|
Record |
Links |
|
Author |
Abakumov, A.M.; Hadermann, J.; Batuk, M.; d' Hondt, H.; Tyablikov, O.A.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V. |
|
|
Title |
Slicing the Perovskite structure with crystallographic shear planes : the AnBnO3n-2 homologous series |
Type |
A1 Journal article |
|
Year |
2010 |
Publication |
Inorganic chemistry |
Abbreviated Journal |
Inorg Chem |
|
|
Volume |
49 |
Issue |
20 |
Pages |
9508-9516 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
A new AnBnO3n−2 homologous series of anion-deficient perovskites has been evidenced by preparation of the members with n = 5 (Pb2.9Ba2.1Fe4TiO13) and n = 6 (Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16) in a single phase form. The crystal structures of these compounds were determined using a combination of transmission electron microscopy and X-ray and neutron powder diffraction (S.G. Ammm, a = 5.74313(7), b = 3.98402(4), c = 26.8378(4) Å, RI = 0.035, RP = 0.042 for Pb2.9Ba2.1Fe4TiO13 and S.G. Imma, a = 5.7199(1), b = 3.97066(7), c = 32.5245(8) Å, RI = 0.032, RP = 0.037 for Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16). The crystal structures of the AnBnO3n−2 homologues are formed by slicing the perovskite structure with (01)p crystallographic shear (CS) planes. The shear planes remove a layer of oxygen atoms and displace the perovskite blocks with respect to each other by the 1/2[110]p vector. The CS planes introduce edge-sharing connections of the transition metal−oxygen polyhedra at the interface between the perovskite blocks. This results in intrinsically frustrated magnetic couplings between the perovskite blocks due to a competition of the exchange interactions between the edge- and the corner-sharing metal−oxygen polyhedra. Despite the magnetic frustration, neutron powder diffraction and Mssbauer spectroscopy reveal that Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 are antiferromagnetically ordered below TN = 407 and 343 K, respectively. The Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 compounds are in a paraelectric state in the 5−300 K temperature range. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Easton, Pa |
Editor |
|
|
|
Language |
|
Wos |
000282783400051 |
Publication Date |
2010-09-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0020-1669;1520-510X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.857 |
Times cited |
23 |
Open Access |
|
|
|
Notes |
Esteem 026019; Fwo |
Approved |
Most recent IF: 4.857; 2010 IF: 4.326 |
|
|
Call Number |
UA @ lucian @ c:irua:84963 |
Serial |
3041 |
|
Permanent link to this record |