|
Record |
Links |
|
Author |
Bekaert, J.; Bignardi, L.; Aperis, A.; van Abswoude, P.; Mattevi, C.; Gorovikov, S.; Petaccia, L.; Goldoni, A.; Partoens, B.; Oppeneer, P.M.; Peeters, F.M.; Milošević, M.V.; Rudolf, P.; Cepek, C. |
|
|
Title |
Free surfaces recast superconductivity in few-monolayer MgB2 : combined first-principles and ARPES demonstration |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Scientific reports |
Abbreviated Journal |
Sci Rep-Uk |
|
|
Volume |
7 |
Issue |
|
Pages |
14458 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT) |
|
|
Abstract |
<script type='text/javascript'>document.write(unpmarked('Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like sigma-and pi-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as similar to 30 K for merely six monolayers thick MgB2. These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.')); |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Nature Publishing Group |
Place of Publication |
London |
Editor |
|
|
|
Language |
|
Wos |
000414231000059 |
Publication Date |
2017-10-25 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2045-2322 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.259 |
Times cited |
27 |
Open Access |
|
|
|
Notes |
; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Foundation for Fundamental Research on Matter (FOM)-part of the Netherlands Organisation for Scientific Research, the Swedish Research Council (VR) and the Rontgen-Angstrom Cluster. P.v.A. acknowledges an Ubbo Emmius fellowship for his PhD studies. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government – department EWI. Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). We thank D. Lonza for technical assistance in the experimental part. ; |
Approved |
Most recent IF: 4.259 |
|
|
Call Number |
UA @ lucian @ c:irua:147426 |
Serial |
4875 |
|
Permanent link to this record |