toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, S.-H.; Yang, W.; Peeters, F.M. url  doi
openurl 
  Title Veselago focusing of anisotropic massless Dirac fermions Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 20 Pages 205437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000433026700005 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303400), the NSFC (Grants No. 11504018 and No. 11774021), the MOST of China (Grant No. 2014CB848700), and the NSFC program for “Scientific Research Center” (Grant No. U1530401). Support by the bilateral project (FWO-MOST) is gratefully acknowledged. S.H.Z. is also supported by “the Fundamental Research Funds for the Central Universities (ZY1824).” We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151501UA @ admin @ c:irua:151501 Serial 5047  
Permanent link to this record
 

 
Author Kalashami, H.G.; Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Slippage dynamics of confined water in graphene oxide capillaries Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal  
  Volume 2 Issue 7 Pages 074004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The permeation of water between neighboring graphene oxide (GO) flakes, i.e., 2D nanochannels, are investigated using a simple model for the GO membrane. We simulate the hydrophilic behavior of nanocapillaries and study the effect of surface charge on the dynamical properties of water flow and the influence of Na+ and Cl- ions on water permeation. Our approach is based on extensive equilibrium molecular dynamics simulations to obtain a better understanding of water permeation through charged nanochannels in the presence of ions. We found significant change in the slippage dynamics of confined water such as a profound increase in viscosity/slip length with increasing charges over the surface. The slip length decreases one order of magnitude (i.e., 1/30) with increasing density of surface charge, while it increases by a factor of 2 with ion concentration. We found that commensurability induced by nanoconfinement plays an important role on the intrinsic dynamical properties of water.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication College Park, Md Editor  
  Language Wos 000439435200006 Publication Date 2018-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; We acknowledge fruitful discussions with Andre K. Geim, Irina Grigorieva, and Rahul R. Nair. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:152409UA @ admin @ c:irua:152409 Serial 5128  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Rich many-body phase diagram of electrons and holes in doped monolayer transition metal dichalcogenides Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We use a variational technique to study the many-body phase diagram of electrons and holes in n-doped and p-doped monolayer transition metal dichalcogenides (TMDs). We find a total of four different phases. (i) A fully spin polarized and valley polarized ferromagnetic state. (ii) A state with no global spin polarization but with spin polarization in each valley separately, i.e., spin-valley locking. (iii) A state with spin polarization in one of the valleys and little to no spin polarization in the other valley. (iv) A paramagnetic state with no valley polarization. These phases are separated by first-order phase transitions and are determined by the particle density and the dielectric constant of the substrate. We find that in the presence of a perpendicular magnetic field the four different phases persist. In the case of n-doped MoS2, a fifth phase, which is completely valley polarized but not spin polarized, appears for magnetic fields larger than 7 T and for magnetic fields larger than 23 T completely replaces the second phase.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000445507000009 Publication Date 2018-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153622UA @ admin @ c:irua:153622 Serial 5125  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Magnetic field dependence of atomic collapse in bilayer graphene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The spectrum of a Coulomb impurity in bilayer graphene is investigated as function of the strength of a perpendicular magnetic field for different values of the angular quantum number m and for different values of the gate voltage. We point out fundamental differences between the results from the two-band and four-band model. The supercritical instability and fall-to-center phenomena are investigated in the presence of a magnetic field. We find that in the four-band model the fall-to-center phenomenon occurs as in monolayer graphene, while this is not the case in the two-band model. We find that in a magnetic field the supercritical instability manifests itself as a series of anticrossings in the hole part of the spectrum for states coming from the low-energy band. However, we also find very distinct anticrossings in the electron part of the spectrum that continue into the hole part, which are related to the higher energy band of the four-band model. At these anticrossings, we find a very sharp peak in the probability density close to the impurity, reminiscent for the fall-to-center phenomenon. In this paper, these peculiar and interesting effects are studied for different magnetic field, interlayer coupling, and bias potential strengths.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443671900010 Publication Date 2018-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; We thank Matthias Van der Donck and Ben Van Duppen for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153654UA @ admin @ c:irua:153654 Serial 5113  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Interlayer excitons in transition metal dichalcogenide heterostructures Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115104  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs), we construct a four-band Hamiltonian describing interlayer excitons consisting of an electron in one TMD layer and a hole in the other TMD layer. An expression for the electron-hole interaction potential is derived, taking into account the effect of the dielectric environment above, below, and between the two TMD layers as well as polarization effects in the transition metal layer and in the chalcogen layers of the TMD layers. We calculate the interlayer exciton binding energy and average in-plane interparticle distance for different TMD heterostructures. The effect of different dielectric environments on the exciton binding energy is investigated and a remarkable dependence on the dielectric constant of the barrier between the two layers is found, resulting from competing effects as a function of the in-plane and out-of-plane dielectric constants of the barrier. The polarization effects in the chalcogen layers, which in general reduce the exciton binding energy, can lead to an increase in binding energy in the presence of strong substrate effects by screening the substrate. The excitonic absorbance spectrum is calculated and we show that the interlayer exciton peak depends linearly on a perpendicular electric field, which agrees with recent experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443671900004 Publication Date 2018-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153653UA @ admin @ c:irua:153653 Serial 5110  
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M. url  doi
openurl 
  Title First-principles study of the stability and edge stress of nitrogen-decorated graphene nanoribbons Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 23 Pages 235436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Edge functionalization of graphene nanoribbons with nitrogen atoms for various adatom configurations at armchair and zigzag edges are investigated. We provide comprehensive information on the electronic and magnetic properties and investigate the stability of the various systems. Two types of rippling of the nanoribbons, namely edge and bulk rippling depending on the sign of edge stress induced at the edge, are found. They are found to play the decisive role for the stability of the structures. We also propose a type of edge decoration in which every third nitrogen adatom at the zigzag edges is replaced by an oxygen atom. In this way, the electron count is compatible with a full aromatic structure, leading to additional stability and a disappearance of magnetism that is usually associated with zigzag nanoribbons.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000436192300006 Publication Date 2018-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:152478UA @ admin @ c:irua:152478 Serial 5104  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Electronic and vibrational properties of PbI2: From bulk to monolayer Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 8 Pages 085431  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we study the dependence of the electronic and vibrational properties of multilayered PbI2 crystals on the number of layers and focus on the electronic-band structure and the Raman spectrum. Electronic-band structure calculations reveal that the direct or indirect semiconducting behavior of PbI2 is strongly influenced by the number of layers. We find that at 3L thickness there is a direct-to-indirect band gap transition (from bulk-to-monolayer). It is shown that in the Raman spectrum two prominent peaks, A(1g) and E-g, exhibit phonon hardening with an increasing number of layers due to the interlayer van der Waals interaction. Moreover, the Raman activity of the A(1g) mode significantly increases with an increasing number of layers due to the enhanced out-of-plane dielectric constant in the few-layer case. We further characterize rigid-layer vibrations of low-frequency interlayer shear (C) and breathing (LB) modes in few-layer PbI2. A reduced monatomic (linear) chain model (LCM) provides a fairly accurate picture of the number of layers dependence of the low-frequency modes and it is shown also to be a powerful tool to study the interlayer coupling strength in layered PbI2.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000442667200008 Publication Date 2018-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. Part of this work was supported by FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153716UA @ admin @ c:irua:153716 Serial 5097  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Electrical dipole on gapped graphene : bound states and atomic collapse Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 16 Pages 165420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the energy spectrum, wave functions, and local density of states of an electrical dipole placed on a sheet of gapped graphene as function of the charge strength Z alpha for different sizes of the dipole and for different regularization parameters. The dipole is modeled as consisting of a positive and negative charge. Bound states are found within the gap region with some energy levels that anticross and others that cross as function of the impurity strength Z alpha. The anticrossings are more pronounced and move to higher charges Z alpha when the length of the dipole decreases. These energy levels turn into atomic collapse states when they enter the positive (or negative) energy continuum. A smooth transition from the single-impurity behavior to the dipole one is observed: The states diving towards the continuum in the single-impurity case are gradually replaced by a series of anticrossings that represent a continuation of the diving states in the single-impurity case. By studying the local density of states at the edge of the dipole we show how the series of anticrossings persist in the positive and negative continuum.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000447302700010 Publication Date 2018-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for R.V.P. and a postdoctoral grant for B.V.D. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:154728UA @ admin @ c:irua:154728 Serial 5094  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Dirac nodal line in bilayer borophene : tight-binding model and low-energy effective Hamiltonian Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer hexagonal borophene, which is bound together through pillars, is a novel topological semimetal. Using density functional theory, we investigate its electronic band structure and show that it is a Dirac material which exhibits a nodal line. A tight-binding model was constructed based on the Slater-Koster approach, which accurately models the electronic spectrum. We constructed an effective four-band model Hamiltonian to describe the spectrum near the nodal line. This Hamiltonian can be used as a new platform to study the new properties of nodal line semimetals. We found that the nodal line is created by edge states and is very robust against perturbations and impurities. Breaking symmetries can split the nodal line, but cannot open a gap.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443916200007 Publication Date 2018-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government and the graphene FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153649UA @ admin @ c:irua:153649 Serial 5090  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Chaves, A.; Wirtz, L.; Peeters, F.M. url  doi
openurl 
  Title Ab initio and semiempirical modeling of excitons and trions in monolayer TiS3 Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 7 Pages 075419  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We explore the electronic and the optical properties of monolayer TiS3, which shows in-plane anisotropy and is composed of a chain-like structure along one of the lattice directions. Together with its robust direct band gap, which changes very slightly with stacking order and with the thickness of the sample, the anisotropic physical properties of TiS3 make the material very attractive for various device applications. In this study, we present a detailed investigation on the effect of the crystal anisotropy on the excitons and the trions of the TiS3 monolayer. We use many-body perturbation theory to calculate the absorption spectrum of anisotropic TiS3 monolayer by solving the Bethe-Salpeter equation. In parallel, we implement and use a Wannier-Mott model for the excitons that takes into account the anisotropic effective masses and Coulomb screening, which are obtained from ab initio calculations. This model is then extended for the investigation of trion states of monolayer TiS3. Our calculations indicate that the absorption spectrum of monolayer TiS3 drastically depends on the polarization of the incoming light, which excites different excitons with distinct binding energies. In addition, the binding energies of positively and the negatively charged trions are observed to be distinct and they exhibit an anisotropic probability density distribution.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000442342100002 Publication Date 2018-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. H.S. acknowledges financial support from TUBITAK under Project No. 117F095. A.C. acknowledges support from the Brazilian Research Council (CNPq), through the PRONEX/FUNCAP and Science Without Borders programs, and from the Lemann Foundation. E.T. and L.W. acknowledge support from the National Research Fund, Luxembourg (IN-TER/ANR/13/20/NANOTMD). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153721UA @ admin @ c:irua:153721 Serial 5076  
Permanent link to this record
 

 
Author Devreese, J.T.; Verbist, G.; Peeters, F.M. pdf  openurl
  Title Large bipolarons and high-Tc materials Type H3 Book chapter
  Year 1995 Publication Abbreviated Journal  
  Volume Issue Pages 385-391  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Cambridge University Press Place of Publication Cambridge Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:11700 Serial 1778  
Permanent link to this record
 

 
Author Van Bockstal, L.; Mahy, M.; de Keyser, A.; Hoeks, W.; Herlach, F.; Peeters, F.M.; Van de Graaf, W.; Borghs, G. pdf  doi
openurl 
  Title Cyclotron-resonance of 2d electrons at Si-\delta-doped InSb layers grown on GaAs Type A1 Journal article
  Year 1995 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 211 Issue 1-4 Pages 466-469  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Cyclotron resonance (CR) of the electrons accumulated at sheets with heavy Si doping in InSb were observed using far infrared radiation. The angular dependence of the CR follows closely the 1/cos theta behaviour with some small deviations at high angles attributed to coupling between subbands. From the effective mass of the lowest subband, which is found to be 0.027m(o), the bottom of the lowest subband was determined to lie 125 meV below the Fermi level.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Amsterdam Editor  
  Language Wos A1995RD54400121 Publication Date 2003-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 2 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:95914 Serial 601  
Permanent link to this record
 

 
Author Lok, J.G.S.; Geim, A.K.; Maan, J.C.; Marmorkos, I.; Peeters, F.M.; Mori, N.; Eaves, L.; McDonnell, P.; Henini, M.; Sakai, J.W.; Main, P.C.; doi  openurl
  Title Resonant tunnelling through D- states Type A1 Journal article
  Year 1996 Publication Surface science : a journal devoted to the physics and chemistry of interfaces T2 – 11th International Conference on the Electronic Properties of 2-Dimensional Systems (EP2DS XI), August 07-11, 1995, Univ. Nottingham, Nottingham, England Abbreviated Journal Surf Sci  
  Volume 362 Issue 1-3 Pages 247-250  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have studied tunnelling through Si donors incorporated in the quantum well of double barrier resonant tunnelling devices. In addition to a resonance associated with the ground state of a single donor (1s level), a novel donor-related resonance at a smaller binding energy is observed in high magnetic fields where it becomes dominant over the Is resonance. We attribute this novel feature to a D-minus state of a shallow donor.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Amsterdam Editor  
  Language Wos A1996UZ03300061 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.925 Times cited Open Access  
  Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #  
  Call Number UA @ lucian @ c:irua:95892 Serial 2895  
Permanent link to this record
 

 
Author Aguiar, J.A.; Roa-Rojas, J.; Parra Vargas, C.A.; Landinez Tellez, D.A.; Corredor Bohorquez, L.T.; Shanenko, A.; Jardim, R.F.; Peeters, F. doi  openurl
  Title Preface Type Editorial
  Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 455 Issue Pages 1-2  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000344239200001&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7 Publication Date 2014-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS citing articles; WoS full record  
  Impact Factor 1.386 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 1.386; 2014 IF: 1.319  
  Call Number UA @ lucian @ c:irua:121191 Serial 2696  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Madjet, M.E.; El-Mellouhi, F.; Peeters, F.M. pdf  doi
openurl 
  Title Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3 Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 60-66  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of the crystal lattice structure of organometallic perovskite CH3NH3PbI3 on its electronic transport properties. Both dispersive interactions and spin-orbit coupling are taken into account in describing structural and electronic properties of the system. We consider two different phases of the material, namely the orthorhombic and cubic lattice structures, which are energetically stable at low (< 160 K) and high (> 330 K) temperatures, respectively. The sizable geometrical differences between the two structures in term of lattice parameters, PbI6 octahedral tilts, rotation and deformations, have considerable impact on the transport properties of the material. For example, at zero bias and for all considered electron energies, the cubic phase has a larger transmission than the orthorhombic one, although both show similar electronic densities of states. Depending on the applied voltage, the current in the cubic system can be several orders of magnitude larger as compared to the one obtained for the orthorhombic sample. We attribute this enhancement in the transmission to the presence of extended states in the cubic phase due to the symmetrically shaped and ordered PbI6 octaherdra. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500011 Publication Date 2015-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 16 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133151 Serial 4163  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; El-Mellouhi, F.; Madjet, M.E.; Alharbi, F.H.; Peeters, F.M.; Kais, S. pdf  doi
openurl 
  Title Effect of halide-mixing on the electronic transport properties of organometallic perovskites Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 2-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of iodide/chloride and iodide/bromide mixing on the electronic transport in lead based organometallic perovskite CH3NH3PbI3, which is known to be an effective tool to tune the electronic and optical properties of such materials. We found that depending on the level and position of the halide mixing, the electronic transport can be increased by more than a factor of 4 for a given voltage biasing. The largest current is observed for small concentration of bromide substitutions located at the equatorial sites. However, full halide substitution has a negative effect on the transport properties of this material: the current drops by an order of magnitude for both CH3NH3PbCl3 and CH3NH3PbBr3 samples. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500002 Publication Date 2015-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133150 Serial 4165  
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Peeters, F.M. openurl 
  Title A non-linear variational principle for the self-consistent solution of Poisson's equation and a transport equation in the local density approximation Type P1 Proceeding
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages 171-174  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Ieee Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4244-7699-2 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85824 Serial 2347  
Permanent link to this record
 

 
Author Dong, H.M.; Qin, H.; Zhang, J.; Peeters, F.M.; Xu, W. pdf  isbn
openurl 
  Title Terahertz absorption window in bilayer graphene Type H1 Book chapter
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 247-248  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of terahertz (THz) optical absorption in bilayer graphene. Considering an air/graphene/dielectric-wafer system, we find that there is an absorption window in the range 3 similar to 30 THz. Such an absorption window is induced by different transition energies required for inter- and intra-band optical absorption in the presence of the Pauli blockade effect. As a result, the position and width of this THz absorption window depend sensitively on temperature and carrier density of the system. These results are pertinent to the applications of recently developed graphene systems as novel optoelectronic devices such as THz photo-detectors.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Ieee Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4244-5416-7 Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99225 Serial 3506  
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Kang, J.; Peeters, F.M.; Senger, R.T. pdf  doi
openurl 
  Title Electronic and magnetic properties of 1T-TiSe2 nanoribbons Type A1 Journal article
  Year 2015 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 2 Issue 2 Pages 044002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of single layer TiSe2, we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair-edged nanoribbons (NRs) of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 NRs have some distinctive properties. The electronic band gap of the NRs decreases exponentially with the width and vanishes for ribbons wider than 20 angstrom. For ultranarrow zigzag-edged NRs we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have non-magnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase NRs of similar crystal structures.  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000368936600005 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 20 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus Short Marie Curie Fellowship. HDO, HS and RTS acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 6.937; 2015 IF: NA  
  Call Number UA @ lucian @ c:irua:131602 Serial 4169  
Permanent link to this record
 

 
Author Van der Donck, M.; De Beule, C.; Partoens, B.; Peeters, F.M.; Van Duppen, B. doi  openurl
  Title Piezoelectricity in asymmetrically strained bilayer graphene Type A1 Journal article
  Year 2016 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 3 Issue 3 Pages 035015  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the electronic properties of commensurate faulted bilayer graphene by diagonalizing the one-particle Hamiltonian of the bilayer system in a complete basis of Bloch states of the individual graphene layers. Our novel approach is very general and can be easily extended to any commensurate graphene-based heterostructure. Here, we consider three cases: (i) twisted bilayer graphene, (ii) bilayer graphene where triaxial stress is applied to one layer and (iii) bilayer graphene where uniaxial stress is applied to one layer. We show that the resulting superstructures can be divided into distinct classes, depending on the twist angle or the magnitude of the induced strain. The different classes are distinguished from each other by the interlayer coupling mechanism, resulting in fundamentally different low-energy physics. For the cases of triaxial and uniaxial stress, the individual graphene layers tend to decouple and we find significant charge transfer between the layers. In addition, this piezoelectric effect can be tuned by applying a perpendicular electric field. Finally, we show how our approach can be generalized to multilayer systems.  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000384072500003 Publication Date 2016-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 10 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vl) through aspirant research grants to MVDD, CDB, and BVD. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:137203 Serial 4361  
Permanent link to this record
 

 
Author Sevik, C.; Wallbank, J.R.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  doi
openurl 
  Title Gate induced monolayer behavior in twisted bilayer black phosphorus Type A1 Journal article
  Year 2017 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 4 Issue 3 Pages 035025  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90 degrees. These calculations are complemented with a simple (k) over right arrow . (p) over right arrow model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90 degrees twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90 degrees simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V angstrom(1) out-of-plane electric field results in a similar to 60% increase in the hole effective mass along the y (x) axis and enhances the m(y)*/m(x)* (m(x)*/m(y)*) ratio as much as by a factor of 40. Our DFT and (k) over right arrow . (p) over right arrow simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000406926600001 Publication Date 2017-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 13 Open Access  
  Notes ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024), ERC Synergy grant Hetero2D and the EU Graphene Flagship Project. We also thank Vladimir Fal'ko for helpful discussions. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:145151 Serial 4717  
Permanent link to this record
 

 
Author Moldovan, D.; Masir, M.R.; Peeters, F.M. pdf  url
doi  openurl
  Title Magnetic field dependence of the atomic collapse state in graphene Type A1 Journal article
  Year 2018 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 5 Issue 1 Pages 015017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Quantum electrodynamics predicts that heavy atoms (Z \u003E Z(c) approximate to 170) will undergo the process of atomic collapse where electrons sink into the positron continuum and a new family of so-called collapsing states emerges. The relativistic electrons in graphene exhibit the same physics but at a much lower critical charge (Z(c) approximate to 1) which has made it possible to confirm this phenomenon experimentally. However, there exist conflicting predictions on the effect of a magnetic field on atomic collapse. These theoretical predictions are based on the continuum Dirac-Weyl equation, which does not have an exact analytical solution for the interplay of a supercritical Coulomb potential and the magnetic field. Approximative solutions have been proposed, but because the two effects compete on similar energy scales, the theoretical treatment varies depending on the regime which is being considered. These limitations are overcome here by starting from a tight-binding approach and computing exact numerical results. By avoiding special limit cases, we found a smooth evolution between the different regimes. We predict that the atomic collapse effect persists even after the magnetic field is activated and that the critical charge remains unchanged. We show that the atomic collapse regime is characterized: (1) by a series of Landau level anticrossings and (2) by the absence of root B scaling of the Landau levels with regard to magnetic field strength.'));  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000415015000001 Publication Date 2017-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 13 Open Access  
  Notes ; We thank Eva Andrei, Jinhai Mao and Yuhang Jiang for insightful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:147361UA @ admin @ c:irua:147361 Serial 4884  
Permanent link to this record
 

 
Author Peymanirad, F.; Singh, S.K.; Ghorbanfekr-Kalashami, H.; Novoselov, K.S.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Thermal activated rotation of graphene flake on graphene Type A1 Journal article
  Year 2017 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 4 Issue 2 Pages 025015  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The self rotation of a graphene flake over graphite is controlled by the size, initial misalignment and temperature. Using both ab initio calculations and molecular dynamics simulations, we investigate annealing effects on the self rotation of a graphene flake on a graphene substrate. The energy barriers for rotation and drift of a graphene flake over graphene is found to be smaller than 25 meV/atom which is comparable to thermal energy. We found that small flakes (of about similar to 4 nm) are more sensitive to temperature and initial misorientation angles than larger one (beyond 10 nm). The initial stacking configuration of the flake is found to be important for its dynamics and time evolution of misalignment. Large flakes, which are initially in the AA-or AB-stacking state with small misorientation angle, rotate and end up in the AB-stacking configuration. However small flakes can they stay in an incommensurate state specially when the initial misorientation angle is larger than 2 degrees. Our results are in agreement with recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000424399600005 Publication Date 2017-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 16 Open Access  
  Notes ; We would like to acknowledge Annalisa Fasolino and MM van Wijk for providing us with the implemented parameters of REBO-KC [5] in LAMMPS. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:149364 Serial 4984  
Permanent link to this record
 

 
Author Hai, G.-Q.; Candido, L.; Brito, B.G.A.; Peeters, F.M. url  doi
openurl 
  Title Electron pairing: from metastable electron pair to bipolaron Type A1 Journal article
  Year 2018 Publication Journal of physics communications Abbreviated Journal  
  Volume 2 Issue 3 Pages Unsp 035017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the shell structure in atoms and the significant correlation within electron pairs, we distinguish the exchange-correlation effects between two electrons of opposite spins occupying the same orbital from the average correlation among many electrons in a crystal. In the periodic potential of the crystal with lattice constant larger than the effective Bohr radius of the valence electrons, these correlated electron pairs can form a metastable energy band above the corresponding single-electron band separated by an energy gap. In order to determine if these metastable electron pairs can be stabilized, we calculate the many-electron exchange-correlation renormalization and the polaron correction to the two-band system with single electrons and electron pairs. We find that the electron-phonon interaction is essential to counterbalance the Coulomb repulsion and to stabilize the electron pairs. The interplay of the electron-electron and electron-phonon interactions, manifested in the exchange-correlation energies, polaron effects, and screening, is responsible for the formation of electron pairs (bipolarons) that are located on the Fermi surface of the single-electron band.  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000434996900022 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-6528 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; This work was supported by the Brazilian agencies FAPESP and CNPq. GQH would like to thank Prof. Bangfen Zhu for his invaluable support and expert advice. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:152079UA @ admin @ c:irua:152079 Serial 5022  
Permanent link to this record
 

 
Author Peeters, F.M.; Partoens, B.; Kong, M. openurl 
  Title The classical electron gas in artificial structures Type P3 Proceeding
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages 235-250  
  Keywords P3 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOS Press Place of Publication Amsterdam Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:62457 Serial 365  
Permanent link to this record
 

 
Author Peeters, F.M.; Shi, J.M.; Devreese, J.T. openurl 
  Title Magneto-optics of shallow impurities in superlattices Type H1 Book chapter
  Year 1993 Publication Abbreviated Journal  
  Volume Issue Pages 221-237  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Kluwer Place of Publication Dordrecht Editor  
  Language Wos A1993BA34C00020 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5789 Serial 1904  
Permanent link to this record
 

 
Author Devreese, J.T.; Shi, J.M.; Peeters, F.M. openurl 
  Title Magneto-polaron effect on shallow donors in 3D en Q2S systems Type H3 Book chapter
  Year 1993 Publication Abbreviated Journal  
  Volume Issue Pages 173-184  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Kluwer Place of Publication Dordrecht Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:20360 Serial 1908  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T. openurl 
  Title Polaron cyclotron resonance spectrum with interface optical phonon modes in GaAs/AlAs quantum wells Type H3 Book chapter
  Year 1993 Publication Abbreviated Journal  
  Volume Issue Pages 243-252  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Kluwer Place of Publication Dordrecht Editor  
  Language Wos A1993BY55J00024 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:5743 Serial 2664  
Permanent link to this record
 

 
Author Peeters, F.M. openurl 
  Title The phase diagram Type H3 Book chapter
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages 17-32  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Kluwer Academic Publishers Place of Publication Dordrecht Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19261 Serial 2580  
Permanent link to this record
 

 
Author Peeters, F.M. pdf  openurl
  Title Semiconductor Type H3 Book chapter
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages 350-352  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) McGraw-Hill Place of Publication New York Editor  
  Language Wos 000077204000044 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19308 Serial 2982  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: