toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zarenia, M.; Perali, A.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title Enhancement of electron-hole superfluidity in double few-layer graphene Type A1 Journal article
  Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 4 Issue 4 Pages 7319  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets spatially separated by a nano-thick hexagonal boron-nitride insulating barrier, that the transition temperature for electron-hole superfluidity can approach temperatures of 40 K.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000346272900001 Publication Date 2014-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 38 Open Access  
  Notes ; We thank L. Benfatto, S. De Palo, and G. Senatore for helpful comments. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (POLATOM). ; Approved Most recent IF: 4.259; 2014 IF: 5.578  
  Call Number UA @ lucian @ c:irua:122743 Serial 1062  
Permanent link to this record
 

 
Author da Silva, R.M.; Milošević, M.V.; Shanenko, A.A.; Peeters, F.M.; Albino Aguiar, J. url  doi
openurl 
  Title Giant paramagnetic Meissner effect in multiband superconductors Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 12695  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate – even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000359143700001 Publication Date 2015-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 25 Open Access  
  Notes ; This work was supported by the Brazilian science agencies CAPES (PNPD 223038.003145/2011-00), CNPq (307552/2012-8, 141911/2012-3, and APV-4 02937/ 2013-9), and FACEPE (APQ-0202-1.05/10 and BCT-0278-1.05/11), the Flemish Science Foundation (FWO-Vl), and by the CNPq-FWO cooperation programme (CNPq 490297/2009-9). R.M.S. acknowledges support from the SRS PhD+ program of the University Cooperation for Development of the Flemish Interuniversity Council (VLIR-UOS). M.V.M. acknowledges support from CNPq (APV-4 02937/2013-9), FACEPE (APV-0034-1.05/14), and CAPES (BEX1392/11-5). ; Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number c:irua:127212 Serial 1339  
Permanent link to this record
 

 
Author Lin, S.-H.; Milošević, M.V.; Covaci, L.; Janko, B.; Peeters, F.M. url  doi
openurl 
  Title Quantum rotor in nanostructured superconductors Type A1 Journal article
  Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 4 Issue Pages 4542-4546  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000333555300007 Publication Date 2014-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 4 Open Access  
  Notes ; The work was supported by the Flemish Science Foundation (FWO-Vl), the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract W-31-109-Eng-38, and the US National Science Foundation via NSF-NIRT ECS-0609249. ; Approved Most recent IF: 4.259; 2014 IF: 5.578  
  Call Number UA @ lucian @ c:irua:116848 Serial 2785  
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 24860  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We predict enhanced electron-hole superfluidity in two coupled electron-hole armchair-edge terminated graphene nanoribbons separated by a thin insulating barrier. In contrast to graphene monolayers, the multiple subbands of the nanoribbons are parabolic at low energy with a gap between the conduction and valence bands, and with lifted valley degeneracy. These properties make screening of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus boosting the pairing strength and enhancing the superfluid properties. The pairing strength is further boosted by the quasi one-dimensional quantum confinement of the carriers, as well as by the large density of states near the bottom of each subband. The latter magnifies superfluid shape resonances caused by the quantum confinement. Several superfluid partial condensates are present for finite-width nanoribbons with multiple subbands. We find that superfluidity is predominately in the strongly-coupled BEC and BCS-BEC crossover regimes, with large superfluid gaps up to 100 meV and beyond. When the gaps exceed the subband spacing, there is significant mixing of the subbands, a rounding of the shape resonances, and a resulting reduction in the one-dimensional nature of the system.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000374654500002 Publication Date 2016-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 7 Open Access  
  Notes ; M.Z. acknowledges support by the Flemish Science Foundation (FWO-Vl), the University Research Fund (BOF), and the European Science Foundation (POLATOM). A.P. and D.N. acknowledge support by the University of Camerino FAR project CESEMN. The authors thank the colleagues involved in the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions for this work. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:133619 Serial 4201  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Phonon limited superconducting correlations in metallic nanograins Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 16515  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electronphonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest T-c achievable by quantum confinement.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000364647700001 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 9 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Research Foundation Flanders (FWO), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO. M.D.C. acknowledges fruitful discussions with V. Z. Kresin, S. N. Klimin and V. N. Gladilin. ; Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number UA @ lucian @ c:irua:129543 Serial 4224  
Permanent link to this record
 

 
Author Suslu, A.; Wu, K.; Sahin, H.; Chen, B.; Yang, S.; Cai, H.; Aoki, T.; Horzum, S.; Kang, J.; Peeters, F.M.; Tongay, S.; url  doi
openurl 
  Title Unusual dimensionality effects and surface charge density in 2D Mg(OH)2 Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 20525  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We present two-dimensional Mg(OH)(2) sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)(2) sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)(2) have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)(2) is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)(2) sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)(2) sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)(2), naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)(2), but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000369510300001 Publication Date 2016-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 39 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:131615 Serial 4272  
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title Inhomogeneous phases in coupled electron-hole bilayer graphene sheets : charge density waves and coupled wigner crystals Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 11510  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Recently proposed accurate correlation energies are used to determine the phase diagram of strongly coupled electron-hole graphene bilayers. The control parameters of the phase diagram are the charge carrier density and the insulating barrier thickness separating the bilayers. In addition to the electron-hole superfluid phase we find two new inhomogeneous ground states, a one dimensional charge density wave phase and a coupled electron-hole Wigner crystal. The elementary crystal structure of bilayer graphene plays no role in generating these new quantum phases, which are completely determined by the electrons and holes interacting through the Coulomb interaction. The experimental parameters for the new phases lie within attainable ranges and therefore coupled electron-hole bilayer graphene presents itself as an experimental system where novel emergent many-body phases can be realized.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000410739000008 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 13 Open Access  
  Notes ; We thank Alex Hamilton, Bart Partoens, and Andrea Perali for useful discussions. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:145620 Serial 4742  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Hernandez-Nieves, A.D.; Peeters, F.M.; Dominguez, D. url  doi
openurl 
  Title Microfluidic manipulation of magnetic flux domains in type-I superconductors : droplet formation, fusion and fission Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 12129  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The magnetic flux domains in the intermediate state of type-I superconductors are known to resemble fluid droplets, and their dynamics in applied electric current is often cartooned as a “dripping faucet”. Here we show, using the time-depended Ginzburg-Landau simulations, that microfluidic principles hold also for the determination of the size of the magnetic flux-droplet as a function of the applied current, as well as for the merger or splitting of those droplets in the presence of the nanoengineered obstacles for droplet motion. Differently from fluids, the flux-droplets in superconductors are quantized and dissipative objects, and their pinning/depinning, nucleation, and splitting occur in a discretized form, all traceable in the voltage measured across the sample. At larger applied currents, we demonstrate how obstacles can cause branching of laminar flux streams or their transformation into mobile droplets, as readily observed in experiments.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000411416700032 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 1 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO) and the MINCYT-FWO FW/14/04 bilateral project. A.D.H. and D.D. acknowledge support from CONICET (Grant No. PIP111220150100218), CNEA and ANPCyT (Grant No. PICT2014-1382). ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:146743 Serial 4789  
Permanent link to this record
 

 
Author Bekaert, J.; Bignardi, L.; Aperis, A.; van Abswoude, P.; Mattevi, C.; Gorovikov, S.; Petaccia, L.; Goldoni, A.; Partoens, B.; Oppeneer, P.M.; Peeters, F.M.; Milošević, M.V.; Rudolf, P.; Cepek, C. url  doi
openurl 
  Title Free surfaces recast superconductivity in few-monolayer MgB2 : combined first-principles and ARPES demonstration Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 14458  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like sigma-and pi-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as similar to 30 K for merely six monolayers thick MgB2. These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.'));  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000414231000059 Publication Date 2017-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 27 Open Access  
  Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Foundation for Fundamental Research on Matter (FOM)-part of the Netherlands Organisation for Scientific Research, the Swedish Research Council (VR) and the Rontgen-Angstrom Cluster. P.v.A. acknowledges an Ubbo Emmius fellowship for his PhD studies. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government – department EWI. Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). We thank D. Lonza for technical assistance in the experimental part. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:147426 Serial 4875  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Kusmartsev, F.; Peeters, F.M.; Savel'ev, S. url  doi
openurl 
  Title Josephson vortex loops in nanostructured Josephson junctions Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 8 Pages 2733  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical-and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse – unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors -the Josephson vortex loops – formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000424630400046 Publication Date 2018-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 10 Open Access  
  Notes ; This work was supported by EU Marie-Curie program (project No: 253057), Special Research Funds of the University of Antwerp (BOF-UA), and by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:149262UA @ admin @ c:irua:149262 Serial 4940  
Permanent link to this record
 

 
Author van den Broek, M.; Peeters, F.M. doi  openurl
  Title Confined states in two-dimensional flat elliptic quantum dots and elliptic quantum wires Type A1 Journal article
  Year 2001 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 11 Issue Pages 345-355  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000173201200007 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 54 Open Access  
  Notes Approved Most recent IF: 2.221; 2001 IF: 1.009  
  Call Number UA @ lucian @ c:irua:37307 Serial 486  
Permanent link to this record
 

 
Author Piacente, G.; Peeters, F.M. doi  openurl
  Title Driven quasi-on-dimensional classical electron gas in the presence of a constriction: pinning and depinning Type A1 Journal article
  Year 2006 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 34 Issue 1-2 Pages 224-227  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000239903200055 Publication Date 2006-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.221 Times cited Open Access  
  Notes Approved Most recent IF: 2.221; 2006 IF: 1.084  
  Call Number UA @ lucian @ c:irua:60893 Serial 758  
Permanent link to this record
 

 
Author Hai, G.Q.; Studart, N.; Marques, G.E.; Peeters, F.M.; Koenraad, P.M. doi  openurl
  Title Effects of intersubband interaction on multisubband electron transport in single and double quantum wells Type A1 Journal article
  Year 1998 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 2 Issue Pages 222-227  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000075383500047 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.221; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24184 Serial 864  
Permanent link to this record
 

 
Author Ibrahim, I.S.; Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title Electrical transport through magnetic barriers Type A1 Journal article
  Year 1998 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 2 Issue Pages 899-903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000075383500184 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.221 Times cited Open Access  
  Notes Approved Most recent IF: 2.221; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24187 Serial 896  
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Partoens, B.; Janssens, K.L. doi  openurl
  Title Electron and hole localization in coupled InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 13 Issue 2/4 Pages 237-240  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000176869100035 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:62427 Serial 905  
Permanent link to this record
 

 
Author Tadic; Peeters, F.M. pdf  doi
openurl 
  Title Electronic structure of the valence band in cylindrical strained InP/InGaP quantum dots in an external magnetic field Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E  
  Volume 12 Issue 1-4 Pages 880-883  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The multiband effective-mass model of cylindrical self-assembled quantum dots in a magnetic field normal to the layer of the quantum dots is presented. The strain distribution is computed by the valence force field method. The strain-dependent multiband Hamiltonian is modified into an axially symmetric form, which commutes with the total angular momentum F-2 = fh. where f denotes the total magnetic quantum number. The heavy hole and the light hole parts in the mixed hole state are resolved. It is found that the heavy hole component dominates in the ground states for both f = 1/2 and 3/2. The electronic structure exhibits numerous anticrossings between the hole levels. The Zeeman splitting between the +\f\ and -\f\ states is also computed. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000175206300217 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:95138 Serial 1016  
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.; Bednarek, S.; Adamowski, J. doi  openurl
  Title Exact broken-symmetry states and Hartree-Fock solutions for quantum dots at high magnetic fields Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 3rd International Conference on Quantum Dots (QD 2004), MAY 10-13, 2004, Max Bell Bldg Banff Ctr, Banff, Canada Abbreviated Journal Physica E  
  Volume 26 Issue 1-4 Pages 252-256  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Wigner molecules formed at high magnetic fields in circular and elliptic quantum dots are studied by exact diagonalization (ED) and unrestricted Hartree-Fock (UHF) methods with multicenter basis of displaced lowest Landau level wave functions. The broken symmetry states with semi-classical charge density constructed from superpositions of the ED solutions are compared to the UHF results. UHF overlooks the dependence of the few-electron wave functions on the actual relative positions of electrons localized in different charge puddles and partially compensates for this neglect by an exaggerated separation of charge islands which are more strongly localized than in the exact broken-symmetry states. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000227249000053 Publication Date 2004-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946  
  Call Number UA @ lucian @ c:irua:103181 Serial 1105  
Permanent link to this record
 

 
Author Reijniers, J.; Peeters, F.M.; Matulis, A. doi  openurl
  Title The Hall resistivity of a two-dimensional electron gas in the presence of magnetic clusters with perpendicular magnetization Type A1 Journal article
  Year 2000 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 6 Issue Pages 759-762  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Engineering Management (ENM)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000085770600180 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.221; 2000 IF: 0.878  
  Call Number UA @ lucian @ c:irua:28525 Serial 1405  
Permanent link to this record
 

 
Author Nogaret, A.; Samardak, A.; Peeters, F. doi  openurl
  Title High harmonic generation from spin resonance fluorescence Type A1 Journal article
  Year 2008 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 40 Issue 5 Pages 1223-1225  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000254646400085 Publication Date 2007-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2008 IF: 1.230  
  Call Number UA @ lucian @ c:irua:69625 Serial 1434  
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Influence of strain on the magneto-exciton in single and coupled InP/GaInP quantum disks Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 21 Issue 2/4 Pages 349-353  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000220873300041 Publication Date 2004-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.221 Times cited Open Access  
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898  
  Call Number UA @ lucian @ c:irua:62428 Serial 1635  
Permanent link to this record
 

 
Author Leoni, P.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Influence of strain on the Stark effect in InP/GaInP quantum discs Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 26 Issue Pages 312-316  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000227249000065 Publication Date 2004-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946  
  Call Number UA @ lucian @ c:irua:62429 Serial 1636  
Permanent link to this record
 

 
Author Helm, M.; Hilber, W.; Strasser, G.; de Meester, R.; Peeters, F.M.; Wacker, A. doi  openurl
  Title Interminiband spectroscopy of biased superlattices Type A1 Journal article
  Year 2000 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 7 Issue Pages 274-278  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000086076800059 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2000 IF: 0.878  
  Call Number UA @ lucian @ c:irua:34357 Serial 1699  
Permanent link to this record
 

 
Author de Meester, R.H.J.; Peeters, F.M.; Lakrimi, M.; Nicholas, R.J.; Poulter, A.J.L.; Mason, N.J.; Walker, P.J. openurl 
  Title Intersubband transitions in InAs/GaSb superlattices in a parallel magnetic field Type A1 Journal article
  Year 2000 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 7 Issue Pages 93-96  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000086076800021 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2000 IF: 0.878  
  Call Number UA @ lucian @ c:irua:34358 Serial 1714  
Permanent link to this record
 

 
Author Freire, J.A.K.; Studart, N.; Peeters, F.M.; Farias, G.A.; Freire, V.N. pdf  doi
openurl 
  Title Magnetic confinement of electrons into quantum wires and dots on a liquid helium surface Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E  
  Volume 12 Issue 1-4 Pages 946-949  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the possibility to laterally confine surface electrons on a liquid helium surface by inserting magnetic discs and stripes which generate nonhomogeneous magnetic field profiles. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000175206300233 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:95139 Serial 1864  
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M. pdf  doi
openurl 
  Title Magneto conductance for tunnelling through double magnetic barriers Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 25 Issue 4 Pages 339-346  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The temperature-dependent magnetoresistance effect is investigated in a magnetically modulated two-dimensional (21)) electron gas (2DEG) which can be realized by depositing two parallel ferromagnets on top of a 2DEG electron gas. In the resonant tunnelling regime the transmission for the parallel and antiparallel magnetization configurations shows a quite distinct dependence on the longitudinal wave vector of the incident electrons. This leads to a very large magneto resistance ratio with a strong temperature dependence. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000226187900002 Publication Date 2004-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946  
  Call Number UA @ lucian @ c:irua:99308 Serial 1898  
Permanent link to this record
 

 
Author Vasilopoulos, P.; Wang, X.F.; Peeters, F.M.; Chowdhury, S.; Long, A.R.; Davies, J.H. pdf  doi
openurl 
  Title Magneto resistance oscillations in a modulated 2DEG periodic in the ratio h/e to flux per unit cell Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 15th International Conference on Electronic Properties of, Two-Dimensional Systems (EP2DS-15), JUL 14-18, 2003, Nara, JAPAN Abbreviated Journal Physica E  
  Volume 22 Issue 1-3 Pages 389-393  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Transport properties of the 2DEG are studied in the presence of a normal magnetic field B and of a weak, two-dimensional periodic potential modulation. A tight-binding treatment has shown that each Landau level splits into several subbands with exponentially small gaps between them. Assuming the latter are closed due to disorder gives analytical wave functions and simplifies the evaluation of the magnetoresistance tensor p(muv) The relative phase of the oscillations in p(xx) and p(yy) depends on the modulation strengths and periods. For short periods less than or equal to 100 nm, in addition to the Weiss oscillations, the collisional contribution to the conductivity and the corresponding resistivity contribution show prominent peaks when one flux quantum h/e passes through an integral number of unit cells in good agreement with experiments. For periods 300-400 nm long used in early experiments, these peaks occur at fields 10-25 times smaller than those of the Weiss oscillations and are not resolved. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000221140800094 Publication Date 2004-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.221 Times cited Open Access  
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898  
  Call Number UA @ lucian @ c:irua:104107 Serial 1911  
Permanent link to this record
 

 
Author Lakrimi, M.; Khym, S.; Symons, D.M.; Nicholas, R.J.; Peeters, F.M.; Mason, N.J.; Walker, P.J. doi  openurl
  Title Mini-gaps and novel giant negative magnetoresistance in InAs/GaSb semimetallic superlattice Type A1 Journal article
  Year 1998 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 2 Issue Pages 363-367  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000075383500076 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24186 Serial 2083  
Permanent link to this record
 

 
Author Tadić, M.; Mlinar, V.; Peeters, F.M. doi  openurl
  Title Multiband k\cdot p calculation of exciton diamagnetic shift in InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 3rd International Conference on Quantum Dots (QD 2004), MAY 10-13, 2004, Max Bell Bldg Banff Ctr, Banff, Canada Abbreviated Journal Physica E  
  Volume 26 Issue 1-4 Pages 212-216  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Exciton states in self-assembled InP/In0.49Ga0.51P quantum dots subject to magnetic fields up to 50T are calculated. Strain and band mixing are explicitly taken into account in the single-particle models of the electronic structure, while an exact diagonalization approach is adopted to compute the exciton states. Reasonably good agreement with magneto-photoluminescence measurements on InP self-assembled quantum dots is found. As a result of the polarization and angular momentum sensitive selection rules, the exciton ground state is dark. For in-plane polarized light, the magnetic field barely affects the exciton spatial localization, and consequently the exciton oscillator strength for recombination increases only slightly with increasing field. For z polarized light, a sharp increase of the oscillator strength beyond 30 T is found which is attributed to the enhanced s character of the relevant portion of the exciton wave function. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000227249000045 Publication Date 2004-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946  
  Call Number UA @ lucian @ c:irua:103180 Serial 2215  
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M. pdf  doi
openurl 
  Title Negative trions in coupled quantum dots Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 15th International Conference on Electronic Properties of, Two-Dimensional Systems (EP2DS-15), JUL 14-18, 2003, Nara, JAPAN Abbreviated Journal Physica E  
  Volume 22 Issue 1-3 Pages 566-569  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We present an exact diagonalization study of negatively charged excitonic trions in two vertically coupled parabolic quantum dots. The electrons and the hole are confined to different dots. We obtain the energy spectra as a function of inter-dot separation and external magnetic field strength and identify different ground-state angular momentum transitions which are accompanied by abrupt charge redistributions in the dots. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000221140800137 Publication Date 2004-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898  
  Call Number UA @ lucian @ c:irua:102771 Serial 2292  
Permanent link to this record
 

 
Author Riva, C.; Escorcia, R.; Peeters, F.M. pdf  doi
openurl 
  Title Neutral and charged donor in a 3D quantum dot Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 22 Issue 1-3 Pages 550-553  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the ground and first excited states of the neutral and charged shallow donor system confined in a GaAs quantum well (QW) along one direction and by a parabolic potential in the plane perpendicular to the QW. The influence of an external perpendicular magnetic field and of the position of the donor on the energy of the states is studied. We investigate the dependence of the ground and excited states of the negatively charged donor on the confinement potential and external magnetic field. When the donor is displaced from the center of the QW the presence of the lateral confinement shifts the magnetic field induced angular momentum transitions and shifts the unbinding to higher magnetic field. (C) 2003 Published by Elsevier B.V.  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000221140800133 Publication Date 2004-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 37 Open Access  
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898  
  Call Number UA @ lucian @ c:irua:95109 Serial 2295  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: