toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling of plasma-based CO2conversion: lumping of the vibrational levels Type A1 Journal article
  Year 2016 Publication (up) Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 045022  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Although CO2 conversion by plasma technology is gaining increasing interest, the

underlying mechanisms for an energy-efficient process are still far from understood. In this work, a reduced non-equilibrium CO2 plasma chemistry set, based on level lumping of the vibrational levels, is proposed and the reliability of this level-lumping method is tested by a self-consistent zero-dimensional code. A severe reduction of the number of equations to be solved is achieved, which is crucial to be able to model non-equilibrium CO2 plasmas by 2-dimensional models. Typical conditions of pressure and power used in a microwave plasma for CO2 conversion are investigated. Several different sets, using different numbers of lumped groups, are considered. The lumped models with 1, 2 or 3 groups are able to reproduce the gas temperature, electron density and electron temperature profiles, as calculated by the full model treating all individual excited levels, in the entire pressure range investigated. Furthermore, a 3-groups model is also able to reproduce the shape of the vibrational distribution function (VDF) and gives the most reliable prediction of the CO2 conversion. A strong influence of the vibrational excitation on the plasma characteristics is observed. Finally, the limitations of the lumped-levels method are discussed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380380200036 Publication Date 2016-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 33 Open Access  
  Notes This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606889 and it was also carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7) supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302  
  Call Number c:irua:134397 Serial 4101  
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title DBD in burst mode: solution for more efficient CO2conversion? Type A1 Journal article
  Year 2016 Publication (up) Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the

conversion from 16–26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their

involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403945500005 Publication Date 2016-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 17 Open Access  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would also like to thank financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302  
  Call Number c:irua:134841 Serial 4107  
Permanent link to this record
 

 
Author Bogaerts, A.; Wang, W.; Berthelot, A.; Guerra, V. pdf  url
doi  openurl
  Title Modeling plasma-based CO2conversion: crucial role of the dissociation cross section Type A1 Journal article
  Year 2016 Publication (up) Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055016  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based CO2 conversion is gaining increasing interest worldwide. A large research effort is devoted to improving the energy efficiency. For this purpose, it is very important to understand the underlying mechanisms of the CO2 conversion. The latter can be obtained by computer modeling, describing in detail the behavior of the various plasma species and all relevant chemical processes. However, the accuracy of the modeling results critically depends on the accuracy of the assumed input data, like cross sections. This is especially true for the cross section of electron impact dissociation, as the latter process is believed

to proceed through electron impact excitation, but it is not clear from the literature which excitation channels effectively lead to dissociation. Therefore, the present paper discusses the effect of different electron impact dissociation cross sections reported in the literature on the calculated CO2 conversion, for a dielectric barrier discharge (DBD) and a microwave (MW) plasma. Comparison is made to experimental data for the DBD case, to elucidate which cross section might be the most realistic. This comparison reveals that the cross sections proposed

by Itikawa and by Polak and Slovetsky both seem to underestimate the CO2 conversion. The cross sections recommended by Phelps with thresholds of 7 eV and 10.5 eV yield a CO2 conversion only slightly lower than the experimental data, but the sum of both cross sections overestimates the values, indicating that these cross sections represent dissociation, but most probably also include other (pure excitation) channels. Our calculations indicate that the choice of the electron impact dissociation cross section is crucial for the DBD, where this process is the dominant mechanism for CO2 conversion. In the MW plasma, it is only significant at pressures up to 100 mbar, while it is of minor importance for higher pressures, when dissociation proceeds mainly through collisions of CO2 with heavy particles.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384030600001 Publication Date 2016-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 57 Open Access  
  Notes The authors would like to thank R Snoeckx and S Heijkers for the interesting discussions. This research was supported by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska-Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the FWO project (grant G.0383.16N), and the Network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7), supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. VG was partially supported by the Portuguese FCT— Fundação para a Ci Approved Most recent IF: 3.302  
  Call Number c:irua:135070 Serial 4111  
Permanent link to this record
 

 
Author Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Effective ionisation coefficients and critical breakdown electric field of CO2at elevated temperature: effect of excited states and ion kinetics Type A1 Journal article
  Year 2016 Publication (up) Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055025  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electrical breakdown by the application of an electric field occurs more easily in hot gases than in cold gases because of the extra electron-species interactions that occur as a result of dissociation, ionization and excitation at higher temperature. This paper discusses some overlooked physics and clarifies inaccuracies in the evaluation of the effective ionization coefficients and the critical reduced breakdown electric field of CO2 at elevated temperature, considering the influence of excited states and ion kinetics. The critical reduced breakdown electric field is obtained by balancing electron generation and loss mechanisms using the electron energy distribution function (EEDF) derived from the Boltzmann transport equation under the two-term approximation. The equilibrium compositions of the hot gas mixtures are determined based on Gibbs free energy minimization considering the ground states as well as vibrationally and electronically excited states as independent species, which follow a Boltzmann distribution with a fixed excitation temperature. The interaction cross sections between electrons and the excited species, not reported previously, are properly taken into account. Furthermore, the ion kinetics, including electron–ion recombination, associative electron detachment, charge transfer and ion conversion into stable negative ion clusters, are also considered. Our results indicate that the excited species lead to a greater population of high-energy electrons at higher gas temperature and this affects the Townsend rate coefficients (i.e. of electron impact ionization and attachment), but the critical reduced breakdown electric field strength of CO2 is only affected when also properly accounting for the ion kinetics. Indeed, the latter greatly influences the effective ionization coefficients and hence the critical reduced breakdown electric field at temperatures above 1500 K. The rapid increase of the dissociative electron attachment cross-section of molecular oxygen with rising vibrational quantum number leads to a larger electron loss rate and this enhances the critical reduced breakdown electric field strength in the temperature range where the concentration of molecular oxygen is relatively high. The results obtained in this work show reasonable agreement with experimental results from literature, and are important for the evaluation of the dielectric strength of CO2 in a highly reactive environment at elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385494000006 Publication Date 2016-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 3 Open Access  
  Notes Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No.657304) and the FWO project (grant G.0383.16N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:135515 Serial 4281  
Permanent link to this record
 

 
Author Wang, W.; Berthelot, A.; Kolev, S.; Tu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model Type A1 Journal article
  Year 2016 Publication (up) Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 065012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO 2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO 2 plasma chemistry set, including the CO 2 vibrational kinetics up to the dissociation limit. The model solves a set of time- dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO 2 conversion in the literature. Additionally, the dissociation of CO 2 through collisions with O atoms has the largest contribution to CO 2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO 2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO 2 vibrational kinetics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386605100002 Publication Date 2016-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 3 Open Access  
  Notes This research was supported by the European Marie Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:135990 Serial 4286  
Permanent link to this record
 

 
Author Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.E.; Garrick, S.C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.C.; Pawlat, J.; Petrovic, Z.L.; Pflieger, R.; Reuter, S.; Schram, D.C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G. url  doi
openurl 
  Title Plasma–liquid interactions: a review and roadmap Type A1 Journal article
  Year 2016 Publication (up) Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 5 Pages 053002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on nonequilibrium plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384715400001 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 460 Open Access  
  Notes This manuscript originated from discussions at the Lorentz Center Workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ that took place at the Lorentz Center, Leiden University in the Netherlands from August 4, through August 8, 2014, and follow-up discussions since the workshop. All authors acknowledge the support of the Lorentz Center, the COST action TD1208 (Electrical Discharges with Liquids for Future Applications) and the Royal Dutch Academy of Sciences for their financial support. PJB, MJK, DBG and JEF acknowledge the support of the ‘Center on Control of Plasma Kinetics’ of the United States Department of Energy Office of Fusion Energy Science (DE-SC0001319). In addition, PJB and BRL acknowledge the support of the National Science Foundation (PHY 1500135 and CBET 1236225, respectively). In addition the enormous help of Mrs. Victoria Piorek (University of Minnesota) in the formatting of the final document including the references is gratefully acknowledged. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144654 Serial 4628  
Permanent link to this record
 

 
Author Afsharzade, N.; Papzan, A.; Ashjaee, M.; Delangizan, S.; Van Passel, S.; Azadi, H. pdf  doi
openurl 
  Title Renewable energy development in rural areas of Iran Type A1 Journal article
  Year 2016 Publication (up) Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 65 Issue Pages 743-755  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Iran's energy system is extremely dependent on fossil fuels which, in turn, have led to problems such as fossil fuels depletion, social, economic and environmental damage and territorial imbalance. The country should therefore design a sustainable energy system based on clean energy as well as renewable energy. Accordingly, and given that Iran's rural areas suffer from the unsustainable energy system, it is necessary to integrate renewable energy into comprehensive development programs in general, and into rural development programs, specifically. This review paper answers the following questions: Why is renewable energy important for Iran at national and rural levels? How is renewable energy related to sustainable rural development? and What are the challenges in the promotion of renewable energy technologies in Iran? The paper concludes that although renewable energy has potential for development in Iran's rural areas due to environmental, social and economic advantages, it could face some infrastructural, managerial, socio-cultural and economic challenges. Accordingly, aggressive and innovative policy making is required to meet these challenges. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383293800053 Publication Date 2016-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 41 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:137105 Serial 6243  
Permanent link to this record
 

 
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Follow the N and P road : high-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management Type A1 Journal article
  Year 2016 Publication (up) Resources, conservation and recycling Abbreviated Journal  
  Volume 115 Issue Pages 9-21  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource-efficient nutrient management is key to secure food production in the context of a growing global population, rising resource scarcity and increasing pressure on the environment. To map the potential towards increasing nutrient use efficiencies and reduce environmental losses, a high-resolution insight of the nitrogen (N) and phosphorus (P) nutrient streams is pivotal. In this study, a substance flow analysis for N and P is presented for the nutrient intensive region of Flanders (6,211,065 inhabitants) in Belgium for the year 2009. A set of 160 nutrient fluxes was quantified throughout 21 economic and environmental compartments, with a particular focus on 10 waste management processes. A total nutrient load of 20 kg N cap(-1) yr(-1) (ca. 73% to the air and 28% to surface waters) and 0.53 kg P cap(-1) yr(-1) (to surface waters) is emitted to the environment; with crop and livestock production as the main contributors (49% of N and 36% of P). The food supply chain revealed a fertilizer-to-consumer efficiency of 14% for N as well as for P, with important losses embedded in waste streams such as excess manure. Advanced manure and waste processing facilities nevertheless offer the opportunity for enhanced nutrient recycling to increase the nutrient use efficiencies and reduce the dependency of inorganic fertilizers. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384852500002 Publication Date 2016-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:137229 Serial 7977  
Permanent link to this record
 

 
Author Ren, X.-N.; Wu, L.; Jin, J.; Liu, J.; Hu, Z.-Y.; Li, Y.; Hasan, T.; Yang, X.-Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title 3D interconnected hierarchically macro-mesoporous TiO2networks optimized by biomolecular self-assembly for high performance lithium ion batteries Type A1 Journal article
  Year 2016 Publication (up) RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 26856-26862  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Biomolecular self-assembly is an effective synthesis strategy for materials fabrication with unique structural complexity and properties. For the first time, we intergrate inner-particle mesoporosity in a three-dimensional (3D) interconnected macroporous TiO2 structure via the mediation of biomolecular self-assembly of the lipids and proteins from rape pollen coats and P123 to optimize the structure for high performance lithium storage. Benefitting from the hierarchically 3D interconnected macro-mesoporous structure with high surface area, small nanocrystallites and good electrolyte permeation, such unique porous structure demonstrates superior electrochemical performance, with high initial coulombic efficiency (94.4% at 1C) and a reversible discharge capacity of 161, 145, 127 and 97 mA h g-1 at 2, 5, 10 and 20C for 1000 cycles, with 79.3%, 89.9%, 90.1% and 87.4% capacity retention, respectively. Using SEM, TEM and HRTEM observations on the TiO2 materials before and after cycling, we verify that the inner-particle mesoporosity and the Li2Ti2O4 nanocrystallites formed during the cycling process in interconnected macroporous structure largely enhance the cycle life and rate performance. Our demonstration here offers opportunities towards developing and optimizing hierarchically porous structures for energy storage applications via biomolecular self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372253700043 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 16 Open Access  
  Notes G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 3.108  
  Call Number c:irua:131915 c:irua:131915 c:irua:131915 Serial 4022  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Sree, S.P.; Gobechiya, E.; Kirschhock, C.E.A.; Van Tendeloo, G.; Martens, J.A. pdf  url
doi  openurl
  Title Anatase TiO2nanoparticle coating on porous COK-12 platelets as highly active and reusable photocatalysts Type A1 Journal article
  Year 2016 Publication (up) RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 46678-46685  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale TiO2 photocatalysts are widely used for biomedical applications, self-cleaning processes and wastewater treatments. The impregnation/deposition of TiO2 nanoparticles is indispensable for facile handling and separation as well as the improvement of their photocatalytic performance. In the present study, ordered mesoporous COK-12 silica thin platelets with a high-aspect-ratio and rough surfaces are demonstrated as a potential nanoporous support for homogeneous TiO2 nanoparticle coatings with high loading up to 16.7 wt%. The photocatalytic composite of COK-12 platelets and TiO2 nanoparticles is characterized in detail by HRSEM, SAXS, XRD, N2 physisorption analysis, solid-state UV-vis spectroscopy, HAADF-STEM, EDX analysis, and electron tomography. HAADF-STEM-EDX and electron tomography studies reveal a homogeneous dispersion of nanosized TiO2 nanoparticles over COK-12 platelets. The final composite material with anatase TiO2 nanoparticles that demonstrate a blueshifted semiconductor band gap energy of 3.2 eV coated on a highly porous COK-12 support shows exceptional photocatalytic catalytic activity for photodegradation of organic dyes (rhodamine 6G and methylene blue) and an organic pollutant (1-adamantanol) under UV light radiation, outperforming the commercial P25 TiO2 (Degussa) catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377254800070 Publication Date 2016-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 6 Open Access  
  Notes L. H. W. and S. T. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number (12M1415N) and (G004613N), respectively. J. A.Mgratefully acknowledge nancial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgium Government (IAP-PAI networking). Approved Most recent IF: 3.108  
  Call Number c:irua:133775 Serial 4074  
Permanent link to this record
 

 
Author Kolchina, L. M.; Lyskov, N.V.; Kuznetsov, A.N.; Kazakov, S.M.; Galin, M.Z.; Meledin, A.; Abakumov, A.M.; Bredikhin, S.I.; Mazo, G.N.; Antipov, E.V. pdf  url
doi  openurl
  Title Evaluation of Ce-doped Pr2CuO4for potential application as a cathode material for solid oxide fuel cells Type A1 Journal article
  Year 2016 Publication (up) RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 101029-101037  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pr2−xCexCuO4 (x = 0.05; 0.1; 0.15) samples were synthesized and systematically characterized towards application as a cathode material for solid oxide fuel cells (SOFCs). High-temperature electrical conductivity, thermal expansion, and electrocatalytic activity in the oxygen reduction reaction (ORR) were examined. The electrical conductivity of Pr2−xCexCuO4 oxides demonstrates semiconducting behavior up to 900 °C. Small Ce-doping (2.5 at%) allows an increase in electrical conductivity from 100 to 130 S cm−1 in air at 500–800 °C. DFT calculations revealed that the density of states directly below the Fermi level, comprised mainly of Cu 3d and O 2p states, is significantly affected by atoms in rare earth positions, which might give an indication of a correlation between calculated electronic structures and measured conducting properties. Ce-doping in Pr2−xCexCuO4 slightly increases TEC from 11.9 × 10−6 K−1 for x = 0 to 14.2 × 10−6 K−1 for x = 0.15. Substitution of 2.5% of Pr atoms in Pr2CuO4 by Ce is effective to enhance the electrochemical performance of the material as a SOFC cathode in the ORR (ASR of Pr1.95Ce0.05CuO4 electrode applied on Ce0.9Gd0.1O1.95 electrolyte is 0.39 Ω cm2 at 750 °C in air). The peak power density achieved for the electrolyte-supported fuel cell with the Pr1.95Ce0.05CuO4 cathode is 150 mW cm−2 at 800 °C  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387427700044 Publication Date 2016-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 7 Open Access  
  Notes his work was partially supported by Russian Foundation for Basic Research (grant no. 153820247), Skolkovo Institute of Science and Technology (Center of electrochemical energy), and MSUdevelopment Program up to 2020. K.L.M. is grateful to Haldor Topsøe A/S for the financial support. Approved Most recent IF: 3.108  
  Call Number EMAT @ emat @ c:irua:136441 Serial 4296  
Permanent link to this record
 

 
Author Yu, W.-B.; Hu, Z.-Y.; Yi, M.; Huang, S.-Z.; Chen, D.-S.; Jin, J.; Li, Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title Probing the electrochemical behavior of {111} and {110} faceted hollow Cu2O microspheres for lithium storage Type A1 Journal article
  Year 2016 Publication (up) RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 97129-97136  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transition metal oxides with exposed highly active facets have become of increasing interest as anode materials for lithium ion batteries, because more dangling atoms exposed at the active surface facilitate the reaction between the transition metal oxides and lithium. In this work, we probed the electrochemical behavior of hollow Cu2O microspheres with {111} and {110} active facets on the polyhedron surface as anodes for lithium storage. Compared to commercial Cu2O nanoparticles, hollow Cu2O microspheres with {111} and {110} active facets show a rising specific capacity at 30 cycles which then decreases after 110 cycles during the cycling process. Via advanced electron microscopy characterization, we reveal that this phenomenon can be attributed to the highly active {111} and {110} facets with dangling “Cu” atoms facilitating the conversion reaction of Cu2O and Li, where part of the Cu2O is oxidized to CuO during the charging process. However, as the reaction proceeds, more and more formed Cu nanoparticles cannot be converted to Cu2O or CuO. This leads to a decrease of the specific capacity. We believe that our study here sheds some light on the progress of the electrochemical behavior of transition metal oxides with respect to their increased specific capacity and the subsequent decrease via a conversion reaction mechanism. These results will be helpful to optimize the design of transition metal oxide micro/nanostructures for high performance lithium storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386242500084 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 5 Open Access  
  Notes Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 3.108  
  Call Number EMAT @ emat @ c:irua:138199 Serial 4322  
Permanent link to this record
 

 
Author Sankaran, K.J.; Duc Quang Hoang; Korneychuk, S.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D'Haen, J.; Verbeeck, J.; Leou, K.-C.; Leung, K.T.; Lin, I.-N.; Haenen, K. doi  openurl
  Title Hierarchical hexagonal boron nitride nanowall-diamond nanorod heterostructures with enhanced optoelectronic performance Type A1 Journal article
  Year 2016 Publication (up) RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 93 Pages 90338-90346  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A superior field electron emission (FEE) source made from a hierarchical heterostructure, where two-dimensional hexagonal boron nitride (hBN) nanowalls were coated on one-dimensional diamond nanorods (DNRs), is fabricated using a simple and scalable method. FEE characteristics of hBN-DNR display a low turn-on field of 6.0 V mu m(-1), a high field enhancement factor of 5870 and a high life-time stability of 435 min. Such an enhancement in the FEE properties of hBN-DNR derives from the distinctive material combination, i.e., high aspect ratio of the heterostructure, good electron transport from the DNR to the hBN nanowalls and efficient field emission of electrons from the hBN nanowalls. The prospective application of these heterostructures is further evidenced by enhanced microplasma devices using hBN-DNR as a cathode, in which the threshold voltage was lowered to 350 V, affirming the role of hBN-DNR in the improvement of electron emission.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385451800044 Publication Date 2016-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 8 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. KJ Sankaran, and P Pobedinskas are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.108  
  Call Number UA @ lucian @ c:irua:144757UA @ admin @ c:irua:144757 Serial 4662  
Permanent link to this record
 

 
Author Misseeuw, L.; Krajewska, A.; Pasternak, I.; Ciuk, T.; Strupinski, W.; Reekmans, G.; Adriaensens, P.; Geldof, D.; Geldof, D.; Van Vlierberghe, S.; Thienpont, H.; Dubruelf, P.; Vermeulen, N. pdf  doi
openurl 
  Title Optical-quality controllable wet-chemical doping of graphene through a uniform, transparent and low-roughness F4-TCNQ/MEK layer Type A1 Journal article
  Year 2016 Publication (up) RSC advances Abbreviated Journal  
  Volume Issue 106 Pages 104491-104501  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Controllable chemical doping of graphene has already proven very useful for electronic applications, but when turning to optical and photonic applications, the additional requirement of having both a high transparency and a low surface roughness has, to our knowledge, not yet been fulfilled by any chemical dopant system reported so far. In this work, a new method that meets for the first time this opticalquality requirement while also providing efficient, controllable doping is presented. The method relies on F4-TCNQ dissolved in methyl ethyl ketone (MEK) yielding a uniform deposition after spin coating because of an extraordinary charge transfer interaction between the F4-TCNQ and MEK molecules. The formed F4-TCNQ/MEK layer exhibits a very high surface quality and optical transparency over the visible-infrared wavelength range between 550 and 1900 nm. By varying the dopant concentration of F4-TCNQ from 2.5 to 40 mg ml1 MEK, the doping effect can be controlled between Dn ¼ +5.73 1012 cm2 and +1.09 1013 cm2 for initially strongly p-type hydrogen-intercalated graphene grown on 6Hsilicon- carbide substrates, and between Dn ¼ +5.56 1012 cm2 and +1.04 1013 cm2 for initially weakly p-type graphene transferred on silicon samples. This is the first time that truly optical-quality chemical doping of graphene is demonstrated, and the obtained doping values exceed those reported before for F4-TCNQ-based graphene doping by as much as 50%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388111900075 Publication Date 2016-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:136405 Serial 8335  
Permanent link to this record
 

 
Author Idrissi, H.; Bollinger, C.; Boioli, F.; Schryvers, D.; Cordier, P. url  doi
openurl 
  Title Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing Type A1 Journal article
  Year 2016 Publication (up) Science Advances Abbreviated Journal  
  Volume 2 Issue 2 Pages e1501671-e1501671  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379620200043 Publication Date 2016-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 32 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:134983 Serial 4202  
Permanent link to this record
 

 
Author Dubrovinskaia, N.; Dubrovinsky, L.; Solopova, N.A.; Abakumov, A.; Turner, S.; Hanfland, M.; Bykova, E.; Bykov, M.; Prescher, C.; Prakapenka, V.B.; Petitgirard, S.; Chuvashova, I.; Gasharova, B.; Mathis, Y.-L.; Ershov, P.; Snigireva, I.; Snigirev, A. url  doi
openurl 
  Title Terapascal static pressure generation with ultrahigh yield strength nanodiamond Type A1 Journal article
  Year 2016 Publication (up) Science Advances Abbreviated Journal  
  Volume 2 Issue 7 Pages e1600341-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (similar to 460 GPa at a confining pressure of similar to 70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381805300029 Publication Date 2016-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190527 Serial 8647  
Permanent link to this record
 

 
Author Ghanian, M.; Ghoochani, O.M.; Kitterlin, M.; Jahangiry, S.; Zarafshani, K.; Van Passel, S.; Azadi, H. doi  openurl
  Title Attitudes of agricultural experts toward genetically modified crops : a case study in Southwest Iran Type A1 Journal article
  Year 2016 Publication (up) Science And Engineering Ethics Abbreviated Journal Sci Eng Ethics  
  Volume 22 Issue 2 Pages 509-524  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract The production of genetically modified (GM) crops is growing around the world, and with it possible opportunities to combat food insecurity and hunger, as well as solutions to current problems facing conventional agriculture. In this regard the use of GMOs in food and agricultural applications has increased greatly over the past decade. However, the development of GM crops has been a matter of considerable interest and worldwide public controversy. This, in addition to skepticism, has stifled the use of this practice on a large scale in many areas, including Iran. It stands to reason that a greater understanding of this practice could be formed after a review of the existing expert opinions surrounding GM crops. Therefore, the purpose of this study was to analyze the predictors that influence agricultural experts attitudes toward the development of and policies related to GM crops. Using a descriptive correlational research method, questionnaire data was collected from 65 experts from the Agricultural Organization in the Gotvand district in Southwest Iran. Results indicated that agricultural experts were aware of the environmental benefits and possible risks associated with GM crops. The majority of participants agreed that GM crops could improve food security and accelerate rural development, and were proponents of labeling practices for GM crops. Finally, there was a positive correlation between the perception of benefits and attitudes towards GM crops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373378100011 Publication Date 2015-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1353-3452 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.229 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 2.229  
  Call Number UA @ admin @ c:irua:136751 Serial 6158  
Permanent link to this record
 

 
Author Bertoni, G.; Fabbri, F.; Villani, M.; Lazzarini, L.; Turner, S.; Van Tendeloo, G.; Calestani, D.; Gradečak, S.; Zappettini, A.; Salviati, G. pdf  url
doi  openurl
  Title Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 19168  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present the direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules. This results in clean interfaces, enabling to prove the occurrence of the plasmon-exciton coupling and the straightforward mapping of its spatial localization. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presenting an isotropic distribution around the nanoparticle. On the contrary, a strong localization of the ZnO excitons, has been observed inside the Au nanoparticle, revealing the existence of the plasmon-exciton coupling, as also confirmed by numerical simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368111900001 Publication Date 2016-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 15 Open Access  
  Notes The research leading to these results has received funding from the European Union FP7 Grant Agreement n. 265073 ITN-Nanowiring, and FP7 Grant Agreement n. 312483 ESTEEM2 for Integrated Infrastructure Initiative – I3. S.T. gratefully acknowledges the FWO Vlaanderen. G.V.T. acknowledges the European Research Council (ERC grant N°246791 – COUNTATOMS). The authors thank Alessandra Catellani and Arrigo Calzolari for helpful discussions.; Esteem2_jra3 Approved Most recent IF: 4.259  
  Call Number c:irua:130406 c:irua:130406 Serial 3999  
Permanent link to this record
 

 
Author Opherden, L.; Sieger, M.; Pahlke, P.; Hühne, R.; Schultz, L.; Meledin, A.; Van Tendeloo, G.; Nast, R.; Holzapfel, B.; Bianchetti, M.; MacManus-Driscoll, J.L.; Hänisch, J. url  doi
openurl 
  Title Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 21188  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370364500001 Publication Date 2016-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 39 Open Access  
  Notes The authors gratefully acknowledge J. Scheiter, U. Besold, and U. Fiedler for technical assistance. This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432. Approved Most recent IF: 4.259  
  Call Number c:irua:131920 Serial 4026  
Permanent link to this record
 

 
Author Khosravian, N.; Kamaraj, B.; Neyts, E.C.; Bogaerts, A. url  doi
openurl 
  Title Structural modification of P-glycoprotein induced by OH radicals: Insights from atomistic simulations Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 19466  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study reports on the possible effects of OH radical impact on the transmembrane domain 6 of P-glycoprotein, TM6, which plays a crucial role in drug binding in human cells. For the first time, we employ molecular dynamics (MD) simulations based on the self-consistent charge density functional tight binding (SCC-DFTB) method to elucidate the potential sites of fragmentation and mutation in this domain upon impact of OH radicals, and to obtain fundamental information about the underlying reaction mechanisms. Furthermore, we apply non-reactive MD simulations to investigate the long-term effect of this mutation, with possible implications for drug binding. Our simulations indicate that the interaction of OH radicals with TM6 might lead to the breaking of C-C and C-N peptide bonds, which eventually cause fragmentation of TM6. Moreover, according to our simulations, the OH radicals can yield mutation in the aromatic ring of phenylalanine in TM6, which in turn affects its structure. As TM6 plays an important role in the binding of a range of cytotoxic drugs with P-glycoprotein, any changes in its structure are likely to affect the response of the tumor cell in chemotherapy. This is crucial for cancer therapies based on reactive oxygen species, such as plasma treatment.  
  Address Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369573900001 Publication Date 2016-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 7 Open Access  
  Notes The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, grant number G012413N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen.” Approved Most recent IF: 4.259  
  Call Number c:irua:131610 Serial 4031  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Easily doped p-type, low hole effective mass, transparent oxides Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 20446  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications – i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.  
  Address EMAT, Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369568900001 Publication Date 2016-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 55 Open Access  
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13 and of a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government–department EWI. Approved Most recent IF: 4.259  
  Call Number c:irua:131611 Serial 4036  
Permanent link to this record
 

 
Author Tsai, C.-Y.; Chang, Y.-C.; Lobato, I.; Van Dyck, D.; Chen, F.-R. url  doi
openurl 
  Title Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 27701  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 A resolution but using a strongly reduced number of images.  
  Address Department of Engineering and System Science, Tsing-Hua University, HsinChu 300, Taiwan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000377670500001 Publication Date 2016-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access  
  Notes D. Van Dyck acknowledges the financial support from the Fund for Scientific Research – Flanders (FWO) under Project nos. VF04812N and G.0188.08. F. R. Chen would like to thank the support from NSC 101-2221-E-007- 063-MY3 and MOST 104-2321-B-007-004. We are grateful for the use of the Tecnai F20 in the Cryo-EM Core Facility, Department of Academic Affairs and Instrument Service at Academia Sinica. Approved Most recent IF: 4.259  
  Call Number c:irua:134038 Serial 4087  
Permanent link to this record
 

 
Author Sankaran, K.J.; Hoang, D.Q.; Kunuku, S.; Korneychuk, S.; Turner, S.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D' Haen, J.; Verbeeck, J.; Leou, K.-C.; Lin, I.-N.; Haenen, K. url  doi
openurl 
  Title Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 29444  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/mum, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/mum with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.  
  Address IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000379391000001 Publication Date 2016-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 15 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Project G.0456.12, G0044.13N and the Methusalem “NANO” network. Kamatchi Jothiramalingam Sankaran, Stuart Turner, and Paulius Pobedinskas are Postdoctoral Fellows of the Research Foundations Flanders (FWO). Approved Most recent IF: 4.259  
  Call Number c:irua:134643 c:irua:134643UA @ admin @ c:irua:134643 Serial 4119  
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 24860  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We predict enhanced electron-hole superfluidity in two coupled electron-hole armchair-edge terminated graphene nanoribbons separated by a thin insulating barrier. In contrast to graphene monolayers, the multiple subbands of the nanoribbons are parabolic at low energy with a gap between the conduction and valence bands, and with lifted valley degeneracy. These properties make screening of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus boosting the pairing strength and enhancing the superfluid properties. The pairing strength is further boosted by the quasi one-dimensional quantum confinement of the carriers, as well as by the large density of states near the bottom of each subband. The latter magnifies superfluid shape resonances caused by the quantum confinement. Several superfluid partial condensates are present for finite-width nanoribbons with multiple subbands. We find that superfluidity is predominately in the strongly-coupled BEC and BCS-BEC crossover regimes, with large superfluid gaps up to 100 meV and beyond. When the gaps exceed the subband spacing, there is significant mixing of the subbands, a rounding of the shape resonances, and a resulting reduction in the one-dimensional nature of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000374654500002 Publication Date 2016-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 7 Open Access  
  Notes ; M.Z. acknowledges support by the Flemish Science Foundation (FWO-Vl), the University Research Fund (BOF), and the European Science Foundation (POLATOM). A.P. and D.N. acknowledge support by the University of Camerino FAR project CESEMN. The authors thank the colleagues involved in the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions for this work. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:133619 Serial 4201  
Permanent link to this record
 

 
Author Schouteden, K.; Li, Z.; Chen, T.; Song, F.; Partoens, B.; Van Haesendonck, C.; Park, K. url  doi
openurl 
  Title Moire superlattices at the topological insulator Bi2Te3 Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 20278  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report on the observation of complex superlattices at the surface of the topological insulator Bi2Te3. Scanning tunneling microscopy reveals the existence of two different periodic structures in addition to the Bi2Te3 atomic lattice, which is found to strongly affect the local electronic structure. These three different periodicities are interpreted to result from a single small in-plane rotation of the topmost quintuple layer only. Density functional theory calculations support the observed increase in the DOS near the Fermi level, and exclude the possibility that strain is at the origin of the observed Moire pattern. Exploration of Moire superlattices formed by the quintuple layers of topological insulators holds great potential for further tuning of the properties of topological insulators.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000369543200001 Publication Date 2016-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 14 Open Access  
  Notes ; The research in Leuven and Antwerp has been supported by the Research Foundation – Flanders (FWO, Belgium). The research in Leuven received additional support from the Flemish Concerted Research Action program (BOF KU Leuven, Project No. GOA/14/007). Z.L. thanks the China Scholarship Council for financial support (No. 2011624021). K.S. acknowledges support from the FWO. K.P. was supported by U.S. National Science Foundation DMR-1206354 and San Diego Supercomputer Center (SDSC) Trestles under DMR060009N. T.C. and F.S. acknowledge the financial support of the National Key Projects for Basic Research of China (Grant Nos: 2013CB922103), the National Natural Science Foundation of China (Grant Nos: 91421109, 11522432), the PAPD project, and the Natural Science Foundation of Jiangsu Province (Grant BK20130054). ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:131612 Serial 4208  
Permanent link to this record
 

 
Author Suslu, A.; Wu, K.; Sahin, H.; Chen, B.; Yang, S.; Cai, H.; Aoki, T.; Horzum, S.; Kang, J.; Peeters, F.M.; Tongay, S.; url  doi
openurl 
  Title Unusual dimensionality effects and surface charge density in 2D Mg(OH)2 Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 20525  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We present two-dimensional Mg(OH)(2) sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)(2) sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)(2) have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)(2) is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)(2) sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)(2) sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)(2), naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)(2), but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000369510300001 Publication Date 2016-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 39 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:131615 Serial 4272  
Permanent link to this record
 

 
Author Attri, P.; Yusupov, M.; Park, J.H.; Lingamdinne, L.P.; Koduru, J.R.; Shiratani, M.; Choi, E.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 34419  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.  
  Address Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385172300001 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 23 Open Access  
  Notes We gratefully acknowledge the grant received from the SRC program of the National Research Foundation of Korea (NRF), funded by the Korean Government (MEST) (No. 20100029418). PA is thankful to FY 2015 Japan Society for the Promotion of Science (JSPS) invitation fellowship. This work was partly supported by MEXT KAKENHI Grant Number 24108009 and JSPS KAKENHI Grant Number JP16H03895. M. Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant number 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @ c:irua:135847 Serial 4283  
Permanent link to this record
 

 
Author Jelić, Z.L.; Milošević, M.V.; Silhanek, A.V. doi  openurl
  Title Velocimetry of superconducting vortices based on stroboscopic resonances Type A1 Journal article
  Year 2016 Publication (up) Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue Pages 35687  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract An experimental determination of the mean vortex velocity in superconductors mostly relies on the measurement of flux-flow resistance with magnetic field, temperature, or driving current. In the present work we introduce a method combining conventional transport measurements and a frequency-tuned flashing pinning potential to obtain reliable estimates of the vortex velocity. The proposed device is characterized using the time-dependent Ginzburg-Landau formalism, where the velocimetry method exploits the resonances in mean vortex dissipation when temporal commensuration occurs between the vortex crossings and the flashing potential. We discuss the sensitivity of the proposed technique on applied current, temperature and heat diffusion, as well as the vortex core deformations during fast motion.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000385919600001 Publication Date 2016-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 22 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) and EU COST action MP1201. The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:144636 Serial 4701  
Permanent link to this record
 

 
Author Ilin, A.; Martyshov, M.; Forsh, E.; Forsh, P.; Rumyantseva, M.; Abakumov, A.; Gaskov, A.; Kashkarov, P. pdf  doi
openurl 
  Title UV effect on NO2 sensing properties of nanocrystalline In2O3 Type A1 Journal article
  Year 2016 Publication (up) Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 231 Issue 231 Pages 491-496  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline indium oxide films with extremely small grains in range of 7-40 nm are prepared by sol-gel method. The influence of grain size on the sensitivity of indium oxide to nitrogen dioxide in low concentration at room temperature is investigated under the UV illumination and without illumination. The sensitivity increases with the decrease of grain sizes when In2O3 is illuminated while in the dark In2O3 with intermediate grain size exhibits the highest response. An explanation of the different behavior of the In2O3 with different grain size sensitivity to NO2 under illumination and in the dark is proposed. We demonstrate that pulsed illumination may be used for NO2 detection at room temperature that significantly reduces the power consumption of sensor. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000374330900055 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 27 Open Access  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ lucian @ c:irua:133630 Serial 4273  
Permanent link to this record
 

 
Author Yao, X.; Amin-Ahmadi, B.; Li, Y.; Cao, S.; Ma, X.; Zhang, X.-P.; Schryvers, D. pdf  doi
openurl 
  Title Optimization of Automated Crystal Orientation Mapping in a TEM for Ni4Ti3 Precipitation in All-Round SMA Type A1 Journal article
  Year 2016 Publication (up) Shape memory and superelasticity Abbreviated Journal Shap Mem Superelasticity  
  Volume 2 Issue 2 Pages 286-297  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Automated crystal orientation and phase mapping in TEM are applied to the quantification of Ni4Ti3 precipitates in Ni–Ti shape memory alloys which will be used for the implantation of artificial sphincters operating using the all-round shape memory effect. This paper focuses on the optimization process of the technique to obtain best values for all major parameters in the acquisition of electron diffraction patterns as well as template generation. With the obtained settings, vast statistical data on nano- and microstructures essential to the operation of these shape memory devices become available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000408743700001 Publication Date 2016-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-384X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes X. Yao gratefully acknowledges the Chinese Scholarship Council (CSC) for providing a PhD scholarship. Research support was also provided by the Key Project of the Natural Science Foundation of Guangdong Province (S2013020012805) and the Natural Science Foundation of China under Grant No. 51401081. Approved Most recent IF: NA  
  Call Number EMAT @ emat @ c:irua:138600 Serial 4324  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: