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Magnetic field dependence of the atomic collapse state in graphene

D. Moldovan,1, ∗ M. Ramezani Masir,2, † and F. M. Peeters1, ‡

1Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
2Department of Physics, University of Texas at Austin, Texas 78712, USA

Quantum electrodynamics predicts that heavy atoms (Z > Zc ≈ 170) will undergo the process
of atomic collapse where electrons sink into the positron continuum and a new family of so-called
collapsing states emerges. The relativistic electrons in graphene exhibit the same physics but at
a much lower critical charge (Zc ≈ 1) which has made it possible to confirm this phenomenon
experimentally. However, there exist conflicting predictions on the effect of a magnetic field on
atomic collapse. These theoretical predictions are based on the continuum Dirac-Weyl equation,
which does not have an exact analytical solution for the interplay of a supercritical Coulomb potential
and the magnetic field. Approximative solutions have been proposed, but because the two effects
compete on similar energy scales, the theoretical treatment varies depending on the regime which is
being considered. These limitations are overcome here by starting from a tight-binding approach and
computing exact numerical results. By avoiding special limit cases, we found a smooth evolution
between the different regimes. We predict that the atomic collapse effect persists even after the
magnetic field is activated and that the critical charge remains unchanged. We show that the
atomic collapse regime is characterized: 1) by a series of Landau level anticrossings and 2) by the

absence of
√
B scaling of the Landau levels with regard to magnetic field strength.

I. INTRODUCTION

Even before its experimental isolation in 20041,
graphene was considered as an analog of (2 + 1) dimen-
sional quantum electrodynamics2–4. Its two-dimensional
crystal lattice hosts massless Dirac fermions which move
with a Fermi velocity of about 1/300 the speed of light
with a linear spectrum close to the K and K ′ points of
the Brillouin zone.5 Examples of its relativistic properties
include the Klein paradox6,7 and Zitterbewegung8. The
detection of the anomalous integer quantum Hall effect
served as the definitive demonstration of the relativistic
nature of its carriers as well as the signature of zero-gap
single-layer graphene.9,10

It was shown that graphene exhibits the analogue of
atomic collapse11–13, a fundamental phenomena in quan-
tum electrodynamics (QED). When the charge of an
atomic nucleus exceeds a certain critical value, the energy
levels of the bound electronic states dive into the lower
positron continuum and the spontaneous generation of
electron-positron pairs is expected.14–16 The extremely
high charge requirements (Zc ≈ 170) have prevented the
observation of this phenomenon with real atoms. How-
ever, thanks to the relativistic nature of the carriers, no
band gap and the large effective fine structure constant
in graphene, the same physics can be observed at a much
lower charge (Zc ≈ 1). The switch to graphene also
changes the energy scale from MeV to sub-eV and the
spontaneous pair creation changes from electron-positron
to electron-hole. This has made it possible to realize
this phenomena experimentally, with observations closely
matching the predictions of QED.17–19

Another longstanding prediction from QED is that a
magnetic field should be able to enhance the effect of
collapse.20 A magnetic field confines the motion of the
electron, therefore bringing it closer to the nucleus. As a
result, the required value of the critical charge decreases

as a function of the field strength. However, this is where
the graphene analogue may diverge from the original.
QED considers (3 + 1) dimensions where the magnetic
field acts on the electron in a plane, but not on the other
degree of freedom. Due to its flat nature, the electrons in
graphene are confined to (2 + 1) dimensions, which re-
sults in a different problem, e.g. the 2D electron energy
is completely quantized into Landau levels.

It was shown experimentally that a charged impurity
in graphene lifts the orbital degeneracy of Landau lev-
els, thus splitting them into discrete states.21 However,
this experiment was limited to a charge in the subcritical
regime. Previous theoretical studies have had conflict-
ing conclusions about the influence of the magnetic field
on the value of the critical charge. For the problem of
a magnetic monopole, Ref. 22 predicts the absence of
atomic collapse. In Ref. 23, it was predicted that the
critical charge vanishes for massless carriers at any finite
magnetic field, making any charge supercritical in gapless
graphene. This was further explored in Ref. 24. On the
other hand, Refs. 25–27 argued that the critical charge
will not change. It was also shown that the effect per-
sists in the discrete energy spectrum of a quantum dot28,
which further supports the argument that quantization
of the energy does not influence the critical charge.

The problem of a supercritical charge in a magnetic
field cannot be solved exactly in analytic form and the
non-perturbative nature of the addition of a magnetic
field makes the problem complicated. Both electric and
magnetic fields compete on similar energy scales and
the applied approximations may vary depending on the
regime which is being studied (subcritical vs. supercrit-
ical charge, zero vs. finite magnetic field). The different
theoretical treatment of the regimes makes it difficult to
see the transitions from one to another. This can also
highlight the differences rather than the similarities of
the regimes.
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In this paper, we investigate the problem of a super-
critically charged impurity in graphene in the presence
of a magnetic field using the numerical tight-binding ap-
proach. Compared to previous work, this approach al-
lows us to treat all regimes equally: from zero to fi-
nite fields, including unbalanced or equal contributions
of both the electric and magnetic fields. We compute the
evolution between regimes with numerically exact results
and we find that the atomic collapse effect persists even
after the magnetic field is activated and that the criti-
cal charge remains unchanged. We show that the atomic
collapse resonances are directly connected with a series
of Landau level anticrossings. These avoided crossings
are formed by low-energy orbital states which split off
from the unperturbed Landau levels. They are accompa-
nied by a strong enhancement of the LDOS close to the
impurity, similarly to the zero-magnetic-field case. An-
other aspect is the

√
B scaling of the Landau levels which

is broken for certain levels in the supercritical regime.
By computing the evolution of the system with magnetic
field strength, we show a direct correspondence between
the atomic collapse resonance and anomalous scaling of
the Landau levels.

II. THEORETICAL MODEL

The tight-binding Hamiltonian for graphene in the
presence of a charged impurity is given by5

H =
∑

〈i,j〉

(

tija
†
i bj +H.c.

)

+
∑

i

V (~r A
i )a†iai

+
∑

i

V (~r B
i )b†i bi,

(1)

where tij = −2.8 eV is the hopping energy between lat-

tice sites i and j, operators ai(a
†
i ) and bi(b

†
i ) create (an-

nihilate) an electron at site i of sublattice A and B, re-

spectively, and ~r A,B
i is the position of the carbon atoms

relative to the impurity. The first term includes the in-
teraction of the nearest-neighbor hopping pairs 〈i, j〉 in
graphene (next-nearest and higher hoppings do not have
an impact on the results of this paper). The last two
terms include the potential on the atoms of each sublat-
tice. A Coulomb center of charge Z generates the po-
tential V (r) = −~vFβ/r where β ≡ Ze2/κ~vF is the di-
mensionless coupling constant. The raw impurity charge
Z is scaled by the relative permittivity κ and the Fermi
velocity vF . For convenience, we mainly use β to denote
the charge of the impurity.

By applying the low-energy approximation, Eq. (1) can
be simplified to reveal the Dirac equation which governs
states near the K points,

~vF

(

−i~σ · ~∇− β

r

)

Ψ(~r) = EΨ(~r), (2)

where ~σ = (σx, σy) are the Pauli matrices. Due to the
axial symmetry of the potential, Eq. (2) is separable in
cylindrical coordinates using the relation x± iy = re±iϕ

and the solutions can be found in the form3,

Ψm(r) =
1√
r

[

eimϕam(r)
iei(m+1)ϕbm(r)

]

, (3)

where m = 0,±1,±2, ... is the orbital quantum number.
Equation (2) therefore reduces to,

[

E
~vF

+ β
r

−∂r − m+1
r

∂r − m
r

E
~vF

+ β
r

]

[

am(r)
bm(r)

]

= 0. (4)

This coupled pair of first order differential equations can
be reduced to two decoupled second order equations. In
the limit r → 0, the solution behaves as11,12

ϕm(r) ∼ rγ , γ =
√

(m+ 1/2)2 − β2. (5)

This reveals a problem for the lowest angular momen-
tum modes (m = −1, 0), because γ becomes imaginary
if β > βc = 1/2. In this case the solution oscillates
endlessly towards the center as ei log r. From a classical
perspective this can be understood as a critical angular
momentum above which the orbits spiral and fall into
the potential origin.13 Thus, a charge in graphene which
exceeds the critical value βc is seen as a supercritical nu-
cleus which triggers the analogue of the atomic collapse
phenomena.

As we have just shown, the quantum-mechanical prob-
lem is ill-defined for a point charge in the supercritical
regime (β > 1/2). An additional boundary condition
must be introduced to cut off the potential at short dis-
tances. This is analogous to the introduction of the finite
size of the nucleus in QED.15 In graphene experiments,
this is defined by the radius of the artificial nucleus used
to build up a supercritical charge, e.g. a cluster of Ca
dimers17 or a charged vacancy18. The modified impurity
potential with cutoff radius r0 reads,

Vβ(r) =

{

−~vF
β
r0
, if r ≤ r0

−~vF
β
r
, if r > r0

. (6)

The choice of cutoff length r0 will be discussed in the
next section. With the introduction of this more realistic
potential, the eigenvalue problem becomes well defined
even for β > 1/2, however it can no longer be solved in
analytical form and instead requires a numerical treat-
ment.

In addition to the finite-sized supercritical charge, a
homogeneous magnetic field B is included via the vector

potential ~A = B/2(y,−x) in the symmetric gauge. The
Dirac equation thus reads,

(

vF~σ · (−i~~∇+ e ~A) + Vβ(~r)
)

Ψ(~r) = EΨ(~r). (7)

Page 2 of 8AUTHOR SUBMITTED MANUSCRIPT - 2DM-102096.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



3

The wavefunction components am(r) and bm(r) must sat-
isfy the following coupled first-order differential equa-
tions:

[

E−Vβ(r)
~vF

−∂r − m+1
r

+ r
2l2

B

∂r − m
r
+ r

2l2
B

E−Vβ(r)
~vF

]

[

am(r)
bm(r)

]

= 0. (8)

Solving these equations analytically, including both the
Coulomb potential and the homogeneous magnetic field,
is not possible except for special limit cases. Taking the
limit r → 0 actually recovers the same result as before,
in Eq. (5), which neglects the influence of the magnetic
field. On the other hand, taking r → ∞ yields an un-
perturbed Landau level sequence, free of the influence of
the charge. However, we are most interested in the situ-
ation at moderate r where the effects of the charge and
magnetic field both feature prominently.

In the absence of the impurity (β = 0), the eigenvalue
problem can be solved analytically and yields the Landau
level (LL) sequence with energy EN = ±~vF /lB

√

2|N |,
where lB =

√

~/(eB) is the magnetic length, N =
0,±1,±2, ... is the level index, and +(-) refers to electron
(hole) states. Pristine graphene is translationally invari-
ant and so LL energy EN is independent of m. Each
Landau level N is degenerate, consisting of an infinite
number of states with wavefunctions ΨNm(r) where the
orbital number m ≥ −|N |.29

As has been shown experimentally in Ref. 21, adding
an impurity (β > 0) breaks the translational symme-
try, thus lifting LL degeneracy. The energy splits into
m-dependent sublevels ENm. The lowest energy orbital
states are centered around the impurity, while higher or-
der states form concentric orbits around it. However,
the impurity available in the experiment was only within
the subcritical regime. The theoretical study in Ref. 24
incorporated a supercritical charge, but concluded that
the presence of a finite magnetic field presents a distinctly
different regime as compared to the zero-field atomic col-
lapse phenomena in graphene.

III. NUMERICAL TIGHT-BINDING

APPROACH

We consider the full tight-binding Hamiltonian as given
in Eq. (1). We take the electric potential profile of the
impurity V (r) as given by Eq. (6). The cutoff radius
r0 accounts for the finite size of the charge and is usu-
ally taken to match the size of the impurity. Here, we
take r0 = 0.5 nm which is in line with experimental
data.17,18 In experiments, a constant charge Z may be
present, while the relevant coupling β ≡ Ze2/κ~vF may
be tuned by applying a gate voltage which controls the
relative permittivity κ via Landau level occupancy (i.e.
screening of the charge Ze).21 In the theoretical model
we change the charge coupling directly through the pa-
rameter β. In the presence of a uniform magnetic field
of strength B, perpendicular to the graphene plane, the

hopping parameters are replaced by the Peierls substitu-

tion, tij → tije
i2πΦij , where Φij = (1/Φ0)

∫ ~Rj

~ri
~A · ~dl is

the Peierls phase and Φ0 = h/e the magnetic quantum
flux.

For the computation, we construct a large finite-sized
model system in the shape of a hexagonal flake with arm-
chair edges (in order to avoid zigzag edge states with low
energy). The impurity is positioned in the center and
the flake is taken sufficiently large such that its finite size
does not influence the physics we are interested in. In the
following calculations we take the hexagon edge width
of 200 nm, which corresponds with a flake consisting of
about four million carbon atoms. The model system is
built using our open-source code package for numerical
tight-binding calculations: pybinding.30 The package in-
cludes a fast implementation of the kernel polynomial
method31,32 which is used for the calculation of the local
density of states in this paper.

IV. RESULTS

Before turning on the magnetic field, we shall briefly
review the real-space picture of the atomic collapse reso-
nances in the local density of states (LDOS) in graphene.
The LDOS can be measured using scanning tunnel-
ing spectroscopy (STS) and provides an experimentally
observable signature of atomic collapse as shown in
Refs. 17–19. Figure 1(a) presents the space-energy map
of the LDOS in the subcritical and supercritical regimes.
A subcritical charge (β = 0.4) enhances the LDOS in
the positive part of the spectrum in proximity of the
impurity (r = 0). Note that it does not cross below
the Dirac point. Once the charge becomes supercritical
(β = 0.8 > βc) the high intensity LDOS region crosses
below zero energy. The atomic collapse states can only
be found at negative energy since they represent coupled
states, where an electron from the center can tunnel out
and escape as a hole. The collapse resonance in the LDOS
is labeled R1 as the first of such states to appear with
increasing charge β. The LDOS intensity is highest at
the center, but disappears quickly at about 10 nm away
from the impurity.

Level splitting

The result of the LDOS computation for a magnetic
field of B = 12 T are presented in Fig. 1(b). Without
the impurity (β = 0), the Landau levels appear constant
in space, as expected. When a small charge is introduced
(β = 0.4) the Landau levels start to bend and split into
individual orbital states near the impurity (r = 0). When
the charge is increased (β = 0.8), multiple split levels are
clearly visible. States with smaller orbital numbers have
lower energy and sink down with the Coulomb poten-
tial. At LL N = 0, the orbital state m = 0 is clearly
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