-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 1 Open Access Not_Open_Access  
  Notes ; The authors are indebted to Dr G. Auffermann (Max Planck Institute for Chemical Physics of Solids, Dresden, Germany) for performing the ICP-OES analyses. This research has received a partial funding from the BMBF, project grant number 03SF0477B (DESIREE). AT acknowledges financial support from Federal Ministry for Education and Research under Sofja Kovalevksaya Award of Alexander von Humboldt Foundation. AMA is grateful to the Russian Science Foundation (grant 14-13-00680) for financial support. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:142580 Serial (down) 4642  
Permanent link to this record
 

 
Author Mikhailova, D.; Karakulina, O.M.; Batuk, D.; Hadermann, J.; Abakumov, A.M.; Herklotz, M.; Tsirlin, A.A.; Oswald, S.; Giebeler, L.; Schmidt, M.; Eckert, J.; Knapp, M.; Ehrenberg, H. pdf  url
doi  openurl
  Title Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2upon Li Extraction and Insertion Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 7079-7089  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li(M,Li)O2 (where M is a transition metal) ordered rock-salt-type structures are used in advanced metal-ion batteries as one of the best hosts for the reversible intercalation of Li ions. Besides the conventional redox reaction involving oxidation/reduction of the M cation upon Li extraction/insertion, creating oxygen-located holes because of the partial oxygen oxidation increases capacity while maintaining the oxidized oxygen species in the lattice through high covalency of the M–O bonding. Typical degradation mechanism of the Li(M,Li)O2 electrodes involves partially irreversible M cation migration toward the Li positions, resulting in gradual capacity/voltage fade. Here, using LiRhO2 as a model system (isostructural and isoelectronic to LiCoO2), for the first time, we demonstrate an intimate coupling between the oxygen redox and M cation migration. A formation of the oxidized oxygen species upon electrochemical Li extraction coincides with transformation of the layered Li1–xRhO2 structure into the γ-MnO2-type rutile–ramsdellite intergrowth LiyRh3O6 structure with rutile-like [1 × 1] channels along with bigger ramsdellite-like [2 × 1] tunnels through massive and concerted Rh migration toward the empty positions in the Li layers. The oxidized oxygen dimers with the O–O distances as short as 2.26 Å are stabilized in this structure via the local Rh–O configuration reminiscent to that in the μ-peroxo-μ-hydroxo Rh complexes. The LiyRh3O6 structure is remarkably stable upon electrochemical cycling illustrating that proper structural implementation of the oxidized oxygen species can open a pathway toward deliberate employment of the anion redox chemistry in high-capacity/high-voltage positive electrodes for metal-ion batteries. Upon chemical or electrochemical oxidation, layered LiRhO2 shows a unique structural transformation that involves both cation migration and oxidation of oxygen resulting in a stable tunnel-like rutile−ramsdellite intergrowth LiyRh3O6 structure. This structure demonstrates excellent performance with the steady and reversible capacity of ∼200 mAh/g. The stability of LiyRh3O6 is rooted in the accommodation of partially oxidized oxygen species through the formation of short O−O distances that are compatible with the connectivity of RhO6 octahedra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380181400035 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 12 Open Access  
  Notes Bundesministerium fur Bildung und Forschung, 03SF0477B ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:140848 Serial (down) 4424  
Permanent link to this record
 

 
Author Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M. pdf  url
doi  openurl
  Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
  Year 2016 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 7578-7581  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387518500004 Publication Date 2016-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 10 Open Access  
  Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial (down) 4320  
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Bobrikov, I.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Tsirlin, A.A.; Abakumov, A.M. pdf  doi
openurl 
  Title Synthesis, structure and magnetic ordering of the mullite-type Bi2Fe4-xCrxO9 solid solutions with a frustrated pentagonal Cairo lattice Type A1 Journal article
  Year 2016 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 45 Issue 45 Pages 1192-1200  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Highly homogeneous mullite-type solid solutions Bi2Fe4-xCrxO9 (x = 0.5, 1, 1.2) were synthesized using a soft chemistry technique followed by a solid-state reaction in Ar. The crystal structure of Bi2Fe3CrO9 was investigated using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy (S.G. Pbam, a = 7.95579(9) angstrom , b = 8.39145(9) angstrom, c = 5.98242(7) angstrom, R-F(X-ray) = 0.022, R-F(neutron) = 0.057). The ab planes in the structure are tessellated with distorted pentagonal loops built up by three tetrahedrally coordinated Fe sites and two octahedrally coordinated Fe/Cr sites, linked together in the ab plane by corner-sharing forming a pentagonal Cairo lattice. Magnetic susceptibility measurements and powder neutron diffraction show that the compounds order antiferromagnetically (AFM) with the Neel temperatures decreasing upon increasing the Cr content from T-N similar to 250 K for x = 0 to T-N similar to 155 K for x = 1.2. The magnetic structure of Bi2Fe3CrO9 at T = 30 K is characterized by a propagation vector k = (1/2,1/2,1/2). The tetrahedrally coordinated Fe cations form singlet pairs within dimers of corner-sharing tetrahedra, but spins on the neighboring dimers are nearly orthogonal. The octahedrally coordinated (Fe, Cr) cations form antiferromagnetic up-up-down-down chains along c, while the spin arrangement in the ab plane is nearly orthogonal between nearest neighbors and collinear between second neighbors. The resulting magnetic structure is remarkably different from the one in pure Bi2Fe4O9 and features several types of spin correlations even on crystallographically equivalent exchange that may be caused by the simultaneous presence of Fe and Cr on the octahedral site.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000367614700041 Publication Date 2015-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:131095 Serial (down) 4257  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M. pdf  url
doi  openurl
  Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 54 Pages 14787-14790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.  
  Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367723400031 Publication Date 2015-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 3 Open Access  
  Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number c:irua:131104 Serial (down) 4080  
Permanent link to this record
 

 
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 1245-1257  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.  
  Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369356800031 Publication Date 2016-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access  
  Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857  
  Call Number c:irua:132247 Serial (down) 4073  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Bykov, M.; Bykova, E.; Kozlenko, D.P.; Tsirlin, A.A.; Karkin, A.E.; Shchennikov, V.V.; Kichanov, S.E.; Gou, H.; Abakumov, A.M.; Egoavil, R.; Verbeeck, J.; McCammon, C.; Dyadkin, V.; Chernyshov, D.; van Smaalen, S.; Dubrovinsky, L.S. pdf  url
doi  openurl
  Title Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 8 Issue 8 Pages 501-508  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below approximately 150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.  
  Address Bayerisches Geoinstitut, Universitat Bayreuth, Universitatsstrasse 30, D-95447, Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000374534100019 Publication Date 2016-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 51 Open Access  
  Notes S.V.O. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under project OV-110/1-3. A.E.K. and V.V.S. acknowledge the support of the Russian Foundation for Basic Research (Project 14–02–00622a). H.G. acknowledges the support from the Alexander von Humboldt (AvH) Foundation and the National Natural Science Foundation of China (No. 51201148). A.M.A., R.E. and J.V. acknowledge financial support from the European Commission (EC) under the Seventh Framework Programme (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2. R.E. acknowledges support from the EC under FP7 Grant No. 246102 IFOX. A.M.A. acknowledges funding from the Russian Science Foundation (Grant No. 14-13- 00680). A.A.T. acknowledges funding and from the Federal Ministry for Education and Research through the Sofja Kovalevkaya Award of the AvH Foundation. Funding from the Fund for Scientific Research Flanders under FWO Project G.0044.13N is acknowledged. M.B. and S.v.S. acknowledge support from the DFG under Project Sm55/15-2. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities.; esteem2jra2; esteem2jra3 Approved Most recent IF: 25.87  
  Call Number c:irua:133593 c:irua:133593UA @ admin @ c:irua:133593 Serial (down) 4068  
Permanent link to this record
 

 
Author Charkin, D.O.; Demchyna, R.; Prots, Y.; Borrmann, H.; Burkhardt, U.; Schwarz, U.; Schnelle, W.; Plokhikh, I.V.; Kazakov, S.M.; Abakumov, A.M.; Batuk, D.; Verchenko, V.Y.; Tsirlin, A.A.; Curfs, C.; Grin, Y.; Shevelkov, A.V.; doi  openurl
  Title Two New Arsenides, Eu7Cu44As23 and Sr7Cu44As23, With a New Filled Variety of the BaHg11 Structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 20 Pages 11173-11184  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two new ternary arsenides, namely, Eu7Cu44As23 and Sr7Cu44As23, were synthesized from elements at 800 degrees C. Their crystal structure represents a new filled version of the BaHg11 motif with cubic voids alternately occupied by Eu(Sr) and As atoms, resulting in a 2 x 2 x 2 superstructure of the aristotype: space group Fm (3) over barm, a = 16.6707(2) angstrom and 16.7467(2) angstrom, respectively. The Eu derivative exhibits ferromagnetic ordering below 17.5 K. In agreement with band structure calculations both compounds are metals, exhibiting relatively low thermopower, but high electrical and low thermal conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000343527700049 Publication Date 2014-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 9 Open Access  
  Notes Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:121141 Serial (down) 3784  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Rosner, H. url  doi
openurl 
  Title (CuCl)LaTa2O\text{7} and quantum phase transition in the (CuX)LaM2O7 family (X=Cl, Br; M=Nb, Ta) Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 6 Pages 064440-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We apply neutron diffraction, high-resolution synchrotron x-ray diffraction, magnetization measurements, electronic structure calculations, and quantum Monte-Carlo simulations to unravel the structure and magnetism of (CuCl)LaTa2O7. Despite the pseudo-tetragonal crystallographic unit cell, this compound features an orthorhombic superstructure, similar to the Nb-containing (CuX)LaNb2O7 with X = Cl and Br. The spin lattice entails dimers formed by the antiferromagnetic fourth-neighbor coupling J(4), as well as a large number of nonequivalent interdimer couplings quantified by an effective exchange parameter J(eff). In (CuCl)LaTa2O7, the interdimer couplings are sufficiently strong to induce the long-range magnetic order with the Neel temperature T-N similar or equal to 7 K and the ordered magnetic moment of 0.53 mu(B), as measured with neutron diffraction. This magnetic behavior can be accounted for by J(eff)/J(4) similar or equal to 1.6 and J(4) similar or equal to 16 K. We further propose a general magnetic phase diagram for the (CuCl)LaNb2O7-type compounds, and explain the transition from the gapped spin-singlet (dimer) ground state in (CuCl)LaNb2O7 to the long-range antiferromagnetic order in (CuCl)LaTa2O7 and (CuBr)LaNb2O7 by an increase in the magnitude of the interdimer couplings J(eff)/J(4), with the (CuCl)LaM2O7 (M = Nb, Ta) compounds lying on different sides of the quantum critical point that separates the singlet and long-range-ordered magnetic ground states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308127600006 Publication Date 2012-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101886 Serial (down) 3526  
Permanent link to this record
 

 
Author Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M. pdf  doi
openurl 
  Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
  Year 2010 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 1 Issue 6 Pages 751-762  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000283939200013 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 12 Open Access  
  Notes Approved Most recent IF: 8.668; 2010 IF: NA  
  Call Number UA @ lucian @ c:irua:85823 Serial (down) 3517  
Permanent link to this record
 

 
Author d' Hondt, H.; Hadermann, J.; Abakumov, A.M.; Kalyuzhnaya, A.S.; Rozova, M.G.; Tsirlin, A.A.; Tan, H.; Verbeeck, J.; Antipov, E.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Synthesis, crystal structure and magnetic properties of the Sr2Al0.78Mn1.22O5.2 anion-deficient layered perovskite Type A1 Journal article
  Year 2009 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 182 Issue 2 Pages 356-363  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new layered perovskite Sr2Al0.78Mn1.22O5.2 has been synthesized by solid state reaction in a sealed evacuated silica tube. The crystal structure has been determined using electron diffraction, high-resolution electron microscopy, and high-angle annular dark field imaging and refined from X-ray powder diffraction data (space group P4/mmm, a=3.89023(5) Å, c=7.8034(1) Å, RI=0.023, RP=0.015). The structure is characterized by an alternation of MnO2 and (Al0.78Mn0.22)O1.2 layers. Oxygen atoms and vacancies, as well as the Al and Mn atoms in the (Al0.78Mn0.22)O1.2 layers are disordered. The local atomic arrangement in these layers is suggested to consist of short fragments of brownmillerite-type tetrahedral chains of corner-sharing AlO4 tetrahedra interrupted by MnO6 octahedra, at which the chain fragments rotate over 90°. This results in an averaged tetragonal symmetry. This is confirmed by the valence state of Mn measured by EELS. The relationship between the Sr2Al0.78Mn1.22O5.2 tetragonal perovskite and the parent Sr2Al1.07Mn0.93O5 brownmillerite is discussed. Magnetic susceptibility measurements indicate spin glass behavior of Sr2Al0.78Mn1.22O5.2. The lack of long-range magnetic ordering contrasts with Mn-containing brownmillerites and is likely caused by the frustration of interlayer interactions due to presence of the Mn atoms in the (Al0.78Mn0.22)O1.2 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000263124700022 Publication Date 2008-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 12 Open Access  
  Notes Iap Vi Approved Most recent IF: 2.299; 2009 IF: 2.340  
  Call Number UA @ lucian @ c:irua:72943 Serial (down) 3450  
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V. doi  openurl
  Title Synthesis and crystal structure of new titanyl phosphate Sr2TiO(PO4)2 Type A1 Journal article
  Year 2008 Publication Russian chemical bulletin Abbreviated Journal Russ Chem B+  
  Volume 57 Issue 3 Pages 552-556  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New strontium titanyl phosphate Sr2TiO(PO4)2 (1) was synthesized and characterized by X-ray powder diffraction, electron diffraction, high-resolution electron microscopy, and band structure calculations. Titanyl phosphate 1 is isostructural with vanadyl phosphate Sr2VO(PO4)2 and has a layered structure. The titanium atoms are shifted from the centers of the TiO6 octahedra and form short (1.74 Å) titanyl bonds. The structure of 1 is an unusual example of the disordered orientation of the chains formed by TiO6 octahedra in complex titanium phosphates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000263566900015 Publication Date 2009-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.529 Times cited 2 Open Access  
  Notes Approved Most recent IF: 0.529; 2008 IF: 0.469  
  Call Number UA @ lucian @ c:irua:73712 Serial (down) 3423  
Permanent link to this record
 

 
Author Batuk, M.; Tyablikov, O.A.; Tsirlin, A.A.; Kazakov, S.M.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V.; Abakumov, A.M.; Hadermann, J. pdf  doi
openurl 
  Title Structure and magnetic properties of a new anion-deficient perovskite Pb2Ba2BiFe4ScO13 with crystallographic shear structure Type A1 Journal article
  Year 2013 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 48 Issue 9 Pages 3459-3465  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb2Ba2BiFe4ScO13, a new n = 5 member of the oxygen-deficient perovskite-based A(n)B(n)O(3n-2) homologous series, was synthesized using a solid-state method. The crystal structure of Pb2Ba2BiFe4ScO13 was investigated by a combination of synchrotron X-ray powder diffraction, electron diffraction, high-angle annular dark-field scanning transmission electron microscopy and Mossbauer spectroscopy. At 900 K, it crystallizes in the Ammm space group with the unit cell parameters a = 5.8459(1) angstrom, b = 4.0426(1) angstrom, and c=27.3435(1) angstrom. In the Pb2Ba2BiFe4ScO13 structure, quasi-two-dimensional perovskite blocks are periodically interleaved with 1/2[1 1 0] ((1) over bar 0 1)(p) crystallographic shear (CS) planes. At the CS planes, the corner-sharing FeO6 octahedra are transformed into chains of edge-sharing FeO5 distorted tetragonal pyramids. B-positions of the perovskite blocks between the CS planes are jointly occupied by Fe3+ and Sc3+. The chains of the FeO5 pyramids and (Fe,Sc)O-6 octahedra delimit six-sided tunnels that are occupied by double columns of cations with a lone electron pair (Pb2+). The remaining A-cations (Bi3+, Ba2+) occupy positions in the perovskite block. According to the magnetic susceptibility measurements, Pb2Ba2BiFe4ScO13 is antiferromagnetically ordered below T-N approximate to 350 K. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322354000076 Publication Date 2013-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.446; 2013 IF: 1.968  
  Call Number UA @ lucian @ c:irua:109756 Serial (down) 3282  
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, M.; Tsirlin, A.A.; Tyablikov, O.A.; Sheptyakov, D.V.; Filimonov, D.S.; Pokholok, K.V.; Zhidal, V.S.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.; pdf  doi
openurl 
  Title Structural and magnetic phase transitions in the AnBnO3n-2 anion-deficient perovskites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 14 Pages 7834-7843  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Novel anion-deficient perovskite-based ferrites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 were synthesized by solid-state reaction in air. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 belong to the perovskite-based AnBnO3n2 homologous series with n = 5 and 6, respectively, with a unit cell related to the perovskite subcell ap as ap√2 × ap × nap√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]p(1̅01)p crystallographic shear (CS) planes. The CS operation results in (1̅01)p-shaped perovskite blocks with a thickness of (n 2) FeO6 octahedra connected to each other through double chains of edge-sharing FeO5 distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above T ≈ 750 K for Pb2Ba2BiFe5O13 and T ≈ 400 K for Pb1.5Ba2.5Bi2Fe6O16 the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned FeFe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all n = 4, 5, 6 AnFenO3n2 (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623632 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000322087100006 Publication Date 2013-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 10 Open Access  
  Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:109213 Serial (down) 3196  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Perez-Mato, J.M.; Petřiček, V.; Rosner, H.; Yang, T.; Greenblatt, M. url  doi
openurl 
  Title Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6 Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214402-214402,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature neutron powder diffraction and density functional theory band structure calculations. In spite of the random distribution of the Mn3+ and Fe3+ cations, this centrosymmetric compound undergoes a transition into an incommensurate antiferromagnetically ordered state below TN≃220 K. The magnetic structure is characterized by the propagation vector k=[0,β,0] with β≃0.14 and the P221211′(0β0)0s0s magnetic superspace symmetry. It comprises antiferromagnetic helixes propagating along the b axis. The magnetic moments lie in the ac plane and rotate about π(1+β)≃204.8-deg angle between the adjacent magnetic atoms along b. The spiral magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The antiferromagnetic coupling along the c axis cancels the possible electric polarization and prevents ferroelectricity in BiMnFe2O6.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291197400001 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90080 Serial (down) 3107  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Shpanchenko, R.V.; Antipov, E.V.; Bougerol, C.; Hadermann, J.; Van Tendeloo, G.; Schnelle, W.; Rosner, H. doi  openurl
  Title Spin ladder compound Pb0.55Cd0.45V2O5: synthesis and investigation Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue 10 Pages 104429,1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000249786300074 Publication Date 2007-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:65594 Serial (down) 3091  
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Batuk, M.; d' Hondt, H.; Tyablikov, O.A.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V. pdf  doi
openurl 
  Title Slicing the Perovskite structure with crystallographic shear planes : the AnBnO3n-2 homologous series Type A1 Journal article
  Year 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 49 Issue 20 Pages 9508-9516  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new AnBnO3n−2 homologous series of anion-deficient perovskites has been evidenced by preparation of the members with n = 5 (Pb2.9Ba2.1Fe4TiO13) and n = 6 (Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16) in a single phase form. The crystal structures of these compounds were determined using a combination of transmission electron microscopy and X-ray and neutron powder diffraction (S.G. Ammm, a = 5.74313(7), b = 3.98402(4), c = 26.8378(4) Å, RI = 0.035, RP = 0.042 for Pb2.9Ba2.1Fe4TiO13 and S.G. Imma, a = 5.7199(1), b = 3.97066(7), c = 32.5245(8) Å, RI = 0.032, RP = 0.037 for Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16). The crystal structures of the AnBnO3n−2 homologues are formed by slicing the perovskite structure with (01)p crystallographic shear (CS) planes. The shear planes remove a layer of oxygen atoms and displace the perovskite blocks with respect to each other by the 1/2[110]p vector. The CS planes introduce edge-sharing connections of the transition metal−oxygen polyhedra at the interface between the perovskite blocks. This results in intrinsically frustrated magnetic couplings between the perovskite blocks due to a competition of the exchange interactions between the edge- and the corner-sharing metal−oxygen polyhedra. Despite the magnetic frustration, neutron powder diffraction and Mssbauer spectroscopy reveal that Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 are antiferromagnetically ordered below TN = 407 and 343 K, respectively. The Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 compounds are in a paraelectric state in the 5−300 K temperature range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000282783400051 Publication Date 2010-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 23 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 4.857; 2010 IF: 4.326  
  Call Number UA @ lucian @ c:irua:84963 Serial (down) 3041  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H. url  doi
openurl 
  Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 21 Pages 214427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305557600002 Publication Date 2012-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100289 Serial (down) 2998  
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A. doi  openurl
  Title Reply to Comment on “Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites” Type Editorial
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 2 Pages 1288  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000330543600051 Publication Date 2014-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 1 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:115730 Serial (down) 2874  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Furukawa, Y.; Johnston, D.C.; Hemmida, M.; Krug von Nidda, H.-A.; Loidl, A.; Geibel, C.; Rosner, H. url  doi
openurl 
  Title Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5 Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 1 Pages 014429-014429,16  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystal structure, electronic structure, and magnetic behavior of the spin-1/2 quantum magnet Na1.5VOPO4F0.5 are reported. The disorder of Na atoms leads to a sequence of structural phase transitions revealed by synchrotron x-ray powder diffraction and electron diffraction. The high-temperature second-order α↔β transition at 500 K is of the order-disorder type, whereas the low-temperature β↔γ+γ′ transition around 250 K is of the first order and leads to a phase separation toward the polymorphs with long-range (γ) and short-range (γ′) order of Na. Despite the complex structural changes, the magnetic behavior of Na1.5VOPO4F0.5 probed by magnetic susceptibility, heat capacity, and electron spin resonance measurements is well described by the regular frustrated square lattice model of the high-temperature α-polymorph. The averaged nearest-neighbor and next-nearest-neighbor couplings are J̅ 1≃−3.7 K and J̅ 2≃6.6 K, respectively. Nuclear magnetic resonance further reveals the long-range ordering at TN=2.6 K in low magnetic fields. Although the experimental data are consistent with the simplified square-lattice description, band structure calculations suggest that the ordering of Na atoms introduces a large number of inequivalent exchange couplings that split the square lattice into plaquettes. Additionally, the direct connection between the vanadium polyhedra induces an unusually strong interlayer coupling having effect on the transition entropy and the transition anomaly in the specific heat. Peculiar features of the low-temperature crystal structure and the relation to isostructural materials suggest Na1.5VOPO4F0.5 as a parent compound for the experimental study of tetramerized square lattices as well as frustrated square lattices with different values of spin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293247400008 Publication Date 2011-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:91770 Serial (down) 2588  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Abakumov, A.M.; Tsirlin, A.A.; Schnelle, W.; Egoavil, R.; Verbeeck, J.; Van Tendeloo, G.; Glazyrin, K.V.; Hanfland, M.; Dubrovinsky, L. pdf  doi
openurl 
  Title Perovskite-like Mn2O3 : a path to new manganites Type A1 Journal article
  Year 2013 Publication Angewandte Chemie Abbreviated Journal Angew Chem Int Edit  
  Volume 52 Issue 5 Pages 1494-1498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Korund-artiges ε-Mn2O3 und Perowskit-artiges ζ-Mn2O3, zwei neue Phasen von Mn2O3, wurden unter hohen Drücken bei hohen Temperaturen synthetisiert. Die Manganatome können vollständig die A- und B-Positionen der Perowskitstruktur besetzen. ζ-Mn2O3 (siehe Bild, A-Positionsordnung) enthält Mn in den drei Oxidationsstufen +II, +III und +IV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000313913300027 Publication Date 2012-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 84 Open Access  
  Notes This work was supported by the DFG (project OV-110/1-1), Alexander von Humboldt foundation, European Union Council (FP7)-Grant no. 246102 IFOX, European Research Council (FP7)-ERC Starting Grant no. 278510 VORTEX and ERC Grant no. 246791-COUNTATOMS, and Hercules fund from the Flemish Government. ECASJO_; Approved Most recent IF: 11.994; 2013 IF: 11.336  
  Call Number UA @ lucian @ c:irua:108765UA @ admin @ c:irua:108765 Serial (down) 2573  
Permanent link to this record
 

 
Author Gou, H.; Tsirlin, A.A.; Bykova, E.; Abakumov, A.M.; Van Tendeloo, G.; Richter, A.; Ovsyannikov, S.V.; Kurnosov, A.V.; Trots, D.M.; Konôpková, Z.; Liermann, H.P.; Dubrovinsky, L.; Dubrovinskaia, N.; url  doi
openurl 
  Title Peierls distortion, magnetism, and high hardness of manganese tetraboride Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 6 Pages 064108-64109  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report crystal structure, electronic structure, and magnetism of manganese tetraboride, MnB4, synthesized under high-pressure, high-temperature conditions. In contrast to superconducting FeB4 and metallic CrB4, which are both orthorhombic, MnB4 features a monoclinic crystal structure. Its lower symmetry originates from a Peierls distortion of the Mn chains. This distortion nearly opens the gap at the Fermi level, but despite the strong dimerization and the proximity of MnB4 to the insulating state, we find indications for a sizable paramagnetic effective moment of about 1.7 mu(B)/f.u., ferromagnetic spin correlations, and, even more surprisingly, a prominent electronic contribution to the specific heat. However, no magnetic order has been observed in standard thermodynamic measurements down to 2 K. Altogether, this renders MnB4 a structurally simple but microscopically enigmatic material; we argue that its properties may be influenced by electronic correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332405000002 Publication Date 2014-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115819 Serial (down) 2571  
Permanent link to this record
 

 
Author Mikhailova, D.; Reichel, P.; Tsirlin, A.A.; Abakumov, A.M.; Senyshyn, A.; Mogare, K.M.; Schmidt, M.; Kuo, C.Y.; Pao, C.W.; Pi, T.W.; Lee, J.F.; Hu, Z.; Tjeng, L.H.; doi  openurl
  Title Oxygen-driven competition between low-dimensional structures of Sr3CoMO6 and Sr3CoMO7-\delta with M = Ru,Ir Type A1 Journal article
  Year 2014 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 43 Issue 37 Pages 13883-13891  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have realized a reversible structure transformation of one-dimensional 1D K4CdCl6-type Sr3CoMO6 with the Co2+/M4+ cation ordering into the two-dimensional 2D double layered Ruddlesden-Popper structure Sr3CoMO7-delta with a random distribution of Co and M (with M = Ru, Ir) upon increasing the partial oxygen pressure. The combined soft and hard X-ray absorption spectroscopy studies show that under transformation, Co and M cations were oxidized to Co3+ and M5+. During oxidation, high-spin Co2+ in Sr3CoMO6 first transforms into high-spin Co3+ in oxygen-deficient Sr3CoMO7-delta, and then further transforms into low-spin Co3+ in fully oxidized Sr3CoMO7 upon further increasing the partial pressure of oxygen. The 1D Sr3CoMO6 compound is magnetically ordered at low temperatures with the magnetic moments lying along the c-axis. Their alignment is parallel for Sr3CoRuO6 and antiparallel for Sr3CoIrO6. The 2D compounds reveal a spin-glass-like behavior related to the random distribution of magnetic cations in the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000342074100009 Publication Date 2014-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.029; 2014 IF: 4.197  
  Call Number UA @ lucian @ c:irua:119960 Serial (down) 2545  
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Tsirlin, A.A.; Tan, H.; Verbeeck, J.; Zhang, H.; Dikarev, E.V.; Shpanchenko, R.V.; Antipov, E.V. doi  openurl
  Title Original close-packed structure and magnetic properties of the Pb4Mn9O20 manganite Type A1 Journal article
  Year 2009 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 182 Issue 8 Pages 2231-2238  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of the Pb4Mn9O20 compound (previously known as Pb0.43MnO2.18) was solved from powder X-ray diffraction, electron diffraction, and high resolution electron microscopy data (S.G. Pnma, a=13.8888(2) Å, b=11.2665(2) Å, c=9.9867(1) Å, RI=0.016, RP=0.047). The structure is based on a 6H (cch)2 close packing of pure oxygen h-type (O16) layers alternating with mixed c-type (Pb4O12) layers. The Mn atoms occupy octahedral interstices formed by the oxygen atoms of the close-packed layers. The MnO6 octahedra share edges within the layers, whereas the octahedra in neighboring layers are linked through corner sharing. The relationship with the closely related Pb3Mn7O15 structure is discussed. Magnetization measurements reveal a peculiar magnetic behavior with a phase transition at 52 K, a small net magnetization below the transition temperature, and a tendency towards spin freezing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000269066400035 Publication Date 2009-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access  
  Notes The authors are grateful to Christoph Geibel for the help in magnetization measurements. A.Ts. acknowledges MPI CKS for hospitality and financial support during the stay. E.D. thanks the National Science Foundation (CHE-0718900) for financial support. This work was supported by the Russian Foundation of Basic Research (RFBR Grants 07-03-00664-a, 06-03-90168-a and 07-03-00890-a). The authors acknowledge financial support from the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. Approved Most recent IF: 2.299; 2009 IF: 2.340  
  Call Number UA @ lucian @ c:irua:78935UA @ admin @ c:irua:78935 Serial (down) 2529  
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Tsirlin, A.A.; Kondakova, E.S.; Antipov, E.V.; Bougerol, C.; Hadermann, J.; Van Tendeloo, G.; Sakurai, H.; Takayama-Muromachi, E. doi  openurl
  Title New germanates RCrGeO5 (R=NdEr, Y): synthesis, structure, and properties Type A1 Journal article
  Year 2008 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 181 Issue 9 Pages 2433-2441  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The new complex germanates RCrGeO5 (R=NdEr, Y) have been synthesized and investigated by means of X-ray powder diffraction, electron microscopy, magnetic susceptibility and specific heat measurements. All the compounds are isostructural and crystallize in the orthorhombic symmetry, space group Pbam, and Z=4. The crystal structure of RCrGeO5, as refined using X-ray powder diffraction data, includes infinite chains built by edge-sharing Cr+3O6 octahedra with two alternating Cr−Cr distances. The chains are combined into a three-dimensional framework by Ge2O8 groups consisting of two edge-linked square pyramids oriented in opposite directions. The resulting framework contains pentagonal channels where rare-earth elements are located. Thus, RCrGeO5 germanates present new examples of RMn2O5-type compounds and show ordering of Cr+3 and Ge+4 cations. Electron diffraction as well as high-resolution electron microscopy confirm the structure solution. Magnetic susceptibility data for R=Nd, Sm, and Eu are qualitatively consistent with the presence of isolated 3d (antiferromagnetically coupled Cr+3 cations) and 4f (R+3) spin subsystems in the RCrGeO5 compounds. NdCrGeO5 undergoes long-range magnetic ordering at 2.6 K, while SmCrGeO5 and EuCrGeO5 do not show any phase transitions down to 2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000259415800047 Publication Date 2008-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.299; 2008 IF: 1.910  
  Call Number UA @ lucian @ c:irua:72948 Serial (down) 2314  
Permanent link to this record
 

 
Author Erni, R.; Abakumov, A.M.; Rossell, M.D.; Batuk, D.; Tsirlin, A.A.; Nénert, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nanoscale phase separation in perovskites revisited Type L1 Letter to the editor
  Year 2014 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 13 Issue 3 Pages 216-217  
  Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000331945200002 Publication Date 2014-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 5 Open Access  
  Notes Approved Most recent IF: 39.737; 2014 IF: 36.503  
  Call Number UA @ lucian @ c:irua:114579 Serial (down) 2270  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A. doi  openurl
  Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 10 Pages 3306-3315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336637000036 Publication Date 2014-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 35 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:117766 Serial (down) 2232  
Permanent link to this record
 

 
Author Dachraoui, W.; Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Batuk, D.; Glazyrin, K.; McCammon, C.; Dubrovinsky, L.; Van Tendeloo, G. pdf  doi
openurl 
  Title Local oxygen-vacancy ordering and twinned octahedral tilting pattern in the Bi0.81Pb0.19FeO2.905 cubic perovskite Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 7 Pages 1378-1385  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure of Bi0.81Pb0.19FeO2.905 was investigated on different length scales using a combination of electron diffraction, high-resolution scanning transmission electron microscopy, synchrotron X-ray powder diffraction, and Mössbauer spectroscopy. In the 80300 K temperature range, the average crystal structure of Bi0.81Pb0.19FeO2.905 is a cubic Pm3̅m perovskite with a = 3.95368(3) Å at T = 300 K. The (Pb2+, Bi3+) cations and O2 anions are randomly displaced along the 110 cubic directions, indicating the steric activity of the lone pair on the Pb2+ and Bi3+ cations and a tilting distortion of the perovskite framework. The charge imbalance induced by the heterovalent Bi3+ → Pb2+ substitution is compensated by the formation of oxygen vacancies preserving the trivalent state of the Fe cations. On a short scale, oxygen vacancies are located in anion-deficient (FeO1.25) layers that are approximately 6 perovskite unit cells apart and transform every sixth layer of the FeO6 octahedra into a layer with a 1:1 mixture of corner-sharing FeO4 tetrahedra and FeO5 tetragonal pyramids. The anion-deficient layers act as twin planes for the octahedral tilting pattern of adjacent perovskite blocks. They effectively randomize the octahedral tilting and prevent the cooperative distortion of the perovskite framework. The disorder in the anion sublattice impedes cooperative interactions of the local dipoles induced by the off-center displacements of the Pb and Bi cations. Magnetic susceptibility measurements evidence the antiferromagnetic ordering in Bi0.81Pb0.19FeO2.905 at low temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000302487500018 Publication Date 2012-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 27 Open Access  
  Notes Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:97389 Serial (down) 1829  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: