toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Johnson, G.; Yang, M.Y.; Liu, C.; Zhou, H.; Zuo, X.; Dickie, D.A.; Wang, S.; Gao, W.; Anaclet, B.; Perras, F.A.; Ma, F.; Zeng, C.; Wang, D.; Bals, S.; Dai, S.; Xu, Z.; Liu, G.; Goddard III, W.A.; Zhang, S. doi  openurl
  Title Nanocluster superstructures assembled via surface ligand switching at high temperature Type A1 Journal article
  Year 2023 Publication (up) Nature synthesis Abbreviated Journal  
  Volume 2 Issue 9 Pages 828-837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superstructures with nanoscale building blocks, when coupled with precise control of the constituent units, open opportunities in rationally designing and manufacturing desired functional materials. Yet, synthetic strategies for the large-scale production of superstructures are scarce. We report a scalable and generalized approach to synthesizing superstructures assembled from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters alongside a detailed description of the self-assembly mechanism. Combining operando small-angle X-ray scattering, ex situ molecular and structural characterizations, and molecular dynamics simulations indicates that a high-temperature ligand-switching mechanism, from oleate to benzoate, governs the formation of the nanocluster assembly. The chemical tuning of surface ligands controls superstructure disassembly and reassembly, and furthermore, enables the synthesis of multicomponent superstructures. This synthetic approach, and the accurate mechanistic understanding, are promising for the preparation of superstructures for use in electronics, plasmonics, magnetics and catalysis. Synthesizing superstructures with precisely controlled nanoscale building blocks is challenging. Here the assembly of superstructures is reported from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters and their multicomponent combinations. A high-temperature ligand-switching mechanism controls the self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001124824000001 Publication Date 2023-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202180 Serial 9060  
Permanent link to this record
 

 
Author Van Aert, S.; Batenburg, J.; Van Tendeloo, S. pdf  openurl
  Title Atomen tellen Type A3 Journal article
  Year 2011 Publication (up) Nederlands tijdschrift voor natuurkunde (1991) Abbreviated Journal  
  Volume 77 Issue 8 Pages 292-295  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-4264 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:94119 Serial 164  
Permanent link to this record
 

 
Author Savchenko, D.V.; Serdan, A.A.; Morozov, V.A.; Van Tendeloo, G.; Ionov, S.G. pdf  doi
openurl 
  Title Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation Type A1 Journal article
  Year 2012 Publication (up) New carbon materials Abbreviated Journal  
  Volume 27 Issue 1 Pages 12-18  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Flexible graphite foil produced by rolling expanded graphite impregnated with boron oxide was analyzed by laser mass spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and thermogravimetry. It was shown that the modification of the graphite foil by boron oxide increases the onset temperature of oxidation by ∼ 150 °C. Impregnation of less than 2 mass% boron oxide also increased the tensile strength of the materials. The observed improvement was attributed to the blocking of active sites by boron oxide, which is probably chemically bonded to the edges of graphene sheets in expanded graphite particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304742100002 Publication Date 2012-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Iap Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:96958 Serial 1569  
Permanent link to this record
 

 
Author Afanasov, I.M.; Lebedev, O.I.; Kolozhvary, B.A.; Smirnov, A.V.,; Van Tendeloo, G. pdf  doi
openurl 
  Title Nickel/carbon composite materials based on expanded graphite Type A1 Journal article
  Year 2011 Publication (up) New carbon materials Abbreviated Journal  
  Volume 26 Issue 5 Pages 335-340  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Monolithic nickel/carbon (Ni/C) composites were prepared from coal tar pitch-impregnated compressed expanded graphite pre-decorated with NiO particles (EGNiO) by pyrolysis at 550 °C and subsequent steam activation at 800 °C. The microstructural arrangement of the Ni-comprising nanoparticles in the composites was investigated using transmission electron microscopy. The specific surface area and porosity of the composites were analyzed by nitrogen adsorption. The catalytic activity of the composites was compared with the material obtained by the conventional H2 treatment of EGNiO using hydrocracking of 2,2,3-trimethylpentane as a model reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296926500003 Publication Date 2011-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Iap Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:93633 Serial 2340  
Permanent link to this record
 

 
Author Afanasov, I.M.; Van Tendeloo, G.; Mateev, A.T. doi  openurl
  Title Production and structure of exfoliated graphite/coke composites modified by ZrO2 nanoparticles Type A1 Journal article
  Year 2010 Publication (up) New carbon materials Abbreviated Journal  
  Volume 25 Issue 4 Pages 255-260  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Exfoliated graphite/coke composites modified by ZrO2 nanoparticles were produced using two different techniques and characterized by means of X-ray diffraction, scanning and transmission electron microscopy. In the first, low-density exfoliated graphite/coke blocks were dipped repeatedly and alternately in ZrO(NO3)2 and NH4OH solutions and subsequently heat treated at 1200°C in nitrogen to deposit thin layers of ZrO2 nanoparticles on the free surfaces of the carbon matrix. In the second, a mixture of expandable graphite, phenol-formaldehyde resin powder, and ZrOC2O4-modified fibrous cellulose in a sealed container was submitted to thermal shock at 900 °C followed by heat treatment at 1 200 °C in nitrogen to obtain the modified composites. The ZrO2 nanoparticles formed in the second technique were incorporated into the composites in three length scales: 6-30 nm-isolated nanoparticles and small blobs, 200-1000 nm-lengthy dendrite-like structures, and thin layer adhering to the surface of the 1-40 μm long cellulose carbon fibers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281534800003 Publication Date 2010-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Iap-Vi Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:84438 Serial 2721  
Permanent link to this record
 

 
Author Yuan, R.; Claes, N.; Verheyen, E.; Tuel, A.; Bals, S.; Breynaert, E.; Martens, J.; Kirschhock, C.E.A. pdf  url
doi  openurl
  Title Synthesis of IWW-type germanosilicate zeolite using 5-azonia-spiro[4, 4]nonane as structure directing agent Type A1 Journal article
  Year 2016 Publication (up) New journal of chemistry Abbreviated Journal New J Chem  
  Volume 40 Issue 40 Pages 4319-4324  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract IWW-type zeolite with Si/Ge of 4.9 is obtained using 5-azonia-spiro[4,4]nonane as template in fluoride-free medium under hydrothermal conditions at 175 °C. In an otherwise identical synthesis, using the related 5-azonia-spiro[4,5]decane as structure directing agent, a mixture of IWW and NON zeolite types was formed. In absence of GeO2 from the reactant mixture, pure NON formed. The IWW zeolite was characterized by XRD, SEM, and HRTEM. IWW zeolite displayed a unique morphology and could be calcined at 600 °C without loss of crystallinity. The Si/Ge ratio of the IWW zeolite was increased by postsynthesis modification. Part of the germanium could be eliminated from the as-synthesized IWW zeolite by acid leaching using 6 M HCl solution. Also the calcined material could be degermanated. Here the presence of a silicon source in the acidic leaching solution minimized structural damage. This way the Si/Ge ratio of the IWW zeolite was increased from 4.9 up to 10.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375586400038 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge FWO/NWO and ESRF for providing beam time at the DUBBLE and SNBL beamlines (ESRF, Grenoble) and P. Abdala for her assistance during the use of the beamline. The authors are grateful to L. Van Tendeloo for taking SEM images. I. Cuppens and K. Houthoofd are thanked for the ICP and AAS measurements. R.Y. acknowledges Chinese Scholarship Council for a CSC doctoral fellowship. JAM and CEAK acknowledge the Flemish government for long-term structural funding (Methusalem). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.269  
  Call Number c:irua:133671 Serial 4027  
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.; van Speybroeck, V.; Waroquier, M. pdf  url
doi  openurl
  Title Electronic structure and band gap of zinc spinel oxides beyond LDA : ZnAl2O4, ZnGa2O4 and ZnIn2O4 Type A1 Journal article
  Year 2011 Publication (up) New journal of physics Abbreviated Journal New J Phys  
  Volume 13 Issue 6 Pages 063002-063002,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We examine the electronic structure of the family of ternary zinc spinel oxides ZnX2O4 (X=Al, Ga and In). The band gap of ZnAl2O4 calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.83.9 eV. The DFT band gap of ZnGa2O4 is 2.82 eV and is underestimated compared with the experimental value of 4.45.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl2O4 probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified BeckeJohnson (MBJ) potential approximation, to calculate the band gap of ZnX2O4. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl2O4, the predicted band gap values are >6 eV, i.e. ~2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000292137500002 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 98 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.786; 2011 IF: 4.177  
  Call Number UA @ lucian @ c:irua:89555 Serial 1008  
Permanent link to this record
 

 
Author Voorhaar, L.; Diaz, M.M.; Leroux, F.; Rogers, S.; Abakumov, A.M.; Van Tendeloo, G.; Van Assche, G.; Van Mele, B.; Hoogenboom, R. url  doi
openurl 
  Title Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers Type A1 Journal article
  Year 2017 Publication (up) NPG Asia materials Abbreviated Journal Npg Asia Mater  
  Volume 9 Issue Pages e385  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Supramolecular polymeric materials constitute a unique class of materials held together by non-covalent interactions. These dynamic supramolecular interactions can provide unique properties such as a strong decrease in viscosity upon relatively mild heating, as well as self-healing ability. In this study we demonstrate the unique mechanical properties of phase-separated electrostatic supramolecular materials based on mixing of low molar mass, oligomeric, ABA-triblock copolyacrylates with oppositely charged outer blocks. In case of well-chosen mixtures and block lengths, the charged blocks are phase separated from the uncharged matrix in a hexagonally packed nanomorphology as observed by transmission electron microscopy. Thermal and mechanical analysis of the material shows that the charged sections have a T-g closely beyond room temperature, whereas the material shows an elastic response at temperatures far above this T-g ascribed to the electrostatic supramolecular interactions. A broad set of materials having systematic variations in triblock copolymer structures was used to provide insights in the mechanical properties and and self-healing ability in correlation with the nanomorphology of the materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402065300005 Publication Date 2017-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1884-4049; 1884-4057 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.157 Times cited 8 Open Access OpenAccess  
  Notes ; This research was conducted in the framework of the SIM-SHE/NAPROM project and SIM is gratefully acknowledged for the financial support. ; Approved Most recent IF: 9.157  
  Call Number UA @ lucian @ c:irua:144263 Serial 4691  
Permanent link to this record
 

 
Author Psilodimitrakopoulos, S.; Orekhov, A.; Mouchliadis, L.; Jannis, D.; Maragkakis, G.M.; Kourmoulakis, G.; Gauquelin, N.; Kioseoglou, G.; Verbeeck, J.; Stratakis, E. url  doi
openurl 
  Title Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers Type A1 Journal article
  Year 2021 Publication (up) npj 2D Materials and Applications Abbreviated Journal  
  Volume 5 Issue 1 Pages 77  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Atomically thin two-dimensional (2D) materials can be vertically stacked with van der Waals bonds, which enable interlayer coupling. In the particular case of transition metal dichalcogenide (TMD) bilayers, the relative direction between the two monolayers, coined as twist-angle, modifies the crystal symmetry and creates a superlattice with exciting properties. Here, we demonstrate an all-optical method for pixel-by-pixel mapping of the twist-angle with a resolution of 0.55(degrees), via polarization-resolved second harmonic generation (P-SHG) microscopy and we compare it with four-dimensional scanning transmission electron microscopy (4D STEM). It is found that the twist-angle imaging of WS2 bilayers, using the P-SHG technique is in excellent agreement with that obtained using electron diffraction. The main advantages of the optical approach are that the characterization is performed on the same substrate that the device is created on and that it is three orders of magnitude faster than the 4D STEM. We envisage that the optical P-SHG imaging could become the gold standard for the quality examination of TMD superlattice-based devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694849200001 Publication Date 2021-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access OpenAccess  
  Notes This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call European R & T Cooperation-Grant Act of Hellenic Institutions that have successfully participated in Joint Calls for Proposals of European Networks ERA NETS (National project code: GRAPH-EYE T8 Epsilon Rho Alpha 2-00009 and European code: 26632, FLAGERA). L.M., G.Ko. and G.Ki. acknowledge funding by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project No: HFRI-FM17-3034). GKi, S.P. and G.M.M. acknowledge funding from a research co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014-2020” in the context of the project “Crystal quality control of two-dimensional materials and their heterostructures via imaging of their non-linear optical properties” (MIS 5050340)“. J.V acknowledges funding from FWO G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund, EU. J.V. and N.G. acknowledge funding from the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717-ESTEEM3. J.V. N.G. and A.O. acknowledge funding through a GOA project ”Solarpaint" of the University of Antwerp. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181610 Serial 6877  
Permanent link to this record
 

 
Author Lobato, I.; Friedrich, T.; Van Aert, S. pdf  url
doi  openurl
  Title Deep convolutional neural networks to restore single-shot electron microscopy images Type A1 Journal Article
  Year 2024 Publication (up) npj Computational Materials Abbreviated Journal npj Comput Mater  
  Volume 10 Issue 1 Pages 10  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Advanced electron microscopy techniques, including scanning electron microscopes (SEM), scanning transmission electron microscopes (STEM), and transmission electron microscopes (TEM), have revolutionized imaging capabilities. However, achieving high-quality experimental images remains a challenge due to various distortions stemming from the instrumentation and external factors. These distortions, introduced at different stages of imaging, hinder the extraction of reliable quantitative insights. In this paper, we will discuss the main sources of distortion in TEM and S(T)EM images, develop models to describe them, and propose a method to correct these distortions using a convolutional neural network. We validate the effectiveness of our method on a range of simulated and experimental images, demonstrating its ability to significantly enhance the signal-to-noise ratio. This improvement leads to a more reliable extraction of quantitative structural information from the images. In summary, our findings offer a robust framework to enhance the quality of electron microscopy images, which in turn supports progress in structural analysis and quantification in materials science and biology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001138183000001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N, G0A7723N and EOS 40007495). S.V.A. acknowledges funding from the University of Antwerp Research Fund (BOF). The authors thank Lukas Grünewald for data acquisition and support for Fig. 7. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:202714 Serial 8994  
Permanent link to this record
 

 
Author Du, K.; Guo, L.; Peng, J.; Chen, X.; Zhou, Z.-N.; Zhang, Y.; Zheng, T.; Liang, Y.-P.; Lu, J.-P.; Ni, Z.-H.; Wang, S.-S.; Van Tendeloo, G.; Zhang, Z.; Dong, S.; Tian, H. url  doi
openurl 
  Title Direct visualization of irreducible ferrielectricity in crystals Type A1 Journal article
  Year 2020 Publication (up) npj Quantum Materials Abbreviated Journal  
  Volume 5 Issue 1 Pages 49-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, e.g., ferroelectricity/ferromagnetism, antiferroelectricity/antiferromagnetism, and even dipole-vortex/magnetic-vortex, but ferrielectricity/ferrimagnetism kept telling a disparate story in microscopic level. Since the definition of a charge dipole involves more than one ion, there may be multiple choices for a dipole unit, which makes most ferrielectric orders equivalent to ferroelectric ones, i.e., this ferrielectricity is not necessary to be a real independent branch of polarity. In this work, by using the spherical aberration-corrected scanning transmission electron microscope, we visualize a nontrivial ferrielectric structural evolution in BaFe2Se3, in which the development of two polar sub-lattices is out-of-sync, for which we term it as irreducible ferrielectricity. Such irreducible ferrielectricity leads to a non-monotonic behavior for the temperature-dependent polarization, and even a compensation point in the ordered state. Our finding unambiguously distinguishes ferrielectrics from ferroelectrics in solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551499400001 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes ; We acknowledge the National Natural Science Foundation of China (Grant Nos. 11834002, 11674055, and 11234011), National Key R&D Program of China 2017YFB0703100, and the 111 Project (Grant No. B16042). K.D. acknowledges the China Scholarship Council (CSC, No.201806320230) for sponsorship and 2019 Zhejiang University Academic Award for Outstanding Doctoral Candidates. We thank Prof. Fang Lin for providing guidance on calculating atoms position and Dr. Andrew Studer for performing neutron powder diffraction. We thank Prof. Sang-Wook Cheong, Prof. Zhigao Sheng, Prof. Qianghua Wang, Prof. Meng Wang, Prof. Renkui Zheng, Prof. Takuya Aoyama, Dr. Zhibo Yan, and Dr. Meifeng Liu for valuable discussion and/or technical help during measurements. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171225 Serial 6486  
Permanent link to this record
 

 
Author Soldatov, A.; Yalovega, G.; Smolentsev, G.; Kravtsova, A.; Lamoen, D.; Balasubramanian, C.; Marcelli, A.; Cinque, G.; Bellucci, S. doi  openurl
  Title ALN nanoparticles XANES analysis: local atomic and electronic structure Type A1 Journal article
  Year 2007 Publication (up) Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment Abbreviated Journal Nucl Instrum Meth A  
  Volume 575 Issue 1/2 Pages 85-87  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Amsterdam Editor  
  Language Wos 000247146600021 Publication Date 2007-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.362 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.362; 2007 IF: 1.114  
  Call Number UA @ lucian @ c:irua:64755 Serial 89  
Permanent link to this record
 

 
Author Fomin, V.M.; Misko, V.R.; Devreese, J.T.; Brongersma, H.H. doi  openurl
  Title Comparative analysis of the low-energy He+ ions scattering on Al and Al2O3 surfaces Type A1 Journal article
  Year 1998 Publication (up) Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms Abbreviated Journal Nucl Instrum Meth B  
  Volume 145 Issue Pages 545-552  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000077508800008 Publication Date 2003-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.109 Times cited 9 Open Access  
  Notes Approved Most recent IF: 1.109; 1998 IF: 1.093  
  Call Number UA @ lucian @ c:irua:24440 Serial 415  
Permanent link to this record
 

 
Author Frangis, N.; Nejim, A.; Hemment, P.L.F.; Stoemenos, J.; van Landuyt, J. openurl 
  Title Ion beam synthesis of β-SiC at 9500C and structural characterization Type A3 Journal article
  Year 1996 Publication (up) Nuclear instruments and methods in physics research Abbreviated Journal  
  Volume B112 Issue Pages 325-329  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-5087 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15454 Serial 1740  
Permanent link to this record
 

 
Author Fedina, L.; van Landuyt, J.; Vanhellemont, J.; Aseev, A.L. doi  openurl
  Title Observation of vacancy clustering in FZ-Si crystals during in situ electron irradiation in a high voltage electron microscope Type A1 Journal article
  Year 1996 Publication (up) Nuclear instruments and methods in physics research Abbreviated Journal Nucl Instrum Meth B  
  Volume B112 Issue Pages 133-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996UW20100029 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.124 Times cited 4 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15453 Serial 2423  
Permanent link to this record
 

 
Author Razdobarin, A.G.; Mukhin, E.E.; Semenov, V.V.; Yu.Tolstyakov, S.; Kochergin, M.M.; Kurskiev, G.S.; Podushnikova, K.A.; Kirilenko, D.A.; Sitnikova, A.A.; Gorodetsky, А.Е.; Bukhovets, V.L.; Zalavutdinov, R.K.; Zakharov, А.P.; Arkhipov, I.I.; Voitsenya, V.S.; Bondarenko, V.N.; Konovalov, V.G.; Ryzhkov, I.V.; pdf  doi
openurl 
  Title High reflective mirrors for in-vessel applications in ITER Type A1 Journal article
  Year 2010 Publication (up) Nuclear instruments and methods in physics research : A: accelerators, spectrometers, detectors and associated equipment Abbreviated Journal Nucl Instrum Meth A  
  Volume 623 Issue 2 Pages 809-811  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The structure and surface morphology of aluminum and silver mirrors covered with protective dielectric oxide layer were studied by means of TEM and SEM. The presence of needle-like pores throughout the thickness of the ZrO(2) film and bubble-like pores in Al(2)O(3) was observed. The test for resistivity to deuterium ion bombardment shows that the exposition to a fluence of similar to 2 x 10(20) ions/cm(2) with the ion energy of 40-50 eV results in appearance of blisters on the surface of mirrors covered wit h Al(2)O(3). For the mirrors protected with ZrO(2) no noticeable changes in surface morphology and reflectivity were found even after order of magnitude higher ion fluence. The effect of different porous structures on blistering phenomena is discussed. (C) 2010 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Place of Publication Amsterdam Editor  
  Language Wos 000284343600041 Publication Date 2010-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.362 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.362; 2010 IF: 1.142  
  Call Number UA @ lucian @ c:irua:95545 Serial 1442  
Permanent link to this record
 

 
Author Suvorov, A.V.; Lebedev, O.I.; Suvorova, A.A.; van Landuyt, J.; Usov, I.O. doi  openurl
  Title Defect characterization in high temperature implanted 6H-SiC using TEM Type A1 Journal article
  Year 1997 Publication (up) Nuclear instruments and methods in physics research: B Abbreviated Journal Nucl Instrum Meth B  
  Volume 127/128 Issue Pages 347-349  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1997XG60500078 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.109 Times cited 17 Open Access  
  Notes Approved Most recent IF: 1.109; 1997 IF: 1.016  
  Call Number UA @ lucian @ c:irua:21411 Serial 613  
Permanent link to this record
 

 
Author Frangis, N.; van Landuyt, J.; Grimaldi, M.G.; Calcagno, L. doi  openurl
  Title Electron microscopy and Rutherford backscattering spectrometry characterisation of 6H SiC samples implanted with He+ Type A1 Journal article
  Year 1996 Publication (up) Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms T2 – Symposium 1 on New Trends in Ion Beam Processing of Materials, at the, E-MRS 96 Spring Meeting, June 04-07, 1996, Strasbourg, France Abbreviated Journal Nucl Instrum Meth B  
  Volume 120 Issue 1-4 Pages 186-189  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract 6H SiC single crystals were implanted al room temperature with 1 MeV He+ up to a fluence of 2 x 10(17) at./cm(2) RBS-channeling analysis with a 2 MeV He+ beam indicated the formation of extended defects or the generation of point defects at a constant concentration over a depth of about 1 mu m. Electron microscopy characterisation revealed the presence of two amorphous buried layers at depths of about 1,75 and 4.8 mu m. They an due to the implantation and to the analysing RES beam, respectively, No extended planar or linear faults were found in the region between the surface and the first amorphous layer. However, at the surface, a 50 nm thick amorphous layer was observed in which crystalline inclusions were embedded. Electron diffraction and HREM data of the inclusions were typical for diamond, These inclusions were even found in the crystalline SiC material below this layer, however at a reduced density.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Amsterdam Editor  
  Language Wos A1996VZ24500040 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.124 Times cited 2 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:95882 Serial 947  
Permanent link to this record
 

 
Author Frangis, N.; Nejim, A.; Hemment, P.L.F.; Stoemenos, J.; van Landuyt, J. doi  openurl
  Title Ion beam synthesis of \beta-SiC at 950 degrees C and structural characterization Type A1 Journal article
  Year 1996 Publication (up) Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms T2 – Symposium J on Correlated Effects in Atomic and Cluster Ion Bombardment and Implantation/Symposium C on Pushing the Limits of Ion Beam, Processing – Fr Abbreviated Journal Nucl Instrum Meth B  
  Volume 112 Issue 1-4 Pages 325-329  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The structure of beta-SiC formed by carbon implantation into Si at high temperatures (850-950 degrees C) at doses ranging between 0.2 X 10(18) to 1 X 10(18) cm(-2) at 200 keV, was studied by combined cross section and high resolution transmission electron microscopy (XTEM and HRTEM). Implantation was performed on (001) and (111) Si wafers. In both cases a buried beta-SiC layer was formed having the same orientation as the Si matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos A1996UW20100069 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.124 Times cited 9 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:95886 Serial 1742  
Permanent link to this record
 

 
Author Kalitzova, M.; Peeva, A.; Ignatova, V.; Lebedev, O.I.; Zollo, G.; Vitali, G. pdf  doi
openurl 
  Title Ion beam synthesis of Te and Bi nanoclusters in silicon: the effect of post-implantation high frequency electromagnetic field Type A1 Journal article
  Year 2006 Publication (up) Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B  
  Volume 242 Issue Pages 209-213  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000236225200056 Publication Date 2005-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.109 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.109; 2006 IF: 0.946  
  Call Number UA @ lucian @ c:irua:58051 Serial 1741  
Permanent link to this record
 

 
Author Jacobs, M.; Bodart, F.; Terwagne, G.; Schryvers, D.; Poulet, A. doi  openurl
  Title Nanohardness and structure of nitrogen implanted SixAly coatings post-implanted with oxygen Type A1 Journal article
  Year 1999 Publication (up) Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B  
  Volume 147 Issue Pages 231-237  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000077846200041 Publication Date 2003-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.109 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.109; 1999 IF: 1.118  
  Call Number UA @ lucian @ c:irua:29377 Serial 2258  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Schryvers, D. openurl 
  Title Atomic structure of alloys close to phase transitions Type A1 Journal article
  Year 2000 Publication (up) Nucleation and growth processes in materials Abbreviated Journal  
  Volume 580 Issue Pages 283-292  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000165506200043 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48377 Serial 197  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Cuong, N.T.; Tikhomirov, V.K.; Jivanescu, M.; Stesmans, A.; Chibotaru, L.F.; Velázquez, J.J.; Rodríguez, V.D.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing Type A1 Journal article
  Year 2012 Publication (up) Optical materials Abbreviated Journal Opt Mater  
  Volume 34 Issue 4 Pages 616-621  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effect of heat treatment on the structure and luminescence of Ag nanoclusters doped oxyfluoride glasses was studied and the implication for drawing the corresponding fibers doped with luminescent Ag nanoclusters has been proposed. The heat treatment results, first, in condensation of the Ag nanoclusters into larger Ag nanoparticles and loss of Ag luminescence, and further heat treatment results in precipitation of a luminescent-loss nano- and microcrystalline Ag phases onto the surface of the glass. Thus, the oxyfluoride fiber doped with luminescent Ag nanoclusters was pulled from the viscous glass melt and its attenuation loss was 0.19 dB/cm in the red part of the spectrum; i.e. near to the maximum of Ag nanoclusters luminescence band. The nucleation centers for the Ag nanoclusters in oxyfluoride glasses have been suggested to be the fluorine vacancies and their nanoclusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300124500006 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-3467; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.238 Times cited 25 Open Access  
  Notes Methusalem Approved Most recent IF: 2.238; 2012 IF: 1.918  
  Call Number UA @ lucian @ c:irua:93632 Serial 811  
Permanent link to this record
 

 
Author Krsmanovic, R.; Bals, S.; Bertoni, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title Structural characterization of Er-doped Li2O-Al2O3-SiO2 glass ceramics Type A1 Journal article
  Year 2008 Publication (up) Optical materials Abbreviated Journal Opt Mater  
  Volume 30 Issue 7 Pages 1183-1188  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Particularly favourable properties of glass ceramics are developed on the basis of two key advantages of these materials: the variation of chemical composition and of microstructure. Therefore, detailed structural and chemical information are necessary to get insight in novel glass ceramic materials. We present here two examples of Er-doped Li2O-Al2O3-SiO2, with different quantities of ZrO2, both obtained with sol-gel synthesis. Different transmission electron microscopy techniques: conventional TEM, HRTEM, and EELS are used and the results are compared with those previously obtained with XRD and Rietveld analysis. We also demonstrate the 3D reconstruction, obtained from HAADF-STEM imaging, to determine the morphology of nanosize precipitates in these composites. (c) 2007 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000254419100035 Publication Date 2007-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-3467; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.238 Times cited 12 Open Access  
  Notes Iap-V1; Esteem Approved Most recent IF: 2.238; 2008 IF: 1.714  
  Call Number UA @ lucian @ c:irua:70004 Serial 3219  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V. url  doi
openurl 
  Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
  Year 2012 Publication (up) Optical materials express Abbreviated Journal Opt Mater Express  
  Volume 2 Issue 6 Pages 723-734  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304953700004 Publication Date 2012-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.591 Times cited Open Access  
  Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved Most recent IF: 2.591; 2012 IF: 2.616  
  Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707  
Permanent link to this record
 

 
Author Meert, K.W.; Morozov, V.A.; Abakumov, A.M.; Hadermann, J.; Poelman, D.; Smet, P.F. url  doi
openurl 
  Title Energy transfer in Eu3+ doped scheelites : use as thermographic phosphor Type A1 Journal article
  Year 2014 Publication (up) Optics express Abbreviated Journal Opt Express  
  Volume 22 Issue 9 Pages A961-A972  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper the luminescence of the scheelite-based CaGd2(1-x)Eu2x(WO4)4 solid solutions is investigated as a function of the Eu content and temperature. All phosphors show intense red luminescence due to the 5D0 7F2 transition in Eu3+, along with other transitions from the 5D1 and 5D0 excited states. For high Eu3+ concentrations the intensity ratio of the emission originating from the 5D1 and 5D0 levels has a non-conventional temperature dependence, which could be explained by a phonon-assisted cross-relaxation process. It is demonstrated that this intensity ratio can be used as a measure of temperature with high spatial resolution, allowing the use of these scheelites as thermographic phosphor. The main disadvantage of many thermographic phosphors, a decreasing signal for increasing temperature, is absent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335905300037 Publication Date 2014-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.307; 2014 IF: 3.488  
  Call Number UA @ lucian @ c:irua:117067 Serial 1044  
Permanent link to this record
 

 
Author Tikhomirov, V.K.; Rodriguez, V.D.; Kutznetsov, D.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V. url  doi
openurl 
  Title Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters Type A1 Journal article
  Year 2010 Publication (up) Optics express Abbreviated Journal Opt Express  
  Volume 18 Issue 21 Pages 22032-22040  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Bulk oxyfluoride glasses doped with Ag nanoclusters have been prepared using the melt quenching technique. When pumped in the absorption band of Ag nanoclusters between 300 to 500 nm, these glasses emit a very broad luminescence band covering all the visible range with a weak tail extending into the near infrared. The maximum of the luminescence band and its color shifts to the blue with a shortening of the excitation wavelength and an increasing ratio of oxide to fluoride components, resulting in white color luminescence at a particular ratio of oxide to fluoride; with a quantum yield above 20%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000283686500057 Publication Date 2010-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 74 Open Access  
  Notes Methusalem Approved Most recent IF: 3.307; 2010 IF: 3.753  
  Call Number UA @ lucian @ c:irua:85802 Serial 2698  
Permanent link to this record
 

 
Author Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Kuznetsov, A.S.; Chibotaru, L.F.; Baranov, A.N.; Van Tendeloo, G.; Moshchalkov, V.V. url  doi
openurl 
  Title Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host Type A1 Journal article
  Year 2011 Publication (up) Optics express Abbreviated Journal Opt Express  
  Volume 19 Issue 17 Pages 15955-15964  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293894900033 Publication Date 2011-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 19 Open Access  
  Notes FWO; Methusalem Approved Most recent IF: 3.307; 2011 IF: 3.587  
  Call Number UA @ lucian @ c:irua:92428 Serial 2776  
Permanent link to this record
 

 
Author Van Aert, S.; van Dyck, D.; den Dekker, A.J. url  doi
openurl 
  Title Resolution of coherent and incoherent imaging systems reconsidered: classical criteria and a statistical alternative Type A1 Journal article
  Year 2006 Publication (up) Optics express Abbreviated Journal Opt Express  
  Volume 14 Issue 9 Pages 3830-3839  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000237296200013 Publication Date 2006-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 45 Open Access  
  Notes Fwo Approved Most recent IF: 3.307; 2006 IF: 4.009  
  Call Number UA @ lucian @ c:irua:58262 Serial 2883  
Permanent link to this record
 

 
Author Mayer, J.A.; Offermans, T.; Chrapa, M.; Pfannmöller, M.; Bals, S.; Ferrini, R.; Nisato, G. url  doi
openurl 
  Title Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures Type A1 Journal article
  Year 2018 Publication (up) Optics express Abbreviated Journal Opt Express  
  Volume 26 Issue 26 Pages A240  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427900400003 Publication Date 2018-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 9 Open Access OpenAccess  
  Notes ; FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7, grant number 287594); German Federal Ministry of Education and Research (BMBF) (03xEK3504, project TAURUS); FP7 European project ESTEEM2 (grant number 312483); HEiKA centre FunTECH-3D. ; Approved Most recent IF: 3.307  
  Call Number UA @ lucian @ c:irua:150839UA @ admin @ c:irua:150839 Serial 4975  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: